Goals for this Week. CSC 2400: Computer Systems. Bits, Bytes and Data Types. Binary number system. Finite representations of binary integers

Size: px
Start display at page:

Download "Goals for this Week. CSC 2400: Computer Systems. Bits, Bytes and Data Types. Binary number system. Finite representations of binary integers"

Transcription

1 CSC 2400: Computer Systems Bits, Bytes and Data Types 1 Goals for this Week Binary number system Why binary? Converting between decimal and binary and octal and hexadecimal number systems Finite representations of binary integers Unsigned and signed integers Integer addition and subtraction Bitwise operators AND, OR, NOT, and XOR Shift-left and shift-right 2

2 Analog/Analogue Systems Analogue Systems V(t) can have any value between its minimum and maximum value V(t) Digital Systems Digital Systems V(t) takes a value selected from a set of values Binary digital systems form the basis of almost all hardware systems currently V(t)

3 Why Bits (Binary Digits)? Computers are built using digital circuits Inputs and outputs can have only two values True (high voltage) or false (low voltage) Represented as 1 and 0 Can represent many kinds of information Boolean (true or false) Numbers (23, 79, ) Characters ( a, z, ) Pixels, sounds Internet addresses Can manipulate in many ways Read and write Logical operations Arithmetic 5 Coding A single binary input can have two values: 1 or 0 More bits = more combinations How many values can you represent on 3 bits? What about n bits? 6

4 Memorize Powers of 2 Powers of = = = = = = = 512 Powers of = 1Kilo (1024) 10 3 = 1, = 1Mega ( = 1,048,576 ) 10 6 = 1,000, = 1Giga ( = 1,073,741,824) 10 9 = 1,000,000, = 1Tera ( = 1,099,511,627,776) = 1,000,000,000,000 7 Base 10 and Base 2 Decimal (base 10) Each digit represents a power of = 4 x x x x 10 0 Binary (base 2) Each bit represents a power of = 1 x x x x 2 0 =

5 Binary to Decimal Sum up the place values of all 1-bits: Place Value = 10? = 10? 9 Decimal to Binary Use the Placement Method Powers of = 2? 128 goes into 155 once leaving 27 to be placed 1??????? 64 and 32 are too big (make them 0) 16 goes in once leaving ???? and so on 10

6 You Try It 11 Working w/ Bits is Tedious for People Express large binary numbers in hex using ¼ fewer digits: Hex Binary Decimal Hex Binary Decimal A B C D E F This is the hexadecimal system. Memorize the tables above. 12

7 Exercises 1. Based on the lookup tables on the previous page, convert the hex value 0x7A8BF7D6 into its binary equivalent: 7 A 8 B F 7 D Based on the lookup tables on the previous page, convert the binary to hex: E 9 4 B 5 F Why hexadecimal? Widely used in assembly language programming Used in network programming and debugging Used in graphic design programs e.g., for the red, green and blue components of a color: FF0000 represents red, for example. How many bits are used to represent each color? How many different colors can be represented?

8 Decimal Addition From right to left, we add each pair of digits We write the sum, and add the carry to the next column Sum Carry Hex Addition Hex addition is similar to decimal addition except that each hex digit has a range of 0 to F instead of 0 to 9, and a carry out occurs when the sum of hex digits in a particular column exceeds F (15 decimal). Examples: 1 C 3 C A + E D E A F B 9 A + D 2 E E 8 0

9 Hex Subtraction Hex subtraction is similar to decimal subtraction except that if the subtrahend is greater than the minuend, we must borrow 16 (10 hex) from the previous digit. Examples: C A A 5 A 1 / B D C 1 2 / / 1 D 3 5 F B 6 8 F A 9 Recall: Decimal Addition From right to left, we add each pair of digits We write the sum, and add the carry to the next column Base 10 Base Sum Carry Sum Carry 18

10 Finite Representation of Integers Fixed number of bits in memory Usually 8, 16, or 32 bits (1, 2, or 4 bytes) Unsigned integer No sign bit Always 0 or a positive number All arithmetic is modulo 2 n Examples of unsigned integers Modulo Arithmetic Consider only numbers in a range E.g., five-digit car odometer: 0, 1,, E.g., eight-bit numbers 0, 1,, 255 Roll-over when you run out of space E.g., car odometer goes from to 0, 1, E.g., eight-bit number goes from 255 to 0, 1, Adding 2 n doesn t change the answer For eight-bit number, n=8 and 2 n =256 E.g., ( ) mod 256 is This can help us do subtraction Suppose you want to compute a b Note that this equals a + ( b)

11 One s and Two s Complement One s complement: flip every bit E.g., b is (i.e., 69 in decimal) One s complement is That s simply Subtracting from is easy (no carry needed!) b one s complement Two s complement Add 1 to the one s complement E.g., (255 69) Putting it All Together Computing a b Same as a b Same as a + (255 b) + 1 Same as a + onescomplement(b) + 1 Same as a + twoscomplement(b) Example: The original number 69: One s complement of 69: Two s complement of 69: Add to the number 172: The sum comes to: Equals: 103 in decimal 23

12 Reading Two s Complement Patterns When a two s complement number has a highest bit 1, it indicates that the number is negative. To find the value, perform the same steps: Unknown value: One s complement: Add 1 (two s complement): We get a value of 69, so the original pattern must have been -69. Practice: Ch. 2, Exercise 2 24 Signed Integers Sign-magnitude representation Use one bit to store the sign Zero for positive number One for negative number Examples E.g., Hard to do arithmetic this way, so it is rarely used Complement representation One s complement Flip every bit E.g., Two s complement Flip every bit, then add 1 E.g.,

13 Fill in the Table Bit Pattern Value (Sign Magnitude) Value (One s Complement) Value (Two s Complement) Question What value does represent? [Ex. 6, page 69] 27

14 Overflow: Running Out of Room Adding two large integers together Sum might be too large to store in the number of bits available What happens? Unsigned integers All arithmetic is modulo arithmetic Sum would just wrap around Signed integers Can get nonsense values Example with 16-bit integers Sum: Result: Exercise Assume only four bits are available for representing integers, and signed integers are represented in 2 s complement. Compute the value of the expression

15 Bitwise Operations 30 Networking 31

16 Encryption/ Decryption 32 Compression 33

17 Bitwise Operators: AND and OR Bitwise AND (&) Bitwise OR ( ) & & Bitwise Operators: Not and XOR One s complement (~) Turns 0 to 1, and 1 to 0 E.g., set last three bits to 0 x = x & XOR (^) 0 if both bits are the same 1 if the two bits are different ^ Practice: Ch. 2, Exercise 9 35

18 Bitwise Operators: Shift Left/Right Shift left (<<): Multiply by powers of 2 Shift some # of bits to the left, filling the blanks with <<2 Shift right (>>): Divide by powers of 2 Shift some # of bits to the right. Fill in blanks with sign bit >>2-75>>2 sign extension sign extension Practice: Ch. 2, Exercises 10, 12, 13, Bitmasks Used to change or query one or more bits in a variable. The bitmask indicates which bits are to be affected. Common operations: Operation Expression C expression Set N th bit of x x = x OR 2 N x = x (1 << N); Clear N th bit of x x = x x = ; Read N th bit of x??? = x??? = x ; Can extend to groups of bits 37

19 Exercise Let x be an 8-bit integer. Set the 5 th least significant bit of x: Clear the 5 th least significant bit of x: 38 Bitmask Example /* This program demonstrates setting a bit, clearing a bit, and ** reading a bit. (pg 64) */ #include <stdio.h> main() { char a; int i; a=17; a=a (1 << 3); /* set 3rd bit */ printf("%d\n",a); a=a & (~(1<<4)); /* clear 4th bit */ printf("%d\n",a); } for (i=7; i>=0; i--) printf("%d ",(a&(1<<i)) >> i); /* read i'th bit */ printf("\n"); 39

20 Exercise #1 Write a small program that reads in an integer and prints out its binary representation. Sample output: Please enter an integer: 1025 The binary representation of 1025 is Exercise #2 Write a small program that reads in an integer prints out hexadecimal value of its bytes, separated by spaces, starting with the most significant byte. Sample output: Please enter an integer: 1025 The four bytes (in hexadecimal) are:

21 Example: Counting the 1 s How many 1 bits in a number? E.g., how many 1 bits in the binary representation of 53? Four 1 bits How to count them? Counting the Number of 1 Bits #include <stdio.h> #include <stdlib.h> int main(void) { unsigned n, count; printf( Number: "); if (scanf("%u", &n)!= 1) { fprintf(stderr, "Error: Expect number.\n"); exit(exit_failure); } /* Enter code to count the 1 bits */ } printf( Number of 1 bits: %u\n, count); return 0; 45

22 Practice Write a function getbyte that extracts a byte from a word. /* * getbyte(x, n) - Extract byte n from word x * Bytes numbered from 0 (LSB) to 3 (MSB) * Examples: getbyte(0x ,1) = 0x56 * Legal operations: ~ & ^ + << >> */ int getbyte(int x, int n) { /* Add code here */ } 46 Summary Computer represents everything in binary Integers, floating-point numbers, characters, addresses, Pixels, sounds, colors, etc. Binary arithmetic through logic operations Sum (XOR) and Carry (AND) Two s complement for subtraction Binary operations in C AND, OR, NOT, XOR, shift left and shift right Useful for efficient and concise code, though sometimes cryptic 47

23 Required Reading Textbook, Chapter 2 48

The Design of C: A Rational Reconstruction

The Design of C: A Rational Reconstruction The Design of C: A Rational Reconstruction 1 Goals of this Lecture Help you learn about: The decisions that were available to the designers of C The decisions that were made by the designers of C and thereby

More information

The Design of C: A Rational Reconstruction"

The Design of C: A Rational Reconstruction The Design of C: A Rational Reconstruction 1 Goals of this Lecture Help you learn about: The decisions that were available to the designers of C The decisions that were made by the designers of C and thereby

More information

The Design of C: A Rational Reconstruction" Jennifer Rexford!

The Design of C: A Rational Reconstruction Jennifer Rexford! The Design of C: A Rational Reconstruction" Jennifer Rexford! 1 Goals of this Lecture"" Number systems! Binary numbers! Finite precision! Binary arithmetic! Logical operators! Design rationale for C! Decisions

More information

The Design of C: A Rational Reconstruction

The Design of C: A Rational Reconstruction The Design of C: A Rational Reconstruction 2 Goals of this Lecture Help you learn about: The decisions that were available to the designers of C The decisions that were made by the designers of C and thereby

More information

Fundamentals of Programming Session 2

Fundamentals of Programming Session 2 Fundamentals of Programming Session 2 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Fall 2013 Sharif University of Technology Outlines Programming Language Binary numbers Addition Subtraction

More information

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

More information

2.1. Unit 2. Integer Operations (Arithmetic, Overflow, Bitwise Logic, Shifting)

2.1. Unit 2. Integer Operations (Arithmetic, Overflow, Bitwise Logic, Shifting) 2.1 Unit 2 Integer Operations (Arithmetic, Overflow, Bitwise Logic, Shifting) 2.2 Skills & Outcomes You should know and be able to apply the following skills with confidence Perform addition & subtraction

More information

CS 31: Introduction to Computer Systems. 03: Binary Arithmetic January 29

CS 31: Introduction to Computer Systems. 03: Binary Arithmetic January 29 CS 31: Introduction to Computer Systems 03: Binary Arithmetic January 29 WiCS! Swarthmore Women in Computer Science Slide 2 Today Binary Arithmetic Unsigned addition Subtraction Representation Signed magnitude

More information

Binary Addition. Add the binary numbers and and show the equivalent decimal addition.

Binary Addition. Add the binary numbers and and show the equivalent decimal addition. Binary Addition The rules for binary addition are 0 + 0 = 0 Sum = 0, carry = 0 0 + 1 = 0 Sum = 1, carry = 0 1 + 0 = 0 Sum = 1, carry = 0 1 + 1 = 10 Sum = 0, carry = 1 When an input carry = 1 due to a previous

More information

Korea University of Technology and Education

Korea University of Technology and Education MEC52 디지털공학 Binary Systems Jee-Hwan Ryu School of Mechanical Engineering Binary Numbers a 5 a 4 a 3 a 2 a a.a - a -2 a -3 base or radix = a n r n a n- r n-...a 2 r 2 a ra a - r - a -2 r -2...a -m r -m

More information

9/23/15. Agenda. Goals of this Lecture. For Your Amusement. Number Systems and Number Representation. The Binary Number System

9/23/15. Agenda. Goals of this Lecture. For Your Amusement. Number Systems and Number Representation. The Binary Number System For Your Amusement Number Systems and Number Representation Jennifer Rexford Question: Why do computer programmers confuse Christmas and Halloween? Answer: Because 25 Dec = 31 Oct -- http://www.electronicsweekly.com

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2 Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2 Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Website is up

More information

CS 31: Intro to Systems Binary Arithmetic. Kevin Webb Swarthmore College January 26, 2016

CS 31: Intro to Systems Binary Arithmetic. Kevin Webb Swarthmore College January 26, 2016 CS 31: Intro to Systems Binary Arithmetic Kevin Webb Swarthmore College January 26, 2016 Reading Quiz Unsigned Integers Suppose we had one byte Can represent 2 8 (256) values If unsigned (strictly non-negative):

More information

Semester Transition Point. EE 109 Unit 11 Binary Arithmetic. Binary Arithmetic ARITHMETIC

Semester Transition Point. EE 109 Unit 11 Binary Arithmetic. Binary Arithmetic ARITHMETIC 1 2 Semester Transition Point EE 109 Unit 11 Binary Arithmetic At this point we are going to start to transition in our class to look more at the hardware organization and the low-level software that is

More information

10.1. Unit 10. Signed Representation Systems Binary Arithmetic

10.1. Unit 10. Signed Representation Systems Binary Arithmetic 0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system

More information

More about Binary 9/6/2016

More about Binary 9/6/2016 More about Binary 9/6/2016 Unsigned vs. Two s Complement 8-bit example: 1 1 0 0 0 0 1 1 2 7 +2 6 + 2 1 +2 0 = 128+64+2+1 = 195-2 7 +2 6 + 2 1 +2 0 = -128+64+2+1 = -61 Why does two s complement work this

More information

Princeton University Computer Science 217: Introduction to Programming Systems. Goals of this Lecture. Number Systems and Number Representation

Princeton University Computer Science 217: Introduction to Programming Systems. Goals of this Lecture. Number Systems and Number Representation Princeton University Computer Science 27: Introduction to Programming Systems Goals of this Lecture and Number Representation Help you learn (or refresh your memory) about: The binary, hexadecimal, and

More information

CS 253. January 14, 2017

CS 253. January 14, 2017 CS 253 Department of Computer Science College of Engineering Boise State University January 14, 2017 1/30 Motivation Most programming tasks can be implemented using abstractions (e.g. representing data

More information

Number Systems. Decimal numbers. Binary numbers. Chapter 1 <1> 8's column. 1000's column. 2's column. 4's column

Number Systems. Decimal numbers. Binary numbers. Chapter 1 <1> 8's column. 1000's column. 2's column. 4's column 1's column 10's column 100's column 1000's column 1's column 2's column 4's column 8's column Number Systems Decimal numbers 5374 10 = Binary numbers 1101 2 = Chapter 1 1's column 10's column 100's

More information

CSC 8400: Computer Systems. Represen3ng and Manipula3ng Informa3on. Background: Number Systems

CSC 8400: Computer Systems. Represen3ng and Manipula3ng Informa3on. Background: Number Systems CSC 8400: Computer Systems Represen3ng and Manipula3ng Informa3on Background: Number Systems 1 Analog vs. Digital System q Analog Signals - Value varies con1nuously q Digital Signals - Value limited to

More information

Number Systems and Number Representation

Number Systems and Number Representation Princeton University Computer Science 217: Introduction to Programming Systems Number Systems and Number Representation Q: Why do computer programmers confuse Christmas and Halloween? A: Because 25 Dec

More information

MC1601 Computer Organization

MC1601 Computer Organization MC1601 Computer Organization Unit 1 : Digital Fundamentals Lesson1 : Number Systems and Conversions (KSB) (MCA) (2009-12/ODD) (2009-10/1 A&B) Coverage - Lesson1 Shows how various data types found in digital

More information

2. MACHINE REPRESENTATION OF TYPICAL ARITHMETIC DATA FORMATS (NATURAL AND INTEGER NUMBERS).

2. MACHINE REPRESENTATION OF TYPICAL ARITHMETIC DATA FORMATS (NATURAL AND INTEGER NUMBERS). 2. MACHINE REPRESENTATION OF TYPICAL ARITHMETIC DATA FORMATS (NATURAL AND INTEGER NUMBERS). 2.. Natural Binary Code (NBC). The positional code with base 2 (B=2), introduced in Exercise, is used to encode

More information

BINARY SYSTEM. Binary system is used in digital systems because it is:

BINARY SYSTEM. Binary system is used in digital systems because it is: CHAPTER 2 CHAPTER CONTENTS 2.1 Binary System 2.2 Binary Arithmetic Operation 2.3 Signed & Unsigned Numbers 2.4 Arithmetic Operations of Signed Numbers 2.5 Hexadecimal Number System 2.6 Octal Number System

More information

The type of all data used in a C++ program must be specified

The type of all data used in a C++ program must be specified The type of all data used in a C++ program must be specified A data type is a description of the data being represented That is, a set of possible values and a set of operations on those values There are

More information

Beginning C Programming for Engineers

Beginning C Programming for Engineers Beginning Programming for Engineers R. Lindsay Todd Lecture 6: Bit Operations R. Lindsay Todd () Beginning Programming for Engineers Beg 6 1 / 32 Outline Outline 1 Place Value Octal Hexadecimal Binary

More information

CS 261 Fall Binary Information (convert to hex) Mike Lam, Professor

CS 261 Fall Binary Information (convert to hex) Mike Lam, Professor CS 261 Fall 2018 Mike Lam, Professor 3735928559 (convert to hex) Binary Information Binary information Topics Base conversions (bin/dec/hex) Data sizes Byte ordering Character and program encodings Bitwise

More information

Chapter 10 Binary Arithmetics

Chapter 10 Binary Arithmetics 27..27 Chapter Binary Arithmetics Dr.-Ing. Stefan Werner Table of content Chapter : Switching Algebra Chapter 2: Logical Levels, Timing & Delays Chapter 3: Karnaugh-Veitch-Maps Chapter 4: Combinational

More information

DIGITAL SYSTEM DESIGN

DIGITAL SYSTEM DESIGN DIGITAL SYSTEM DESIGN UNIT I: Introduction to Number Systems and Boolean Algebra Digital and Analog Basic Concepts, Some history of Digital Systems-Introduction to number systems, Binary numbers, Number

More information

Data Representation 1

Data Representation 1 1 Data Representation Outline Binary Numbers Adding Binary Numbers Negative Integers Other Operations with Binary Numbers Floating Point Numbers Character Representation Image Representation Sound Representation

More information

Chapter 1. Digital Systems and Binary Numbers

Chapter 1. Digital Systems and Binary Numbers Chapter 1. Digital Systems and Binary Numbers Tong In Oh 1 1.1 Digital Systems Digital age Characteristic of digital system Generality and flexibility Represent and manipulate discrete elements of information

More information

EE 109 Unit 6 Binary Arithmetic

EE 109 Unit 6 Binary Arithmetic EE 109 Unit 6 Binary Arithmetic 1 2 Semester Transition Point At this point we are going to start to transition in our class to look more at the hardware organization and the low-level software that is

More information

Number representations

Number representations Number representations Number bases Three number bases are of interest: Binary, Octal and Hexadecimal. We look briefly at conversions among them and between each of them and decimal. Binary Base-two, or

More information

Topic Notes: Bits and Bytes and Numbers

Topic Notes: Bits and Bytes and Numbers Computer Science 220 Assembly Language & Comp Architecture Siena College Fall 2010 Topic Notes: Bits and Bytes and Numbers Binary Basics At least some of this will be review, but we will go over it for

More information

Fundamentals of Programming (C)

Fundamentals of Programming (C) Borrowed from lecturer notes by Omid Jafarinezhad Fundamentals of Programming (C) Group 8 Lecturer: Vahid Khodabakhshi Lecture Number Systems Department of Computer Engineering Outline Numeral Systems

More information

Chapter 3: part 3 Binary Subtraction

Chapter 3: part 3 Binary Subtraction Chapter 3: part 3 Binary Subtraction Iterative combinational circuits Binary adders Half and full adders Ripple carry and carry lookahead adders Binary subtraction Binary adder-subtractors Signed binary

More information

DRAM uses a single capacitor to store and a transistor to select. SRAM typically uses 6 transistors.

DRAM uses a single capacitor to store and a transistor to select. SRAM typically uses 6 transistors. Data Representation Data Representation Goal: Store numbers, characters, sets, database records in the computer. What we got: Circuit that stores 2 voltages, one for logic 0 (0 volts) and one for logic

More information

Time: 8:30-10:00 pm (Arrive at 8:15 pm) Location What to bring:

Time: 8:30-10:00 pm (Arrive at 8:15 pm) Location What to bring: ECE 120 Midterm 1 HKN Review Session Time: 8:30-10:00 pm (Arrive at 8:15 pm) Location: Your Room on Compass What to bring: icard, pens/pencils, Cheat sheet (Handwritten) Overview of Review Binary IEEE

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter Bits, Data Types, and Operations How do we represent data in a computer? At the lowest level, a computer is an electronic machine. works by controlling the flow of electrons Easy to recognize two

More information

Applied Computer Programming

Applied Computer Programming Applied Computer Programming Representation of Numbers. Bitwise Operators Course 07 Lect.eng. Adriana ALBU, PhD Politehnica University Timisoara Internal representation All data, of any type, processed

More information

The type of all data used in a C (or C++) program must be specified

The type of all data used in a C (or C++) program must be specified The type of all data used in a C (or C++) program must be specified A data type is a description of the data being represented That is, a set of possible values and a set of operations on those values

More information

Recap from Last Time. CSE 2021: Computer Organization. It s All about Numbers! 5/12/2011. Text Pictures Video clips Audio

Recap from Last Time. CSE 2021: Computer Organization. It s All about Numbers! 5/12/2011. Text Pictures Video clips Audio CSE 2021: Computer Organization Recap from Last Time load from disk High-Level Program Lecture-2(a) Data Translation Binary patterns, signed and unsigned integers Today s topic Data Translation Code Translation

More information

Topic Notes: Bits and Bytes and Numbers

Topic Notes: Bits and Bytes and Numbers Computer Science 220 Assembly Language & Comp Architecture Siena College Fall 2011 Topic Notes: Bits and Bytes and Numbers Binary Basics At least some of this will be review for most of you, but we start

More information

Integer Representation

Integer Representation Integer Representation Announcements assign0 due tonight assign1 out tomorrow Labs start this week SCPD Note on ofce hours on Piazza Will get an email tonight about labs Goals for Today Introduction to

More information

CS107, Lecture 3 Bits and Bytes; Bitwise Operators

CS107, Lecture 3 Bits and Bytes; Bitwise Operators CS107, Lecture 3 Bits and Bytes; Bitwise Operators reading: Bryant & O Hallaron, Ch. 2.1 This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution

More information

Arithmetic Operations

Arithmetic Operations Arithmetic Operations Arithmetic Operations addition subtraction multiplication division Each of these operations on the integer representations: unsigned two's complement 1 Addition One bit of binary

More information

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras Numbers and Computers Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras 1 Think of a number between 1 and 15 8 9 10 11 12 13 14 15 4 5 6 7 12 13 14 15 2 3 6 7 10 11 14 15

More information

Chapter 3: Number Systems and Codes. Textbook: Petruzella, Frank D., Programmable Logic Controllers. McGraw Hill Companies Inc.

Chapter 3: Number Systems and Codes. Textbook: Petruzella, Frank D., Programmable Logic Controllers. McGraw Hill Companies Inc. Chapter 3: Number Systems and Codes Textbook: Petruzella, Frank D., Programmable Logic Controllers. McGraw Hill Companies Inc., 5 th edition Decimal System The radix or base of a number system determines

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations How do we represent data in a computer? At the lowest level, a computer is an electronic machine. works by controlling the flow of electrons Easy to recognize

More information

Basic operators, Arithmetic, Relational, Bitwise, Logical, Assignment, Conditional operators. JAVA Standard Edition

Basic operators, Arithmetic, Relational, Bitwise, Logical, Assignment, Conditional operators. JAVA Standard Edition Basic operators, Arithmetic, Relational, Bitwise, Logical, Assignment, Conditional operators JAVA Standard Edition Java - Basic Operators Java provides a rich set of operators to manipulate variables.

More information

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

More information

Binary Representations and Arithmetic

Binary Representations and Arithmetic Binary Representations and Arithmetic 9--26 Common number systems. Base : decimal Base 2: binary Base 6: hexadecimal (memory addresses) Base 8: octal (obsolete computer systems) Base 64 (email attachments,

More information

Lecture 13 Bit Operations

Lecture 13 Bit Operations Lecture 13 Bit Operations C is a powerful language as it provides the programmer with many operations for bit manipulation. Data can be accessed at the bit level to make operations more efficient. As you

More information

CS 31: Intro to Systems Binary Arithmetic. Martin Gagné Swarthmore College January 24, 2016

CS 31: Intro to Systems Binary Arithmetic. Martin Gagné Swarthmore College January 24, 2016 CS 31: Intro to Systems Binary Arithmetic Martin Gagné Swarthmore College January 24, 2016 Unsigned Integers Suppose we had one byte Can represent 2 8 (256) values If unsigned (strictly non-negative):

More information

Final Labs and Tutors

Final Labs and Tutors ICT106 Fundamentals of Computer Systems - Topic 2 REPRESENTATION AND STORAGE OF INFORMATION Reading: Linux Assembly Programming Language, Ch 2.4-2.9 and 3.6-3.8 Final Labs and Tutors Venue and time South

More information

Jin-Soo Kim Systems Software & Architecture Lab. Seoul National University. Integers. Spring 2019

Jin-Soo Kim Systems Software & Architecture Lab. Seoul National University. Integers. Spring 2019 Jin-Soo Kim (jinsoo.kim@snu.ac.kr) Systems Software & Architecture Lab. Seoul National University Integers Spring 2019 4190.308: Computer Architecture Spring 2019 Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2 A

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

Fundamentals of Programming

Fundamentals of Programming Fundamentals of Programming Lecture 2 Number Systems & Arithmetic Lecturer : Ebrahim Jahandar Some Parts borrowed from slides by IETC1011-Yourk University Common Number Systems System Base Symbols Used

More information

Positional notation Ch Conversions between Decimal and Binary. /continued. Binary to Decimal

Positional notation Ch Conversions between Decimal and Binary. /continued. Binary to Decimal Positional notation Ch.. /continued Conversions between Decimal and Binary Binary to Decimal - use the definition of a number in a positional number system with base - evaluate the definition formula using

More information

Arithmetic and Bitwise Operations on Binary Data

Arithmetic and Bitwise Operations on Binary Data Arithmetic and Bitwise Operations on Binary Data CSCI 2400: Computer Architecture ECE 3217: Computer Architecture and Organization Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides

More information

Data Representa5on. CSC 2400: Computer Systems. What kinds of data do we need to represent?

Data Representa5on. CSC 2400: Computer Systems. What kinds of data do we need to represent? CSC 2400: Computer Systems Data Representa5on What kinds of data do we need to represent? - Numbers signed, unsigned, integers, floating point, complex, rational, irrational, - Text characters, strings,

More information

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

COE 202: Digital Logic Design Number Systems Part 2. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Number Systems Part 2. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 0: Digital Logic Design Number Systems Part Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: -34 Objectives Arithmetic operations: Binary number system Other number systems Base Conversion

More information

Kinds Of Data CHAPTER 3 DATA REPRESENTATION. Numbers Are Different! Positional Number Systems. Text. Numbers. Other

Kinds Of Data CHAPTER 3 DATA REPRESENTATION. Numbers Are Different! Positional Number Systems. Text. Numbers. Other Kinds Of Data CHAPTER 3 DATA REPRESENTATION Numbers Integers Unsigned Signed Reals Fixed-Point Floating-Point Binary-Coded Decimal Text ASCII Characters Strings Other Graphics Images Video Audio Numbers

More information

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,...

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,... Chapter 9 Computer Arithmetic Reading: Section 9.1 on pp. 290-296 Computer Representation of Data Groups of two-state devices are used to represent data in a computer. In general, we say the states are

More information

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR UNIT I Digital Systems: Binary Numbers, Octal, Hexa Decimal and other base numbers, Number base conversions, complements, signed binary numbers, Floating point number representation, binary codes, error

More information

CS 121 Digital Logic Design. Chapter 1. Teacher Assistant. Hadeel Al-Ateeq

CS 121 Digital Logic Design. Chapter 1. Teacher Assistant. Hadeel Al-Ateeq CS 121 Digital Logic Design Chapter 1 Teacher Assistant Hadeel Al-Ateeq Announcement DON T forgot to SIGN your schedule OR you will not be allowed to attend next lecture. Communication Office hours (8

More information

But first, encode deck of cards. Integer Representation. Two possible representations. Two better representations WELLESLEY CS 240 9/8/15

But first, encode deck of cards. Integer Representation. Two possible representations. Two better representations WELLESLEY CS 240 9/8/15 Integer Representation Representation of integers: unsigned and signed Sign extension Arithmetic and shifting Casting But first, encode deck of cards. cards in suits How do we encode suits, face cards?

More information

Data Representation. DRAM uses a single capacitor to store and a transistor to select. SRAM typically uses 6 transistors.

Data Representation. DRAM uses a single capacitor to store and a transistor to select. SRAM typically uses 6 transistors. Data Representation Data Representation Goal: Store numbers, characters, sets, database records in the computer. What we got: Circuit that stores 2 voltages, one for logic ( volts) and one for logic (3.3

More information

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems Decimal & Binary Representation Systems Decimal & binary are positional representation systems each position has a value: d*base i for example: 321 10 = 3*10 2 + 2*10 1 + 1*10 0 for example: 101000001

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations Original slides from Gregory Byrd, North Carolina State University Modified slides by Chris Wilcox, Colorado State University How do we represent data in a computer?!

More information

Representing and Manipulating Integers Part I

Representing and Manipulating Integers Part I Representing and Manipulating Integers Part I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Introduction The advent of the digital age Analog

More information

Chapter 4. Operations on Data

Chapter 4. Operations on Data Chapter 4 Operations on Data 1 OBJECTIVES After reading this chapter, the reader should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations

More information

Data Representa5on. CSC 2400: Computer Systems. What kinds of data do we need to represent?

Data Representa5on. CSC 2400: Computer Systems. What kinds of data do we need to represent? CSC 2400: Computer Systems Data Representa5on What kinds of data do we need to represent? - Numbers signed, unsigned, integers, floating point, complex, rational, irrational, - Text characters, strings,

More information

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

More information

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning 4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

More information

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: continued. Consulting hours. Introduction to Sim. Milestone #1 (due 1/26)

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: continued. Consulting hours. Introduction to Sim. Milestone #1 (due 1/26) Lecture Topics Today: Integer Arithmetic (P&H 3.1-3.4) Next: continued 1 Announcements Consulting hours Introduction to Sim Milestone #1 (due 1/26) 2 1 Overview: Integer Operations Internal representation

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Bits and Bytes and Numbers

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Bits and Bytes and Numbers Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: Bits and Bytes and Numbers Number Systems Much of this is review, given the 221 prerequisite Question: how high can

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations Original slides from Gregory Byrd, North Carolina State University Modified by Chris Wilcox, S. Rajopadhye Colorado State University How do we represent data

More information

LOGIC DESIGN. Dr. Mahmoud Abo_elfetouh

LOGIC DESIGN. Dr. Mahmoud Abo_elfetouh LOGIC DESIGN Dr. Mahmoud Abo_elfetouh Course objectives This course provides you with a basic understanding of what digital devices are, how they operate, and how they can be designed to perform useful

More information

Chapter 2: Number Systems

Chapter 2: Number Systems Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

More information

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions CHAPTER 4 Operations On Data (Solutions to Odd-Numbered Problems) Review Questions 1. Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical values

More information

Digital Systems and Binary Numbers

Digital Systems and Binary Numbers Digital Systems and Binary Numbers Mano & Ciletti Chapter 1 By Suleyman TOSUN Ankara University Outline Digital Systems Binary Numbers Number-Base Conversions Octal and Hexadecimal Numbers Complements

More information

Binary Values. CSE 410 Lecture 02

Binary Values. CSE 410 Lecture 02 Binary Values CSE 410 Lecture 02 Lecture Outline Binary Decimal, Binary, and Hexadecimal Integers Why Place Value Representation Boolean Algebra 2 First: Why Binary? Electronic implementation Easy to store

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 4. hundreds.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 4. hundreds. UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers of ): DIGIT 3 4 5 6 7 8 9 Number:

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-278: Digital Logic Design Fall Notes - Unit 4. hundreds.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-278: Digital Logic Design Fall Notes - Unit 4. hundreds. ECE-78: Digital Logic Design Fall 6 UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers

More information

D I G I T A L C I R C U I T S E E

D I G I T A L C I R C U I T S E E D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,

More information

ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two Solutions 26 February 2014

ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two Solutions 26 February 2014 Problem 1 (4 parts, 21 points) Encoders and Pass Gates Part A (8 points) Suppose the circuit below has the following input priority: I 1 > I 3 > I 0 > I 2. Complete the truth table by filling in the input

More information

Moodle WILLINGDON COLLEGE SANGLI. ELECTRONICS (B. Sc.-I) Introduction to Number System

Moodle WILLINGDON COLLEGE SANGLI. ELECTRONICS (B. Sc.-I) Introduction to Number System Moodle 1 WILLINGDON COLLEGE SANGLI ELECTRONICS (B. Sc.-I) Introduction to Number System E L E C T R O N I C S Introduction to Number System and Codes Moodle developed By Dr. S. R. Kumbhar Department of

More information

Computer Sc. & IT. Digital Logic. Computer Sciencee & Information Technology. 20 Rank under AIR 100. Postal Correspondence

Computer Sc. & IT. Digital Logic. Computer Sciencee & Information Technology. 20 Rank under AIR 100. Postal Correspondence GATE Postal Correspondence Computer Sc. & IT 1 Digital Logic Computer Sciencee & Information Technology (CS) 20 Rank under AIR 100 Postal Correspondence Examination Oriented Theory, Practice Set Key concepts,

More information

LAB A Translating Data to Binary

LAB A Translating Data to Binary LAB A Translating Data to Binary Create a directory for this lab and perform in it the following groups of tasks: LabA1.java 1. Write the Java app LabA1 that takes an int via a command-line argument args[0]

More information

SIGNED AND UNSIGNED SYSTEMS

SIGNED AND UNSIGNED SYSTEMS EE 357 Unit 1 Fixed Point Systems and Arithmetic Learning Objectives Understand the size and systems used by the underlying HW when a variable is declared in a SW program Understand and be able to find

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations Computer is a binary digital system. Digital system: finite number of symbols Binary (base two) system: has two states: 0 and 1 Basic unit of information is the

More information

Representing Information. Bit Juggling. - Representing information using bits - Number representations. - Some other bits - Chapters 1 and 2.3,2.

Representing Information. Bit Juggling. - Representing information using bits - Number representations. - Some other bits - Chapters 1 and 2.3,2. Representing Information 0 1 0 Bit Juggling 1 1 - Representing information using bits - Number representations 1 - Some other bits 0 0 - Chapters 1 and 2.3,2.4 Motivations Computers Process Information

More information

Le L c e t c ur u e e 2 To T p o i p c i s c t o o b e b e co c v o e v r e ed e Variables Operators

Le L c e t c ur u e e 2 To T p o i p c i s c t o o b e b e co c v o e v r e ed e Variables Operators Course Name: Advanced Java Lecture 2 Topics to be covered Variables Operators Variables -Introduction A variables can be considered as a name given to the location in memory where values are stored. One

More information

Logic Circuits I ECE 1411 Thursday 4:45pm-7:20pm. Nathan Pihlstrom.

Logic Circuits I ECE 1411 Thursday 4:45pm-7:20pm. Nathan Pihlstrom. Logic Circuits I ECE 1411 Thursday 4:45pm-7:20pm Nathan Pihlstrom www.uccs.edu/~npihlstr My Background B.S.E.E. from Colorado State University M.S.E.E. from Colorado State University M.B.A. from UCCS Ford

More information

Lecture (01) Digital Systems and Binary Numbers By: Dr. Ahmed ElShafee

Lecture (01) Digital Systems and Binary Numbers By: Dr. Ahmed ElShafee ١ Lecture (01) Digital Systems and Binary Numbers By: Dr. Ahmed ElShafee Digital systems Digital systems are used in communication, business transactions, traffic control, spacecraft guidance, medical

More information

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation Data Representation II CMSC 313 Sections 01, 02 The conversions we have so far presented have involved only unsigned numbers. To represent signed integers, computer systems allocate the high-order bit

More information