db "Please enter up to 256 characters (press Enter Key to finish): ",0dh,0ah,'$'

Size: px
Start display at page:

Download "db "Please enter up to 256 characters (press Enter Key to finish): ",0dh,0ah,'$'"

Transcription

1 PA4 Sample Solution.model large.stack 100h.data msg1 db "This programs scans a string of up to 256 bytes and counts the repetitions of the number 4206 and sums them.",0dh,0ah,'$' msg2 db "Please enter up to 256 characters (press Enter Key to finish): ",0dh,0ah,'$' msg3 db "Number of substrings: $" msg4 db "Total: $" msg5 db "New string with INEL inserted before every 4206 that doesn't have INEL already before it: ",0dh, 0ah, '$' cr db 0dh, 0ah, '$' array db 256 dup (?) ;array for storing the input string newarray db 512 dup (?) ;array for storing the resulting stirng decimalcount db 2 dup (?) ;array for storing the decimal representation of count decimaltotal db 6 dup (?) ;array for storing the decimal representation of the total count dw 0 ;holds the count j dw 0 ;index for addressing newarray.code.startup mov ax, 0 ;add a new interrupt to the interrupt vector table mov es, ax mov al, 80h ;interrupt 80H mov bl, 4

2 mul bl mov bx, ax ;multiply by 4 for the address ;move the result to bx mov si, offset search ;copy the address of search procedure into interrupt vector 80h mov es:[bx], si ;copy the address to the first two bytes of the interrupt vector add bx, 2 mov ax, cs mov es:[bx], ax ;copy the code segment address to the last two bytes of the interrupt vector add bx, 2 ;add another interrupt to the interrupt vector table mov si, offset sum ;copy the address of sum procedure into interrupt vector 81h mov es:[bx], si 81h ;copy the address of the sum procedure to the first two bytes of the interrupt vector add bx, 2 mov ax, cs mov es:[bx], ax ;copy the code segment address into the last two bytes of the interrupt vector mov ;copy address of data to the data segment mov ds, ax call getinput ;calls procedure to get the user input mov bx, offset array ;loads bx with the address of array mov cx, di ;loads cx with the index of the last array element accessed int 80h ;call interrupt 80h to count the repetitions of "4206"

3 mov count, dx mov j, si mov cx, count int 81h ;move the value of dx (the count of "4206") into the variable count ;move the index of newarray into variable j ;move the count total into cx ;call interrupt 81h to sum the repetitions ;the result is stored in DX-AX call print ;call the print procedure mov ax, 4c00h ; exit to operating system..exit convert macro a, b ;macro procedure local SUB30, FIN1 cmp b, 1 ;if b is 1, a is a string je SUB30 ;if b equals 1 jump to SUB30 add a, 30h ;if b not equals 1 add 30h to a to convert from number to ASCII jmp FIN1 ;jump to Fin1 SUB30: sub a, 30h ;subtracts 30h from a to convert form ASCII to number FIN1: ;end of macro

4 endm getinput proc near lea dx, msg1 ;load dx with the address of message 1 mov ah, 9 ;display message 1 lea dx, cr ;carriage return and enter lea dx, msg2 ;load dx with address of message 2 ;display message 2 mov bx, offset array ;load bx with starting address of array mov di, 0 ;load di with 0 for indexing mov cx, 256 ;load the counter with 256 GET: mov ah, 1 ;get number from console cmp al, 0dh je enterkey ;compare with ascii value for Enter Key ;jump if equals to enterkey label and exit the loop

5 mov [bx+di], al ;if not equal, store the value into the array loop GET ;increment the index ;if cx is not zero, jump to GET enterkey: ;end of procedure ret getinput endp print proc near ;procedure for printing the numbers and final string of newarray push ax ;push dx-ax into the stack, these contain the final sum push dx lea dx, cr ;carriage return and newline mov ah, 9 lea dx, msg3 ;print message "Number of substrings: " mov bx, offset decimalcount ;load bx with the address of decimalcount array mov di, 0 mov ax, count ;load di with 0 for indexing ;copy the value of count into ax

6 mov cx, 0 ;load cx with 0 mov si, 0 ;load si with 0 for compare macro procedure C1: ;convert the count to decimal mov ah, 0 mov cl, 10 div cl ;divide the count by 10 convert ah, si mov [bx+di], ah ;send the remainder to convert procedure to convert to ASCII ;save the remainder in decimalcount[di] ;increment the index to address next element cmp al, 0 ;compare quotient with 0 ja C1 ;if above, jump to C1 and repeat P1: ;this part prints the remainders saved in decimalcount in reverse order dec di ;decrement the index for addressing the next element mov dl, [bx+di] ;load dl with the value of decimalcount[di] mov ah, 2 ;display value on screen cmp di, 0 ;compare the index with 0 ja P1 ;if above, jump to P1 and repeat lea dx, cr ;carriage return and newline mov ah, 9 lea dx, msg4 ;print message "Total: "

7 mov bx, offset decimaltotal ;load bx with the address of decimaltotal array pop dx ;get the total from the stack and store in DX-AX pop ax mov di, 0 ;clear di to 0 for indexing C2: ;this part converts the sum total into decimal values and stores them in decimatotal mov cx, 10 ;divide dx-ax by 10 div cx convert dl, si ;convert the remainder to ASCII value mov [bx+di], dl ;store the reaminder in decimaltotal[di] mov dx, 0 ;increment the index for addressing the next element ;clear dx for the next division cmp ax, 0 ;compare ax with 0 ja C2 ;if ax is still not 0, jump to C2 to repeat division P2: ;this part prints the total dec di ;decrement the index for addressing the next element mov dl, [bx+di] ;gets a value from decimaltotal array mov ah, 2 ;display the value on screen cmp di, 0 ;compare the index with 0 ja P2 ;if above 0, jump to P2 and repeat lea dx, cr ;carriage return and newline

8 mov ah, 9 lea dx, msg5 ;display string "New string with INEL inserted before... " ;This part prints the new string mov bx, offset newarray ;load bx with the address of newarray mov di, 0 mov cx, j ;clear di for indexing ;copy the size of newarray into cx (the amount of elements stored) STRING: mov ah, 2 mov dl, [bx+di] ;load dl with the value in newarray[di] ;display value on screen ;increment the index to address the next element loop STRING ;repeat until cx reaches 0 ret ;end of printing procedure print endp search proc far sums them. ;This interrupt procedure searches for the characters "4206", counts the number and ;It also adds the string "INEL" to every 4206 that doesn't have INEL (not-case sensitive) already before it.

9 mov ax, 0 ;loads ax with 0 mov dx, 0 ;loads the counter with 0 mov di, 0 ;loads the index of array with 0 mov si, 0 ;loads the index of newarray with 0 L1: ;starts the search cmp di, cx ;check if di equal the index of the last element stored in array je FIN ;if equal, jump to FIN mov al, [bx+di] ;load al with the element at array[di] cmp al, '4' je L2 ;compare with the ASCII value '4' ;if equals, jump to L2 mov newarray[si], al ;if not equal store value in newarray[si] cmp di, cx jb L1 jmp FIN ;increment array index ;increment newarray index ;check if di equals the index of the last element stored in array ;jump if below to L1 to check the next element ;if equal, jump to FIN L2: mov newarray[si], al ;move the ASCII value '4' to newarray[si] mov al, [bx+di] cmp al, '2' ;load al with the next element of array ;compare with the ASCII value '2' je L3 cmp al, '4' ;if equal,jump to L3 ;compare al with the ASCII value '4'

10 je L1 ;if equal, jump to L1 to check if correct order mov newarray[si], al ;if not equal store the value in newarray[si] cmp di, cx jb L1 jmp FIN ;check if di equals the index of the last element stored in array ;jump if below to the start at L1 ;if di equals cx jump to FIN L3: mov newarray[si], al ;move the value '2' to newarray[si] mov al, [bx+di] cmp al, '0' ;load al with the next element of array ;compare with the ASCII value '0' je L4 cmp al, '4' je L1 ;if equal, jump to L4 ;compare al with the ASCII value '4' ;if equal, jump to L1 to check if correct order mov newarray[si], al ;if not equal store the value in newarray[si] cmp di, cx jb L1 jmp FIN ;check if di equals the index of the last element stored in array ;jump if below to the start at L1 ;if equal, jump to FIN

11 L4: mov newarray[si], al ;move the ASCII value '0' to newarray[si] mov al, [bx+di] cmp al, '6' ;load al with the next element of array ;compare with the ASCII value '6' je CT cmp al, '4' je L1 ;if equal, jump to CT ;compare al with the ASCII value '4' ;if equal, jump to L1 to check if correct order mov newarray[si], al ;if not equal store the value in newarray[si] cmp di, cx jb L1 jmp FIN ;check if di equals the index of the last element stored in array ;if below, jump to start ;if equal jump to FIN CT: ;if it gets here a '4206' has been found mov newarray[si], al ;store the ASCII value of '6' in newarray[si] inc dx ;increment the counter push di ;store both indexes in the stack push si cmp di, 8 ;check if the array index is less than 8

12 jb ADJUST_DI ;if below, jump to ADJUST_DI sub di, 8 ;if not below, subtract 8 from both indexes to access 4 elements before the '4' sub si, 8 jmp INEL1 ;jump to INEL1 to check for the string "INEL" ADJUST_DI: ;This code loads the indexes with 0 to prohibit access to values outside the array mov di, 0 mov si, 0 INEL1: mov al, [bx+di] cmp al, 'I' je INEL2 cmp al, 'i' je INEL2 jne NOINEL ;checks for the character 'I' or 'i' ;loads al with the value four spaces before the value '4' ;compare the value stored in al with 'I' ;if equal, jump to INEL2 ;compare the value with 'i' ;if equal jump to INEL2 ;if not equal, jump to NOINEL INEL2: mov newarray[si], al ;store the value 'I' or 'i' in newarray[si] mov al, [bx+di] cmp al, 'N' je INEL3 cmp al, 'n' je INEL3 ;load al with the next value of array[di] ;compare the value stored in al with 'N' ;if equal, jump to INEL3 ;compare the value stored in al with 'n' ;if equal, jump to INEL3

13 jne NOINEL ;if not equal, jump to NOINEL INEL3: mov newarray[si], al ;store the value 'N' or 'n' in newarray[si] mov al, [bx+di] cmp al, 'E' je INEL4 cmp al, 'e' je INEL4 jne NOINEL ;load al with the next value of array[di] ;compare the value stored in al with 'E' ;if equal, jump to INEL4 ;compare the value with 'e' ;if equal, jump to INEL4 ;if not equal, jump to NOINEL INEL4: mov newarray[si], al ;store the value 'E' or 'l' in newarray[si] mov al, [bx+di] cmp al, 'L' je INELFOUND cmp al, 'l' je INELFOUND ;load al with the next value of array[di] ;compare the value stored in al with 'L' ;if equal, jump to INELFOUND ;compare the value stored in al with 'l' ;if equal, jump to INELFOUND NOINEL: pop si sub si, 4 ;If it gets here, no "INEL" was found before the "4206" so it is added to newarray[si] ;pop the original value from si (si points to the element after '6') ;subtract four to access element that has '4' mov newarray[si], 'I' ;copy "INEL4206" to newarray[si]

14 mov newarray[si], 'N' mov newarray[si], 'E' mov newarray[si], 'L' mov newarray[si], '4' mov newarray[si], '2' mov newarray[si], '0' mov newarray[si], '6' pop di jmp L1 ;pop the original value of di ;jump to the start at L1 INELFOUND: ;If it gets here an "INEL" has been found mov newarray[si], al ;store the value 'L' or 'l' fromt the las comparison in newarray[si] pop si ;pop the original values of the indexes pop di FIN: jmp L1 ;jump to the start at L1 ;end of interrupt procedure iret

15 search endp sum proc far ;this procedure sums "4206" the number of times it has been found mov ax, 4206 ;loads ax with 4206 mul cx iret ;multiplies ax by cx (cx contains the number of "4206" found in array) ;end of interrupt procedure sum endp end

.code. lea dx,msg2. Page 1/8. Problem 1: Programming in Assembly [25 Points]

.code. lea dx,msg2. Page 1/8. Problem 1: Programming in Assembly [25 Points] Problem : Programming in Assembly [ Points] The following assembly program is supposed to: receive three integer numbers from the console, call a function, name sort, function sort arranges the three input

More information

COE 205 Lab Manual Experiment N o 12. Experiment N o Using the Mouse

COE 205 Lab Manual Experiment N o 12. Experiment N o Using the Mouse Experiment N o 12 12 Using the Mouse Introduction The mouse is an I/O device that replaces the arrow keys on the keyboard for graphical and text style programs. This experiment shows how to add the mouse

More information

Experiment 3 3 Basic Input Output

Experiment 3 3 Basic Input Output Experiment 3 3 Basic Input Output Introduction The aim of this experiment is to introduce the use of input/output through the DOS interrupt. Objectives: INT Instruction Keyboard access using DOS function

More information

Lecture 16: Passing Parameters on the Stack. Push Examples. Pop Examples. CALL and RET

Lecture 16: Passing Parameters on the Stack. Push Examples. Pop Examples. CALL and RET Lecture 1: Passing Parameters on the Stack Push Examples Quick Stack Review Passing Parameters on the Stack Binary/ASCII conversion ;assume SP = 0202 mov ax, 124h push ax push 0af8h push 0eeeh EE 0E F8

More information

CONTENTS. 1. Display a Message Display a one Digit Number Accept a Character from keyboard and display the character 4

CONTENTS. 1. Display a Message Display a one Digit Number Accept a Character from keyboard and display the character 4 University of Kashmir, North Campus Course Code Course Name Course Instructor MCA-104-DCE Assembly Language Programming Bilal Ahmad Dar CONTENTS 1. Display a Message 2 2. Display a one Digit Number 3 3.

More information

Intel 8086: Instruction Set

Intel 8086: Instruction Set IUST-EE (Chapter 6) Intel 8086: Instruction Set 1 Outline Instruction Set Data Transfer Instructions Arithmetic Instructions Bit Manipulation Instructions String Instructions Unconditional Transfer Instruction

More information

Q1: Define a character string named CO_NAME containing "Internet Services" as a constant?

Q1: Define a character string named CO_NAME containing Internet Services as a constant? CS 321 Lab Model Answers ١ First Lab : Q1: Define a character string named CO_NAME containing "Internet Services" as a constant? ANS: CO_NAME EQU ' Internet Services' Q2: Define the following numeric values

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST 2 Date : 02/04/2018 Max Marks: 40 Subject & Code : Microprocessor (15CS44) Section : IV A and B Name of faculty: Deepti.C Time : 8:30 am-10:00 am Note: Note: Answer any five complete

More information

EC 333 Microprocessor and Interfacing Techniques (3+1)

EC 333 Microprocessor and Interfacing Techniques (3+1) EC 333 Microprocessor and Interfacing Techniques (3+1) Lecture 6 8086/88 Microprocessor Programming (Arithmetic Instructions) Dr Hashim Ali Fall 2018 Department of Computer Science and Engineering HITEC

More information

Assembling, Linking and Executing 1) Assembling: .obj obj .obj.lst .crf Assembler Types: a) One pass assembler:

Assembling, Linking and Executing 1) Assembling: .obj obj .obj.lst .crf Assembler Types: a) One pass assembler: Assembling, Linking and Executing 1) Assembling: - Assembling converts source program into object program if syntactically correct and generates an intermediate.obj file or module. - It calculates the

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND Segment The "SEGMENT" and "ENDS" directives indicate to the assembler the beginning and ending of a segment and have the following format label SEGMENT [options] ;place the statements belonging

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information

UNIT 4. Modular Programming

UNIT 4. Modular Programming 1 UNIT 4. Modular Programming Program is composed from several smaller modules. Modules could be developed by separate teams concurrently. The modules are only assembled producing.obj modules (Object modules).

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET ECE366: ADVANCED MICROPROCESSORS TRIMESTER (08/09) AM: Real- Mode Programming *Note: On-the-spot evaluation may be carried out during or at the end of the experiment. Students

More information

ADVANCE MICROPROCESSOR & INTERFACING

ADVANCE MICROPROCESSOR & INTERFACING VENUS INTERNATIONAL COLLEGE OF TECHNOLOGY Gandhinagar Department of Computer Enggineering ADVANCE MICROPROCESSOR & INTERFACING Name : Enroll no. : Class Year : 2014-15 : 5 th SEM C.E. VENUS INTERNATIONAL

More information

Ex: Write a piece of code that transfers a block of 256 bytes stored at locations starting at 34000H to locations starting at 36000H. Ans.

Ex: Write a piece of code that transfers a block of 256 bytes stored at locations starting at 34000H to locations starting at 36000H. Ans. INSTRUCTOR: ABDULMUTTALIB A H ALDOURI Conditional Jump Cond Unsigned Signed = JE : Jump Equal JE : Jump Equal ZF = 1 JZ : Jump Zero JZ : Jump Zero ZF = 1 JNZ : Jump Not Zero JNZ : Jump Not Zero ZF = 0

More information

CS-202 Microprocessor and Assembly Language

CS-202 Microprocessor and Assembly Language CS-202 Microprocessor and Assembly Language Lecture 2 Introduction to 8086 Assembly Language Dr Hashim Ali Spring - 2019 Department of Computer Science and Engineering HITEC University Taxila!1 Lecture

More information

Experiment #5. Using BIOS Services and DOS functions Part 1: Text-based Graphics

Experiment #5. Using BIOS Services and DOS functions Part 1: Text-based Graphics Experiment #5 Using BIOS Services and DOS functions Part 1: Text-based Graphics 5.0 Objectives: The objective of this experiment is to introduce BIOS and DOS interrupt service routines to be utilized in

More information

SHEET-2 ANSWERS. [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte.

SHEET-2 ANSWERS. [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte. SHEET-2 ANSWERS [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte. TITLE PROG2-3 PURPOSE: TRANSFER 6 WORDS OF DATA PAGE 60,132.MODEL SMALL.STACK 64.DATA ORG 10H DATA_IN DW 234DH,

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET ADVANCED MICROPROCESSORS ECE TRIMESTER (0/0) AM: Real- Mode Programming AM: Protected- Mode Programming *Note: On-the-spot evaluation may be carried out during or at the

More information

COMPUTER ENGINEERING DEPARTMENT

COMPUTER ENGINEERING DEPARTMENT Page 1 of 11 COMPUTER ENGINEERING DEPARTMENT December 31, 2007 COE 205 COMPUTER ORGANIZATION & ASSEMBLY PROGRAMMING Major Exam II First Semester (071) Time: 7:00 PM-9:30 PM Student Name : KEY Student ID.

More information

Week /8086 Microprocessor Programming II

Week /8086 Microprocessor Programming II Week 5 8088/8086 Microprocessor Programming II Quick Review Shift & Rotate C Target register or memory SHL/SAL 0 C SHR 0 SAR C Sign Bit 2 Examples Examples Ex. Ex. Ex. SHL dest, 1; SHL dest,cl; SHL dest,

More information

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI 8 Unsigned and Signed Integer Numbers 1. Unsigned integer numbers: each type of integer can be either byte-wide or word-wide. This data type can be used to represent decimal numbers in the range 0 through

More information

BLDEA S V.P. DR. P.G. HALAKATTI COLLEGE OF ENGINEERING & TECHNOLOGY, VIJAYAPURA

BLDEA S V.P. DR. P.G. HALAKATTI COLLEGE OF ENGINEERING & TECHNOLOGY, VIJAYAPURA EXPERIMENT NO.:- 1. BINARY SEARCH Work Space: Register Used Memory Address Data DI 10000H 11H 10001H 11H 10002H 22H 10003H 22H BX 10004H 33H 10005H 33H 10006H 44H 10007H 44H CX 10008H 55H 10009H 55H 24

More information

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI Note: PUSHF / POPF have no operands The figure below shows that if (SS) = 3000H, (SP) = 0042H, so the execution of POP CX loads CX by the word 4050H form the stack segment. The SP is incremented by 2.

More information

Arithmetic Instructions

Arithmetic Instructions Segment 3C Arithmetic Instructions This topic covers the following instructions: Addition (ADD, INC, ADC) Subtraction (SUB, DEC, SBB,CMP) Multiplication (MUL, IMUL) Division (DIV, IDIV) BCD Arithmetic

More information

X86 Addressing Modes Chapter 3" Review: Instructions to Recognize"

X86 Addressing Modes Chapter 3 Review: Instructions to Recognize X86 Addressing Modes Chapter 3" Review: Instructions to Recognize" 1 Arithmetic Instructions (1)! Two Operand Instructions" ADD Dest, Src Dest = Dest + Src SUB Dest, Src Dest = Dest - Src MUL Dest, Src

More information

We will first study the basic instructions for doing multiplications and divisions

We will first study the basic instructions for doing multiplications and divisions MULTIPLICATION, DIVISION AND NUMERICAL CONVERSIONS We will first study the basic instructions for doing multiplications and divisions We then use these instructions to 1. Convert a string of ASCII digits

More information

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE Final Page 1 of 7 UNIVERSITY OF CALIFORNIA, RIVERSIDE Computer Science Department CS61 Machine Organization & Assembly Language Final September 1, 2000 53 Name: Solution Key Student ID#: Please print legibly

More information

Computer Architecture and System Software Lecture 07: Assembly Language Programming

Computer Architecture and System Software Lecture 07: Assembly Language Programming Computer Architecture and System Software Lecture 07: Assembly Language Programming Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements New assembly examples uploaded to

More information

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات 1) Input/output In computing, input/output or I/O, is the communication between an information processing system (such as a computer) and the outside world, possibly a human or another information processing

More information

Experiment 8 8 Subroutine Handling Instructions and Macros

Experiment 8 8 Subroutine Handling Instructions and Macros Introduction Experiment 8 8 Subroutine Handling Instructions and Macros In this experiment you will be introduced to subroutines and how to call them. You will verify the exchange of data between a main

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

Signed number Arithmetic. Negative number is represented as

Signed number Arithmetic. Negative number is represented as Signed number Arithmetic Signed and Unsigned Numbers An 8 bit number system can be used to create 256 combinations (from 0 to 255), and the first 128 combinations (0 to 127) represent positive numbers

More information

8086 INSTRUCTION SET

8086 INSTRUCTION SET 8086 INSTRUCTION SET Complete 8086 instruction set Quick reference: AAA AAD AAM AAS ADC ADD AND CALL CBW CLC CLD CLI CMC CMP CMPSB CMPSW CWD DAA DAS DEC DIV HLT IDIV IMUL IN INC INT INTO I JA JAE JB JBE

More information

EEM336 Microprocessors I. Data Movement Instructions

EEM336 Microprocessors I. Data Movement Instructions EEM336 Microprocessors I Data Movement Instructions Introduction This chapter concentrates on common data movement instructions. 2 Chapter Objectives Upon completion of this chapter, you will be able to:

More information

US06CCSC04: Introduction to Microprocessors and Assembly Language UNIT 3: Assembly Language Instructions II

US06CCSC04: Introduction to Microprocessors and Assembly Language UNIT 3: Assembly Language Instructions II Unconditional & Conditional JUMP instructions: Conditional JUMP instructions: JA/JNBE Jump if above / Jump if not Below or Equal These two mnemonics represent the same instruction. The term above and below

More information

Q1: Define a character string named CO_NAME containing "Internet Services" as a constant?

Q1: Define a character string named CO_NAME containing Internet Services as a constant? CS 321 Lab Model Answers ١ First Lab : Q1: Define a character string named CO_NAME containing "Internet Services" as a constant? ANS: CO_NAME EQU ' Internet Services' Q2: Define the following numeric values

More information

Computer Architecture and System Software Lecture 06: Assembly Language Programming

Computer Architecture and System Software Lecture 06: Assembly Language Programming Computer Architecture and System Software Lecture 06: Assembly Language Programming Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Assignment 3 due thursday Midterm

More information

8086 programming Control Flow Instructions and Program Structures

8086 programming Control Flow Instructions and Program Structures 8086 programming Control Flow Instructions and Program Structures Example: write a procedure named Square that squares the contents of BL and places the result in BX. Square: PUSH AX MOV AL, BL MUL BL

More information

Lecture (08) x86 programming 7

Lecture (08) x86 programming 7 Lecture (08) x86 programming 7 By: Dr. Ahmed ElShafee 1 Conditional jump: Conditional jumps are executed only if the specified conditions are true. Usually the condition specified by a conditional jump

More information

LABORATORY WORK NO. 8 WORKING WITH MACROS AND LIBRARIES

LABORATORY WORK NO. 8 WORKING WITH MACROS AND LIBRARIES LABORATORY WORK NO. 8 WORKING WITH MACROS AND LIBRARIES 1. Object of laboratory Getting used to defining and using macros, procedure defining and using LIB library librarian. 2. Theoretical considerations

More information

Chapter 3: Addressing Modes

Chapter 3: Addressing Modes Chapter 3: Addressing Modes Chapter 3 Addressing Modes Note: Adapted from (Author Slides) Instructor: Prof. Dr. Khalid A. Darabkh 2 Introduction Efficient software development for the microprocessor requires

More information

Summer 2003 Lecture 4 06/14/03

Summer 2003 Lecture 4 06/14/03 Summer 2003 Lecture 4 06/14/03 LDS/LES/LSS General forms: lds reg,mem lseg reg,mem Load far pointer ~~ outside of current segment {E.g., load reg w/value @ mem, & seg w/mem+2 XCHG Exchange values General

More information

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313)

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 02/06/2018 Section 1 Weighting 40% of

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics and Communication

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics and Communication USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics and Communication INTERNAL ASSESSMENT TEST 1 Date : 26/02/2018 Marks: 40 Subject

More information

Come and join us at WebLyceum

Come and join us at WebLyceum Come and join us at WebLyceum For Past Papers, Quiz, Assignments, GDBs, Video Lectures etc Go to http://www.weblyceum.com and click Register In Case of any Problem Contact Administrators Rana Muhammad

More information

CSCI516: Program 1 - October 11, 2010 The Program is due: October 25, 2010 in the beginning of the class

CSCI516: Program 1 - October 11, 2010 The Program is due: October 25, 2010 in the beginning of the class CSCI516: Program 1 - October 11, 2010 The Program is due: October 25, 2010 in the beginning of the class For Late Submissions 10 out of 100 points will be taken off. For your first program, you are to

More information

Week /8086 Microprocessor Programming

Week /8086 Microprocessor Programming Week 5 8088/8086 Microprocessor Programming Multiplication and Division Multiplication Multiplicant Operand Result (MUL or IMUL) (Multiplier) Byte * Byte AL Register or memory Word * Word AX Register or

More information

Transfer of Control. Lecture 10 JMP. JMP Formats. Jump Loop Homework 3 Outputting prompts Reading single characters

Transfer of Control. Lecture 10 JMP. JMP Formats. Jump Loop Homework 3 Outputting prompts Reading single characters Lecture 10 Jump Loop Homework 3 Outputting prompts Reading single characters Transfer of Control The CPU loads and executes programs sequentially. You d like to be able to implement if statements, gotos,

More information

Kingdom of Saudi Arabia Ministry of Higher Education. Taif University. Faculty of Computers & Information Systems

Kingdom of Saudi Arabia Ministry of Higher Education. Taif University. Faculty of Computers & Information Systems Kingdom of Saudi Arabia Ministry of Higher Education Taif University Faculty of Computers & Information Systems المملكة العربية السعودية وزارة التعليم العالي جامعة الطاي ف آلية الحاسبات ونظم المعلومات

More information

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM EXPERIMENT WRITE UP AIM: Assembly language program to search a number in given array. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

More information

IBM PC Hardware CPU 8088, Pentium... ALU (Arithmetic and Logic Unit) Registers. CU (Control Unit) IP.

IBM PC Hardware CPU 8088, Pentium... ALU (Arithmetic and Logic Unit) Registers. CU (Control Unit) IP. IBM PC Hardware CPU 8088, 8086 80286 80386 80486 Pentium... ALU (Arithmetic and Logic Unit) Registers CU (Control Unit) IP Memory ROM BIOS I/O RAM OS Programs Video memory BIOS data Interrupt Vectors Memory

More information

Lesson 1. Fundamentals of assembly language

Lesson 1. Fundamentals of assembly language Lesson 1. Fundamentals of assembly language Computer Structure and Organization Graduate in Computer Sciences Graduate in Computer Engineering Graduate in Computer Sciences Graduate in Computer Engineering

More information

Week /8086 Microprocessor Programming I

Week /8086 Microprocessor Programming I Week 4 8088/8086 Microprocessor Programming I Example. The PC Typewriter Write an 80x86 program to input keystrokes from the PC s keyboard and display the characters on the system monitor. Pressing any

More information

CS401 Assembly Language Solved MCQS From Midterm Papers

CS401 Assembly Language Solved MCQS From Midterm Papers CS401 Assembly Language Solved MCQS From Midterm Papers May 14,2011 MC100401285 Moaaz.pk@gmail.com MC100401285@gmail.com PSMD01(IEMS) Question No:1 ( Marks: 1 ) - Please choose one The first instruction

More information

LABORATORY WORK NO. 7 FLOW CONTROL INSTRUCTIONS

LABORATORY WORK NO. 7 FLOW CONTROL INSTRUCTIONS LABORATORY WORK NO. 7 FLOW CONTROL INSTRUCTIONS 1. Object of laboratory The x86 microprocessor family has a large variety of instructions that allow instruction flow control. We have 4 categories: jump,

More information

Experiment N o 8. String Handling Instructions

Experiment N o 8. String Handling Instructions Experiment N o 8 String Handling Instructions Introduction: In this experiment you will deal with string handling instructions, such as reading a string, moving a string from one memory location to another,

More information

ELEC VIDEO BIOS ROUTINES

ELEC VIDEO BIOS ROUTINES It is less confusing to the user if we remove unnecessary messages from the display before giving information or instructions. At the command prompt, we do this with the DOS command CLS. However, this

More information

Assembly Language: g Part III. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University

Assembly Language: g Part III. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University System Programming with Assembly Language: g Part III First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Outline A Few Basic Instructions Translation of high Level

More information

CSC 2400: Computer Systems. Towards the Hardware: Machine-Level Representation of Programs

CSC 2400: Computer Systems. Towards the Hardware: Machine-Level Representation of Programs CSC 2400: Computer Systems Towards the Hardware: Machine-Level Representation of Programs Towards the Hardware High-level language (Java) High-level language (C) assembly language machine language (IA-32)

More information

It is possible to define a number using a character or multiple numbers (see instruction DB) by using a string.

It is possible to define a number using a character or multiple numbers (see instruction DB) by using a string. 1 od 5 17. 12. 2017 23:53 (https://github.com/schweigi/assembler-simulator) Introduction This simulator provides a simplified assembler syntax (based on NASM (http://www.nasm.us)) and is simulating a x86

More information

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil Microprocessor By Mrs. R.P.Chaudhari Mrs.P.S.Patil Chapter 1 Basics of Microprocessor CO-Draw Architecture Of 8085 Salient Features of 8085 It is a 8 bit microprocessor. It is manufactured with N-MOS technology.

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 4 Addressing Modes Dr Hashim Ali Spring - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides taken from Computer

More information

CS401 Assembly Language Solved Subjective MAY 03,2012 From Midterm Papers. MC

CS401 Assembly Language Solved Subjective MAY 03,2012 From Midterm Papers. MC CS401 Assembly Language Solved Subjective MAY 03,2012 From Midterm Papers MC100401285 Moaaz.pk@gmail.com Mc100401285@gmail.com PSMD01 MIDTERM FALL 2011 CS401 Assembly Language Q: Affected flag of AND operation

More information

Mr. Sapan Naik 1. Babu Madhav Institute of Information Technology, UTU

Mr. Sapan Naik 1. Babu Madhav Institute of Information Technology, UTU 5 Years Integrated M.Sc.(IT) Semester 4 060010402 System Programming Question Bank Unit 1: Introduction 1. Write the decimal equivalent for each integral power of 2 from 2! to 2!". 2. Convert the following

More information

Arithmetic and Logic Instructions And Programs

Arithmetic and Logic Instructions And Programs Dec Hex Bin 3 3 00000011 ORG ; FOUR Arithmetic and Logic Instructions And Programs OBJECTIVES this chapter enables the student to: Demonstrate how 8-bit and 16-bit unsigned numbers are added in the x86.

More information

9/25/ Software & Hardware Architecture

9/25/ Software & Hardware Architecture 8086 Software & Hardware Architecture 1 INTRODUCTION It is a multipurpose programmable clock drive register based integrated electronic device, that reads binary instructions from a storage device called

More information

Submitted To. Submitted By. Department Of Computer Science And Engineering. Dr. Md. Rabiul Islam. Name: Ashadullah Shawon.

Submitted To. Submitted By. Department Of Computer Science And Engineering. Dr. Md. Rabiul Islam. Name: Ashadullah Shawon. Department Of Computer Science And Engineering Submitted By Name: Ashadullah Shawon Class : 3 rd Year, Odd Semester Roll No: 133009 Subject: Solution of Exercise Problems Course Title: Microprocessor And

More information

Computer Organization & Assembly Language Programming. CSE 2312 Lecture 15 Addressing and Subroutine

Computer Organization & Assembly Language Programming. CSE 2312 Lecture 15 Addressing and Subroutine Computer Organization & Assembly Language Programming CSE 2312 Lecture 15 Addressing and Subroutine 1 Sections in 8088 Code TEXT section, for the processor instructions. DATA section for the initialization

More information

Assignment no:4 on chapter no :3 : Instruction set of 8086

Assignment no:4 on chapter no :3 : Instruction set of 8086 Assignment no:4 on chapter no :3 : Instruction set of 8086 1) Describe any two string operation instruction of 8086 with syntax & one example of each. 1] REP: REP is a prefix which is written before one

More information

ORG ; TWO. Assembly Language Programming

ORG ; TWO. Assembly Language Programming Dec 2 Hex 2 Bin 00000010 ORG ; TWO Assembly Language Programming OBJECTIVES this chapter enables the student to: Explain the difference between Assembly language instructions and pseudo-instructions. Identify

More information

CSC 8400: Computer Systems. Machine-Level Representation of Programs

CSC 8400: Computer Systems. Machine-Level Representation of Programs CSC 8400: Computer Systems Machine-Level Representation of Programs Towards the Hardware High-level language (Java) High-level language (C) assembly language machine language (IA-32) 1 Compilation Stages

More information

if 2 16bit operands multiplied the result will be

if 2 16bit operands multiplied the result will be how many operands in ADC? ans:3 how 32 bit word is defined? ans define double if 2 16bit operands multiplied the result will be ans 32bit if div by ero occurs then?? ans div by zero int for software int

More information

Marking Scheme. Examination Paper. Module: Microprocessors (630313)

Marking Scheme. Examination Paper. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 12/06/2017 Section 1 Weighting 40% of

More information

ELEC 242 Time Delay Procedure

ELEC 242 Time Delay Procedure There are many occasions where we wish to time events. If we are using a personal computer, we have a number of ways to do this. The 8088/8086 computer had a Programmable Interval Timer like the 8253/54

More information

Chapter Four Instructions Set

Chapter Four Instructions Set Chapter Four Instructions set Instructions set 8086 has 117 instructions, these instructions divided into 6 groups: 1. Data transfer instructions 2. Arithmetic instructions 3. Logic instructions 4. Shift

More information

Programs for Assembly Language Programming

Programs for Assembly Language Programming ;Program to print lower case alphabets.stack 100 mov dl, 'a' mov cl, 26 print: mov ah, 02h inc dl loop print mov ah, 4ch Programs for Assembly Language Programming ;Program to printf upper case alphabets.stack

More information

3.1 DATA MOVEMENT INSTRUCTIONS 45

3.1 DATA MOVEMENT INSTRUCTIONS 45 3.1.1 General-Purpose Data Movement s 45 3.1.2 Stack Manipulation... 46 3.1.3 Type Conversion... 48 3.2.1 Addition and Subtraction... 51 3.1 DATA MOVEMENT INSTRUCTIONS 45 MOV (Move) transfers a byte, word,

More information

Assembler Programming. Lecture 8

Assembler Programming. Lecture 8 Assembler Programming Lecture 8 Lecture 8 Decision directives. Loops. Text macros. Macro procedures. String directives. Macro functions. Decision directives You can use the HLL structures for decision

More information

Module 3 Instruction Set Architecture (ISA)

Module 3 Instruction Set Architecture (ISA) Module 3 Instruction Set Architecture (ISA) I S A L E V E L E L E M E N T S O F I N S T R U C T I O N S I N S T R U C T I O N S T Y P E S N U M B E R O F A D D R E S S E S R E G I S T E R S T Y P E S O

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) UNIT I THE 8086 MICROPROCESSOR PART A (2 MARKS) 1. What are the functional

More information

THE UNIVERSITY OF TRINIDAD & TOBAGO

THE UNIVERSITY OF TRINIDAD & TOBAGO THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS DECEMBER 2012 Course Code and Title: Microprocessor Architecture & Interfacing Programme: Computer Engineering Technician Date and Time:

More information

Programming in Module. Near Call

Programming in Module. Near Call Programming in Module Main: sub1: call sub1 sub ax,ax sub1 sub1 proc near sub ax,ax endp sub1 sub1 proc Far sub ax,ax endp Near Call sub1 sub1 Main: call sub1 sub1: sub ax,ax proc near sub ax,ax endp SP

More information

Basic Assembly SYSC-3006

Basic Assembly SYSC-3006 Basic Assembly Program Development Problem: convert ideas into executing program (binary image in memory) Program Development Process: tools to provide people-friendly way to do it. Tool chain: 1. Programming

More information

COMPUTER ENGINEERING DEPARTMENT

COMPUTER ENGINEERING DEPARTMENT Page 1 of 14 COMPUTER ENGINEERING DEPARTMENT Jan. 7, 2010 COE 205 COMPUTER ORGANIZATION & ASSEMBLY PROGRAMMING Major Exam II First Semester (091) Time: 3:30 PM-6:00 PM Student Name : KEY Student ID. :

More information

Q. State and Explain steps involved in program development. [w-08, w-10, s-12, w-11]

Q. State and Explain steps involved in program development. [w-08, w-10, s-12, w-11] Q. State and Explain steps involved in program development. [w-08, w-10, s-12, w-11] Answer: 1. Defining Problem 2. Algorithm 3. Flowchart 4. Initialization of checklist 5. Choosing instructions 6. Converting

More information

Chapter 3. Assembly Language Programming with 8086

Chapter 3. Assembly Language Programming with 8086 Chapter 3 Assembly Language Programming with 8086 UNIT - III Assembly Language Programming with 8086- Machine level programs, Machine coding the programs, Programming with an assembler, Assembly Language

More information

A4 Sample Solution Ch3

A4 Sample Solution Ch3 A4 Sample Solution Ch3 2. AL, AH, BL, BH,CL,CH,DLl, DH 3. AX, BX, CX, DX, SP, BP, SI, DI, CS, DS, ES, SS, FS, GS 4. EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI 5. RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI and

More information

APPENDIX C INSTRUCTION SET DESCRIPTIONS

APPENDIX C INSTRUCTION SET DESCRIPTIONS APPENDIX C INSTRUCTION SET DESCRIPTIONS This appendix provides reference information for the 80C186 Modular Core family instruction set. Tables C-1 through C-3 define the variables used in Table C-4, which

More information

Lecture (07) x86 programming 6

Lecture (07) x86 programming 6 Lecture (07) x86 programming 6 By: Dr. Ahmed ElShafee 1 The Flag Register 31 21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0 ID VIP VIF AC VM RF NT IOP 1 IOP 0 O D I T S Z A P C 8088/8086 80286 80386 80486

More information

reply db y prompt db Enter your favourite colour:, 0 colour db 80 dup(?) i db 20 k db? num dw 4000 large dd 50000

reply db y prompt db Enter your favourite colour:, 0 colour db 80 dup(?) i db 20 k db? num dw 4000 large dd 50000 Declaring Variables in Assembly Language As in Java, variables must be declared before they can be used Unlike Java, we do not specify a variable type in the declaration in assembly language Instead we

More information

PHY4635/5635 Spring Lecture 8: Program Control Instructions

PHY4635/5635 Spring Lecture 8: Program Control Instructions PHY4635/5635 Spring 2009 Lecture 8: Program Control Instructions Short, Near and Far Jumps Short jump: jump is within +127 to -128 bytes from the address following the jump. Relative jumps : moves with

More information

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Digital Logic Design Ch1-1 8086 Microprocessor Features: The 8086 microprocessor is a 16 bit microprocessor. The term 16 bit means

More information

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions.

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. 8086 Microprocessor Microprocessor Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. It is used as CPU (Central Processing Unit) in computers.

More information

Q1: Multiple choice / 20 Q2: Data transfers and memory addressing

Q1: Multiple choice / 20 Q2: Data transfers and memory addressing 16.317: Microprocessor Systems Design I Fall 2014 Exam 1 October 1, 2014 Name: ID #: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic devices (e.g.,

More information

Assignment 3. Problem Definition:

Assignment 3. Problem Definition: Att (2) Perm(5) Oral(3) Total(10) Sign with Date Assignment 3 Problem Definition: Write x86 ALP to convert 4-digit Hex number into its equivalent BCD number and 4-digit BCD number into its equivalent HEX

More information

Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H.

Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H. Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H. MOV AX, 5000H MOV DS, AX MOV AL, 20H MOV CL, 30H ADD AL, CL MOV CL, 10H MUL CL

More information

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB Lab # 9 Integer Arithmetic and Bit Manipulation April, 2014 1 Assembly Language LAB Bitwise

More information

Mnem. Meaning Format Operation Flags affected ADD Addition ADD D,S (D) (S)+(D) (CF) Carry ADC Add with ADC D,C (D) (S)+(D)+(CF) O,S,Z,A,P,C

Mnem. Meaning Format Operation Flags affected ADD Addition ADD D,S (D) (S)+(D) (CF) Carry ADC Add with ADC D,C (D) (S)+(D)+(CF) O,S,Z,A,P,C ARITHMETIC AND LOGICAL GROUPS 6-1 Arithmetic and logical groups: The arithmetic group includes instructions for the addition, subtraction, multiplication, and division operations. The state that results

More information