CS61 Section Notes. Section 5 (Fall 2011) Topics to be covered Common Memory Errors Dynamic Memory Allocation Assignment 3: Malloc

Size: px
Start display at page:

Download "CS61 Section Notes. Section 5 (Fall 2011) Topics to be covered Common Memory Errors Dynamic Memory Allocation Assignment 3: Malloc"

Transcription

1 CS61 Section Notes Section 5 (Fall 2011) Topics to be covered Common Memory Errors Dynamic Memory Allocation Assignment 3: Malloc

2 Common Memory Errors In lecture, we learned about several errors programmers commonly make when dealing with memory. Here are some examples: Dereferencing bad pointers Reading uninitialized memory Off-by-one errors Not checking buffer size Pointer arithmetic bugs Confusing pointers and objects (e.g. manipulating a pointer instead of an object) Referencing nonexistent variables (e.g. local variables from another function) Freeing blocks multiple times Referencing freed blocks Memory leaks These bugs can be very subtle and tricky to debug, but can cause dangerous and unpredictable behavior, so it is important to be able to recognize them. Question 1. Point out the problem in the following code that may yield unexpected results. int* Hamlet() { int Ophelia = 42; return &Ophelia; void main() { int *Horatio = Hamlet(); printf( The answer is %d\n, *Horatio); Question 2: What is the problem with the code below? typedef struct { double Jaques; int Pages[10]; char *Duke; ExiledCourt; void main() { ExiledCourt *Rosalind; int counter = 0; Rosalind = (ExiledCourt*) malloc(sizeof(exiledcourt)); for (counter = 0; counter < 10;counter++) { Rosalind->Pages[counter] = 0x2a; strcpy(rosalind->duke, As You Like It ); Question 3: Can the following code lead to memory leaks?

3 void main() { ExiledCourt *Rosalind; int counter = 0; Rosalind = (ExiledCourt*) malloc(sizeof(exiledcourt)); Rosalind->Duke = (char*) malloc(0x2a); free (Rosalind); Now, let s get some experience finding memory errors in real (by which we mean fake) code. Question 4. Jack, a federal agent, is on the trail of a terrorist who has planted a nuclear device somewhere in Los Angeles. To find the culprit before the bomb detonates, Jack needs a piece of software that will copy an FBI watch list (in the form of a singly-linked list of person structs) to his PDA and search the list for suspects living in Los Angeles. Chloe, his expert data analyst, is taking the day off, so the task falls to a less experienced programmer working for the Counter-Terrorist Unit. This programmer has written the following code with a number of memory errors. Find them all and suggest solutions, but do it quickly. We only have ten minutes before the bomb goes off! 1 typdef struct person_struct { 2 char name[20]; 3 int age; 4 char *city; 5 struct person_struct *next; 6 person; 7 8 person *search_suspects (person* first_person, int n) { 9 //Allocate new memory, copy list of people person *new_first = malloc(n*sizeof(person)); 12 person *new_current_person = NULL; 13 person *current_person = first_person; 14 int i = 0; 15 for (i = 0; i <= n; i++) { 16 new_current_person = new_first + i*sizeof(person); 17 strcpy(new_current_person->name, current_person->name); 18 new_current_person->age = current_person->age; 19 new_current_person->city = malloc(strlen(current_person->city)); 20 strcpy(*new_current_person->city, *current_person->city); 21 if(current_person->next == NULL) { 22 new_current_person->next = NULL;

4 23 else { 24 new_current_person->next = new_current_person+sizeof(person); 25 current_person = current_person->next; //Search new list for people in Los Angeles person *last_person = NULL; 32 new_current_person = new_first; 33 do { 34 if(strcmp(new_current_person->city, "Los Angeles") == 0) { 35 strcat(new_current_person->name, " (POSSIBLE SUSPECT!)"); 36 if(last_person == NULL) { 37 //This is the new head of the linked list 38 new_first = new_current_person; 39 else { 40 //Update pointer in the last node. 41 last_person->next = new_current_person; last_person = new_current_person; 44 else { 45 //Free this struct. 46 free(new_current_person); new_current_person = new_current_person->next; 49 while(new_current_person!= NULL); return new_first; 52 Question 5. Which common memory errors are avoided in a language that with garbage collection? What other features can a language provide that will help prevent these bugs? Dynamic Memory Allocation Question 6: Consider a memory manager that uses implicit free lists, and headers and footers are stored in four-byte words. Determine the minimum block size for each of the following combinations of alignment requirements and block formats. Assume that zero-sized payloads are not allowed. Alignment (of payload) Allocated Block Free block Min block size (bytes) Single-word (i.e., 4 byte) Header and footer Header and footer

5 Single-word Header but no footer Header and footer Double-word (i.e., 8 byte) Header and footer Header and footer Double-word Header but no footer Header and footer Question 7: What is the motivation for having footers in free blocks? How can we avoid the need to have footers in allocated blocks? Question 8: In class we saw three techniques for managing the free list: Implicit List: Keep track of allocated length of each block in a header. Free blocks are linked implicitly by the size fields in the headers (and maybe footers). Simple, but the search of the free list will be linear with the total number of allocated and free blocks in the heap. Explicit List: Use an explicit data structure to organize free blocks, stored within the bodies of the free blocks. E.g., a doubly linked free list with a predecessor and successor pointer in each free block. Search reduces to linear in time with total number of free blocks, but has a larger minimum block size than an implicit free list. Segregated Free List: Maintain multiple free lists, where each list holds blocks that are roughly the same size, ordered by increasing size. When the allocator needs a certain block size, it searches the appropriate free list. If it cannot find a block that fits, it searches the next list. What do you think is the relative performance of these three techniques, in terms of throughput? What about in terms of memory utilization? Assignment 3: Malloc implementation In Assignment 3, you are implementing your own dynamic memory manager. There are a number of issues to think about, and a number of design choices you will have to make. The lists below raise some of these issues and choices. Allocator Requirements and Goals: Handle arbitrary request sequences: The allocator cannot make any assumptions about the ordering of allocate and free requests. Make immediate responses to requests: The allocator is not allowed to reorder or buffer requests. Use only the heap: Any non-scalar data structures used by the allocator must be stored in the heap itself. Align blocks: The allocator must align blocks in such a way that they can hold any type of data object. Do not modify allocated blocks: Allocators can only change free blocks. They are not allowed to modify or move blocks once they are allocated. Be fast and efficient: An allocator should ideally be both fast (handle requests for allocating and freeing memory quickly) and efficient in its utilization of memory. Design choices/implementation Issues: Free block organization: How do we keep track of free blocks?

6 Placement: How do we choose an appropriate free block for a newly allocated block? Some possibilities are: First Fit: Searches the free list from the beginning and chooses the first free block that fits. Next Fit: Similar to first fit, but instead of starting each search from the beginning of the list, it starts each search where the previous search left off. Best fit: Examines every free block and chooses the free block with the smallest size that fits. Splitting: After we place a newly allocated block in some free block, what do we do with the remainder of the free block? Coalescing: Do we combine adjacent free blocks? If so, how, and when? Some possibilities are when the block is freed, or when we search the free list to perform a new allocation. Question 9: What are some of the trade-offs between first fit, next fit, and best fit? Question 10: In what ways are speed and efficient utilization of memory at odds with each other? Question 11: How do you intend to go about designing and implementing Assignment 3? What are good practices for designing and implementing robust correct code? What tools do you intend to use (e.g., which editor (and why), debugger, profiler, version control,...)

CS61, Fall 2012 Midterm Review Section

CS61, Fall 2012 Midterm Review Section CS61, Fall 2012 Midterm Review Section (10/16/2012) Q1: Hexadecimal and Binary Notation - Solve the following equations and put your answers in hex, decimal and binary. Hexadecimal Decimal Binary 15 +

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation CS61, Lecture 10 Prof. Stephen Chong October 4, 2011 Announcements 1/2 Assignment 4: Malloc Will be released today May work in groups of one or two Please go to website and enter

More information

Dynamic Memory Allocation I

Dynamic Memory Allocation I Dynamic Memory Allocation I William J. Taffe Plymouth State University Using the Slides of Randall E. Bryant Carnegie Mellon University Topics Simple explicit allocators Data structures Mechanisms Policies

More information

Dynamic Memory Allocation I Nov 5, 2002

Dynamic Memory Allocation I Nov 5, 2002 15-213 The course that gives CMU its Zip! Dynamic Memory Allocation I Nov 5, 2002 Topics Simple explicit allocators Data structures Mechanisms Policies class21.ppt Harsh Reality Memory is not unbounded

More information

Dynamic Memory Allocation: Advanced Concepts

Dynamic Memory Allocation: Advanced Concepts Dynamic Memory Allocation: Advanced Concepts Keeping Track of Free Blocks Method 1: Implicit list using length links all blocks 5 4 6 Method : Explicit list among the free blocks using pointers 5 4 6 Kai

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation CS61, Lecture 11 Prof. Stephen Chong October 6, 2011 Announcements 1/2 Reminder: No section on Monday Monday sections have been rescheduled See website for details Please attend

More information

CSCI-UA /2. Computer Systems Organization Lecture 19: Dynamic Memory Allocation: Basics

CSCI-UA /2. Computer Systems Organization Lecture 19: Dynamic Memory Allocation: Basics Slides adapted (and slightly modified) from: Clark Barrett Jinyang Li Randy Bryant Dave O Hallaron CSCI-UA.0201-001/2 Computer Systems Organization Lecture 19: Dynamic Memory Allocation: Basics Mohamed

More information

Dynamic Memory Management

Dynamic Memory Management Dynamic Memory Management 1 Goals of this Lecture Help you learn about: Dynamic memory management techniques Garbage collection by the run-time system (Java) Manual deallocation by the programmer (C, C++)

More information

Dynamic Memory Allocation. Gerson Robboy Portland State University. class20.ppt

Dynamic Memory Allocation. Gerson Robboy Portland State University. class20.ppt Dynamic Memory Allocation Gerson Robboy Portland State University class20.ppt Harsh Reality Memory is not unbounded It must be allocated and managed Many applications are memory dominated Especially those

More information

Dynamic Memory Management

Dynamic Memory Management Dynamic Memory Management Professor Jennifer Rexford http://www.cs.princeton.edu/~jrex 1 Goals of Today s Lecture Dynamic memory management o Garbage collection by the run-time system (Java) o Manual deallocation

More information

Process s Address Space. Dynamic Memory. Backing the Heap. Dynamic memory allocation 3/29/2013. When a process starts the heap is empty

Process s Address Space. Dynamic Memory. Backing the Heap. Dynamic memory allocation 3/29/2013. When a process starts the heap is empty /9/01 Process s Address Space Dynamic Memory 0x7fffffff Stack Data (Heap) Data (Heap) 0 Text (Code) Backing the Heap When a process starts the heap is empty The process is responsible for requesting memory

More information

Dynamic Memory Management! Goals of this Lecture!

Dynamic Memory Management! Goals of this Lecture! Dynamic Memory Management!!! 1 Goals of this Lecture! Help you learn about:! Dynamic memory management techniques! Garbage collection by the run-time system (Java)! Manual deallocation by the programmer

More information

Recitation #11 Malloc Lab. November 7th, 2017

Recitation #11 Malloc Lab. November 7th, 2017 18-600 Recitation #11 Malloc Lab November 7th, 2017 1 2 Important Notes about Malloc Lab Malloc lab has been updated from previous years Supports a full 64 bit address space rather than 32 bit Encourages

More information

Recitation #12 Malloc Lab - Part 2. November 14th, 2017

Recitation #12 Malloc Lab - Part 2. November 14th, 2017 18-600 Recitation #12 Malloc Lab - Part 2 November 14th, 2017 1 2 REMINDER Malloc Lab checkpoint is due on 11/17 This is Friday (instead of the usual Thursday deadline) No late days available Final submission

More information

Class Information ANNOUCEMENTS

Class Information ANNOUCEMENTS Class Information ANNOUCEMENTS Third homework due TODAY at 11:59pm. Extension? First project has been posted, due Monday October 23, 11:59pm. Midterm exam: Friday, October 27, in class. Don t forget to

More information

CS 33. Storage Allocation. CS33 Intro to Computer Systems XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Storage Allocation. CS33 Intro to Computer Systems XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Storage Allocation CS33 Intro to Computer Systems XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. The Unix Address Space stack dynamic bss program break data text CS33 Intro to Computer

More information

Introduction to Computer Systems /18 243, fall th Lecture, Oct. 22 th

Introduction to Computer Systems /18 243, fall th Lecture, Oct. 22 th Introduction to Computer Systems 15 213/18 243, fall 2009 16 th Lecture, Oct. 22 th Instructors: Gregory Kesden and Markus Püschel Today Dynamic memory allocation Process Memory Image %esp kernel virtual

More information

Dynamic Memory Allocation II October 22, 2008

Dynamic Memory Allocation II October 22, 2008 15-213 Dynamic Memory Allocation II October 22, 2008 Topics Explicit doubly-linked free lists Segregated free lists Garbage collection Review of pointers Memory-related perils and pitfalls class18.ppt

More information

Internal Fragmentation

Internal Fragmentation Last Time: Dynamic Memory Allocation Lecture 22: Dynamic memory allocation contd. Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 p1 = malloc(4) p2 = malloc(5)

More information

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1 Memory Allocation Copyright : University of Illinois CS 241 Staff 1 Memory allocation within a process What happens when you declare a variable? Allocating a page for every variable wouldn t be efficient

More information

Dynamic Memory Allocation

Dynamic Memory Allocation 1 Dynamic Memory Allocation Anne Bracy CS 3410 Computer Science Cornell University Note: these slides derive from those by Markus Püschel at CMU 2 Recommended Approach while (TRUE) { code a little; test

More information

Dynamic Memory Allocation: Basic Concepts

Dynamic Memory Allocation: Basic Concepts Dynamic Memory Allocation: Basic Concepts 15-213: Introduction to Computer Systems 19 th Lecture, March 30, 2017 Instructor: Franz Franchetti & Seth Copen Goldstein 1 Today Basic concepts Implicit free

More information

Today. Dynamic Memory Allocation: Advanced Concepts. Explicit Free Lists. Keeping Track of Free Blocks. Allocating From Explicit Free Lists

Today. Dynamic Memory Allocation: Advanced Concepts. Explicit Free Lists. Keeping Track of Free Blocks. Allocating From Explicit Free Lists Today Dynamic Memory Allocation: Advanced Concepts Explicit free lists Segregated free lists Garbage collection Memory-related perils and pitfalls CSci 01: Machine Architecture and Organization October

More information

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package Today Dynamic Memory Allocation: Basic Concepts Basic concepts Performance concerns Approach 1: implicit free lists CSci 01: Machine Architecture and Organization October 17th-nd, 018 Your instructor:

More information

Dynamic Memory Allocation: Basic Concepts

Dynamic Memory Allocation: Basic Concepts Dynamic Memory Allocation: Basic Concepts CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides 1 Today Basic concepts Implicit free lists

More information

CS61, Fall 2012 Section 2 Notes

CS61, Fall 2012 Section 2 Notes CS61, Fall 2012 Section 2 Notes (Week of 9/24-9/28) 0. Get source code for section [optional] 1: Variable Duration 2: Memory Errors Common Errors with memory and pointers Valgrind + GDB Common Memory Errors

More information

Memory Allocation III

Memory Allocation III Memory Allocation III CSE 351 Winter 2018 Instructor: Mark Wyse Teaching Assistants: Kevin Bi Parker DeWilde Emily Furst Sarah House Waylon Huang Vinny Palaniappan https://xkcd.com/835/ Administrivia Homework

More information

Dynamic Memory Allocation. Zhaoguo Wang

Dynamic Memory Allocation. Zhaoguo Wang Dynamic Memory Allocation Zhaoguo Wang Why dynamic memory allocation? Do not know the size until the program runs (at runtime). #define MAXN 15213 int array[maxn]; int main(void) { int i, n; scanf("%d",

More information

Motivation for Dynamic Memory. Dynamic Memory Allocation. Stack Organization. Stack Discussion. Questions answered in this lecture:

Motivation for Dynamic Memory. Dynamic Memory Allocation. Stack Organization. Stack Discussion. Questions answered in this lecture: CS 537 Introduction to Operating Systems UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department Dynamic Memory Allocation Questions answered in this lecture: When is a stack appropriate? When is

More information

CSE 351, Spring 2010 Lab 7: Writing a Dynamic Storage Allocator Due: Thursday May 27, 11:59PM

CSE 351, Spring 2010 Lab 7: Writing a Dynamic Storage Allocator Due: Thursday May 27, 11:59PM CSE 351, Spring 2010 Lab 7: Writing a Dynamic Storage Allocator Due: Thursday May 27, 11:59PM 1 Instructions In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Structures and Memory (yaseminb@kth.se) Overview Overview Lecture 11: Structures and Memory Structures Continued Memory Allocation Lecture 11: Structures and Memory Structures Continued Memory

More information

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package Today Dynamic Memory Allocation: Basic Concepts Basic concepts Performance concerns Approach 1: implicit free lists CSci 01: Machine Architecture and Organization Lecture #9, April th, 016 Your instructor:

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 16, SPRING 2013 TOPICS TODAY Project 6 Perils & Pitfalls of Memory Allocation C Function Call Conventions in Assembly Language PERILS

More information

Malloc Lab & Midterm Solutions. Recitation 11: Tuesday: 11/08/2016

Malloc Lab & Midterm Solutions. Recitation 11: Tuesday: 11/08/2016 Malloc Lab & Midterm Solutions Recitation 11: Tuesday: 11/08/2016 Malloc 2 Important Notes about Malloc Lab Malloc lab has been updated from previous years Supports a full 64 bit address space rather than

More information

CS201 - Introduction to Programming Glossary By

CS201 - Introduction to Programming Glossary By CS201 - Introduction to Programming Glossary By #include : The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran

More information

Dynamic Memory Allocation. Basic Concepts. Computer Organization 4/3/2012. CSC252 - Spring The malloc Package. Kai Shen

Dynamic Memory Allocation. Basic Concepts. Computer Organization 4/3/2012. CSC252 - Spring The malloc Package. Kai Shen Dynamic Memory Allocation: Basic Concepts Kai Shen Dynamic Memory Allocation Programmers use dynamic memory allocators (such as malloc) to acquire memory at run time. For data structures whose size is

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation Harsh Reality Memory Matters Memory is not unbounded (Statically reserving the maximum amount of global memory is NOT good!) It must be allocated and managed Many applications

More information

CS 11 C track: lecture 5

CS 11 C track: lecture 5 CS 11 C track: lecture 5 Last week: pointers This week: Pointer arithmetic Arrays and pointers Dynamic memory allocation The stack and the heap Pointers (from last week) Address: location where data stored

More information

Short Notes of CS201

Short Notes of CS201 #includes: Short Notes of CS201 The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with < and > if the file is a system

More information

ANITA S SUPER AWESOME RECITATION SLIDES

ANITA S SUPER AWESOME RECITATION SLIDES ANITA S SUPER AWESOME RECITATION SLIDES 15/18-213: Introduction to Computer Systems Dynamic Memory Allocation Anita Zhang, Section M UPDATES Cache Lab style points released Don t fret too much Shell Lab

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 19: Dynamic Memory Allocation John Shen & Zhiyi Yu November 7, 2016 Required Reading Assignment: Chapter 9 of CS:APP (3 rd edition) by Randy Bryant & Dave

More information

Dynamic Memory Allocation: Advanced Concepts

Dynamic Memory Allocation: Advanced Concepts Dynamic Memory Allocation: Advanced Concepts 15-213: Introduction to Computer Systems 20 th Lecture, April 4, 2017 Instructors: Seth Copen Goldstein & Franz Franchetti 1 Dynamic Memory Allocation Programmers

More information

COSC Software Engineering. Lecture 16: Managing Memory Managers

COSC Software Engineering. Lecture 16: Managing Memory Managers COSC345 2013 Software Engineering Lecture 16: Managing Memory Managers Outline Typical problems (from previous lectures) Memory leaks aren t just for (Objective) C Tracking malloc() calls Catching calls

More information

CS 241 Data Organization Binary Trees

CS 241 Data Organization Binary Trees CS 241 Data Organization Binary Trees Brooke Chenoweth University of New Mexico Fall 2017 Binary Tree: Kernighan and Ritchie 6.5 Read a file and count the occurrences of each word. now is the time for

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

Memory Allocation III CSE 351 Spring (original source unknown)

Memory Allocation III CSE 351 Spring (original source unknown) Memory Allocation III CSE 351 Spring 2018 (original source unknown) Keeping Track of Free Blocks = 4-byte box (free) = 4-byte box (allocated) 1) Implicit free list using length links all blocks using math

More information

10.1. CS356 Unit 10. Memory Allocation & Heap Management

10.1. CS356 Unit 10. Memory Allocation & Heap Management 10.1 CS356 Unit 10 Memory Allocation & Heap Management 10.2 BASIC OS CONCEPTS & TERMINOLOGY 10.3 User vs. Kernel Mode Kernel mode is a special mode of the processor for executing trusted (OS) code Certain

More information

CS201: Lab #4 Writing a Dynamic Storage Allocator

CS201: Lab #4 Writing a Dynamic Storage Allocator CS201: Lab #4 Writing a Dynamic Storage Allocator In this lab you will write a dynamic storage allocator for C programs, i.e., your own version of the malloc, free and realloc routines. You are encouraged

More information

Memory Allocation III

Memory Allocation III Memory Allocation III CSE 351 Summer 2018 Instructor: Justin Hsia Teaching Assistants: Josie Lee Natalie Andreeva Teagan Horkan https://xkcd.com/1425/ Administrivia Homework 5 due tonight Lab 5 due next

More information

Low-Level C Programming. Memory map Pointers Arrays Structures

Low-Level C Programming. Memory map Pointers Arrays Structures Low-Level C Programming Memory map Pointers Arrays Structures Memory Map 0x7FFF_FFFF Binaries load at 0x20000 by default Stack start set by binary when started Stack grows downwards You will need one stack

More information

In Java we have the keyword null, which is the value of an uninitialized reference type

In Java we have the keyword null, which is the value of an uninitialized reference type + More on Pointers + Null pointers In Java we have the keyword null, which is the value of an uninitialized reference type In C we sometimes use NULL, but its just a macro for the integer 0 Pointers are

More information

Memory management. Johan Montelius KTH

Memory management. Johan Montelius KTH Memory management Johan Montelius KTH 2017 1 / 22 C program # include int global = 42; int main ( int argc, char * argv []) { if( argc < 2) return -1; int n = atoi ( argv [1]); int on_stack

More information

CMSC 313 Spring 2010 Exam 3 May 17, 2010

CMSC 313 Spring 2010 Exam 3 May 17, 2010 CMSC 313 Spring 2010 Exam 3 May 17, 2010 Name Score UMBC Username Notes: a. Please write clearly. Unreadable answers receive no credit. b. There are no intentional syntax errors in any code provided with

More information

CS 33. Intro to Storage Allocation. CS33 Intro to Computer Systems XXVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Intro to Storage Allocation. CS33 Intro to Computer Systems XXVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Intro to Storage Allocation CS33 Intro to Computer Systems XXVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. A Queue head typedef struct list_element { int value; struct list_element

More information

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver CS 61C: Great Ideas in Computer Architecture C Pointers Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Agenda Pointers Arrays in C 2 Address vs. Value Consider

More information

Lecture Notes on Garbage Collection

Lecture Notes on Garbage Collection Lecture Notes on Garbage Collection 15-411: Compiler Design André Platzer Lecture 20 1 Introduction In the previous lectures we have considered a programming language C0 with pointers and memory and array

More information

CS 536 Introduction to Programming Languages and Compilers Charles N. Fischer Lecture 11

CS 536 Introduction to Programming Languages and Compilers Charles N. Fischer Lecture 11 CS 536 Introduction to Programming Languages and Compilers Charles N. Fischer Lecture 11 CS 536 Spring 2015 1 Handling Overloaded Declarations Two approaches are popular: 1. Create a single symbol table

More information

Dynamic Memory Alloca/on: Basic Concepts

Dynamic Memory Alloca/on: Basic Concepts Dynamic Memory Alloca/on: Basic Concepts Fall 2015 Instructor: James Griffioen Adapted from slides by R. Bryant and D. O Hallaron (hip://csapp.cs.cmu.edu/public/instructors.html) 1 Today Basic concepts

More information

Memory Management. CS31 Pascal Van Hentenryck CS031. Lecture 19 1

Memory Management. CS31 Pascal Van Hentenryck CS031. Lecture 19 1 Memory Management CS31 Pascal Van Hentenryck CS031 Lecture 19 1 Memory Management What is it? high-level languages abstract many aspects of memory management Support varies with the language Java (ML/Prolog/Lisp/Smalltalk)

More information

Dynamic Memory Allocation: Advanced Concepts

Dynamic Memory Allocation: Advanced Concepts Dynamic Memory Allocation: Advanced Concepts 15-213/18-213/15-513: Introduction to Computer Systems 20 th Lecture, November 2, 2017 Today s Instructor: Phil Gibbons 1 Review: Dynamic Memory Allocation

More information

Memory Corruption 101 From Primitives to Exploit

Memory Corruption 101 From Primitives to Exploit Memory Corruption 101 From Primitives to Exploit Created by Nick Walker @ MWR Infosecurity / @tel0seh What is it? A result of Undefined Behaviour Undefined Behaviour A result of executing computer code

More information

CSCI 237 Sample Final Exam

CSCI 237 Sample Final Exam Problem 1. (12 points): Multiple choice. Write the correct answer for each question in the following table: 1. What kind of process can be reaped? (a) Exited (b) Running (c) Stopped (d) Both (a) and (c)

More information

Fastbin_dup into stack exploitation

Fastbin_dup into stack exploitation Fastbin_dup into stack exploitation This tutorial is about the fastbin_dup into stack heap exploitation. First we re going to analyze what is fastbin and how to exploit the heap by double freeing and reallocating

More information

Princeton University. Computer Science 217: Introduction to Programming Systems. Dynamic Memory Management

Princeton University. Computer Science 217: Introduction to Programming Systems. Dynamic Memory Management Princeton University Computer Science 217: Introduction to Programming Systems Dynamic Memory Management 1 Agenda The need for DMM DMM using the heap section DMMgr 1: Minimal implementation DMMgr 2: Pad

More information

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1 Announcements assign due tonight No late submissions Labs start this week Very helpful for assign1 Goals for Today Pointer operators Allocating memory in the heap malloc and free Arrays and pointer arithmetic

More information

CS61C Machine Structures. Lecture 4 C Structs & Memory Management. 9/5/2007 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

CS61C Machine Structures. Lecture 4 C Structs & Memory Management. 9/5/2007 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/ CS61C Machine Structures Lecture 4 C Structs & Memory Management 9/5/2007 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L04 C Structs (1) C String Standard Functions

More information

CS 213, Fall 2002 Malloc Lab: Writing a Debugging Dynamic Storage Allocator Assigned: Fri Nov. 1, Due: Tuesday Nov. 19, 11:59PM

CS 213, Fall 2002 Malloc Lab: Writing a Debugging Dynamic Storage Allocator Assigned: Fri Nov. 1, Due: Tuesday Nov. 19, 11:59PM CS 213, Fall 2002 Malloc Lab: Writing a Debugging Dynamic Storage Allocator Assigned: Fri Nov. 1, Due: Tuesday Nov. 19, 11:59PM Anubhav Gupta (anubhav@cs.cmu.edu) is the lead person for this assignment.

More information

(13-2) Dynamic Data Structures I H&K Chapter 13. Instructor - Andrew S. O Fallon CptS 121 (November 17, 2017) Washington State University

(13-2) Dynamic Data Structures I H&K Chapter 13. Instructor - Andrew S. O Fallon CptS 121 (November 17, 2017) Washington State University (13-2) Dynamic Data Structures I H&K Chapter 13 Instructor - Andrew S. O Fallon CptS 121 (November 17, 2017) Washington State University Dynamic Data Structures (1) Structures that expand and contract

More information

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures CS113: Lecture 9 Topics: Dynamic Allocation Dynamic Data Structures 1 What s wrong with this? char *big_array( char fill ) { char a[1000]; int i; for( i = 0; i < 1000; i++ ) a[i] = fill; return a; void

More information

CS 105 Malloc Lab: Writing a Dynamic Storage Allocator See Web page for due date

CS 105 Malloc Lab: Writing a Dynamic Storage Allocator See Web page for due date CS 105 Malloc Lab: Writing a Dynamic Storage Allocator See Web page for due date 1 Introduction In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version of the

More information

CS 261 Fall C Introduction. Variables, Memory Model, Pointers, and Debugging. Mike Lam, Professor

CS 261 Fall C Introduction. Variables, Memory Model, Pointers, and Debugging. Mike Lam, Professor CS 261 Fall 2017 Mike Lam, Professor C Introduction Variables, Memory Model, Pointers, and Debugging The C Language Systems language originally developed for Unix Imperative, compiled language with static

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 4 Introduction to C (pt 2) 2014-09-08!!!Senior Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia! C most popular! TIOBE programming

More information

There are 16 total numbered pages, 7 Questions. You have 2 hours. Budget your time carefully!

There are 16 total numbered pages, 7 Questions. You have 2 hours. Budget your time carefully! UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING MIDTERM EXAMINATION, October 27, 2014 ECE454H1 Computer Systems Programming Closed book, Closed note No programmable electronics allowed

More information

CS 31: Intro to Systems Pointers and Memory. Kevin Webb Swarthmore College October 2, 2018

CS 31: Intro to Systems Pointers and Memory. Kevin Webb Swarthmore College October 2, 2018 CS 31: Intro to Systems Pointers and Memory Kevin Webb Swarthmore College October 2, 2018 Overview How to reference the location of a variable in memory Where variables are placed in memory How to make

More information

Under the Hood: Data Representations, Memory and Bit Operations. Computer Science 104 Lecture 3

Under the Hood: Data Representations, Memory and Bit Operations. Computer Science 104 Lecture 3 Under the Hood: Data Representations, Memory and Bit Operations Computer Science 104 Lecture 3 Homework #1 Due Feb 6 Reading TAs Finish Chapter 1 Start Chapter 2 Admin +1 UTA: Michael Zhou Lindsay is Head

More information

Memory Allocation II. CSE 351 Autumn Instructor: Justin Hsia

Memory Allocation II. CSE 351 Autumn Instructor: Justin Hsia Memory Allocation II CSE 351 Autumn 2017 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan http://xkcd.com/1909/

More information

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100 ECE 2035(A) Programming for Hardware/Software Systems Fall 2013 Exam Three November 20 th 2013 Name: Q1: /8 Q2: /30 Q3: /30 Q4: /32 Total: /100 1/10 For functional call related questions, let s assume

More information

Singly linked lists in C.

Singly linked lists in C. Singly linked lists in C http://www.cprogramming.com/tutorial/c/lesson15.html By Alex Allain Linked lists are a way to store data with structures so that the programmer can automatically create a new place

More information

Run-time Environments - 3

Run-time Environments - 3 Run-time Environments - 3 Y.N. Srikant Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture n What is run-time

More information

A.Arpaci-Dusseau. Mapping from logical address space to physical address space. CS 537:Operating Systems lecture12.fm.2

A.Arpaci-Dusseau. Mapping from logical address space to physical address space. CS 537:Operating Systems lecture12.fm.2 UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department CS 537 A. Arpaci-Dusseau Intro to Operating Systems Spring 2000 Dynamic Memory Allocation Questions answered in these notes When is a stack

More information

Dynamic Memory Alloca/on: Advanced Concepts

Dynamic Memory Alloca/on: Advanced Concepts Dynamic Memory Alloca/on: Advanced Concepts CS 485 Systems Programming Fall 2015 Instructor: James Griffioen Adapted from slides by R. Bryant and D. O Hallaron (hip://csapp.cs.cmu.edu/public/instructors.html)

More information

https://lambda.mines.edu A pointer is a value that indicates location in memory. When we change the location the pointer points to, we say we assign the pointer a value. When we look at the data the pointer

More information

Memory Allocation II. CSE 351 Autumn Instructor: Justin Hsia

Memory Allocation II. CSE 351 Autumn Instructor: Justin Hsia Memory Allocation II CSE 351 Autumn 2016 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun

More information

Memory Allocation I. CSE 351 Autumn Instructor: Justin Hsia

Memory Allocation I. CSE 351 Autumn Instructor: Justin Hsia Memory Allocation I CSE 351 Autumn 2016 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun Adapted

More information

NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313.

NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313. NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313 http://www.csee.umbc.edu/courses/undergraduate/313/fall11/" Programming in C! Advanced Pointers! Reminder! You can t use a pointer until it points

More information

Dynamic Memory Alloca/on: Basic Concepts

Dynamic Memory Alloca/on: Basic Concepts Dynamic Memory Alloca/on: Basic Concepts 15-213 / 18-213: Introduc2on to Computer Systems 18 th Lecture, March. 26, 2013 Instructors: Anthony Rowe, Seth Goldstein, and Gregory Kesden 1 Today Basic concepts

More information

CS61C Machine Structures. Lecture 5 C Structs & Memory Mangement. 1/27/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

CS61C Machine Structures. Lecture 5 C Structs & Memory Mangement. 1/27/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/ CS61C Machine Structures Lecture 5 C Structs & Memory Mangement 1/27/2006 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L05 C Structs (1) C String Standard Functions

More information

Vector and Free Store (Pointers and Memory Allocation)

Vector and Free Store (Pointers and Memory Allocation) DM560 Introduction to Programming in C++ Vector and Free Store (Pointers and Memory Allocation) Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark [Based on slides

More information

Recitation: Cache Lab & C

Recitation: Cache Lab & C 15-213 Recitation: Cache Lab & C Jack Biggs 16 Feb 2015 Agenda Buffer Lab! C Exercises! C Conventions! C Debugging! Version Control! Compilation! Buffer Lab... Is due soon. So maybe do it soon Agenda Buffer

More information

Memory Management. Didactic Module 14 Programming Languages - EEL670 1

Memory Management. Didactic Module 14 Programming Languages - EEL670 1 Memory Management Didactic Module 14 Programming Languages - EEL670 1 Dynamic Memory Allocation Lots of things need memory at runtime: Activation records Objects Explicit allocations: new, malloc, etc.

More information

Memory Management. Chapter Fourteen Modern Programming Languages, 2nd ed. 1

Memory Management. Chapter Fourteen Modern Programming Languages, 2nd ed. 1 Memory Management Chapter Fourteen Modern Programming Languages, 2nd ed. 1 Dynamic Memory Allocation Lots of things need memory at runtime: Activation records Objects Explicit allocations: new, malloc,

More information

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions?

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Lecture 14 No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Friday, February 11 CS 215 Fundamentals of Programming II - Lecture 14 1 Outline Static

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION Lecture 13 Strings, Lists & Stacks Announcements HW #3 Due next Friday, May 15 at 5:00 PM in HFH Project #2 Due May 29 at 5:00 PM Project #3 Assigned next Thursday, May 19

More information

CS 326 Operating Systems C Programming. Greg Benson Department of Computer Science University of San Francisco

CS 326 Operating Systems C Programming. Greg Benson Department of Computer Science University of San Francisco CS 326 Operating Systems C Programming Greg Benson Department of Computer Science University of San Francisco Why C? Fast (good optimizing compilers) Not too high-level (Java, Python, Lisp) Not too low-level

More information

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures CS113: Lecture 9 Topics: Dynamic Allocation Dynamic Data Structures 1 What s wrong with this? char *big_array( char fill ) { char a[1000]; int i; for( i = 0; i < 1000; i++ ) a[i] = fill; return a; void

More information

Carnegie Mellon. Malloc Boot Camp. Stan, Nikhil, Kim

Carnegie Mellon. Malloc Boot Camp. Stan, Nikhil, Kim Malloc Boot Camp Stan, Nikhil, Kim Agenda Carnegie Mellon Conceptual Overview Explicit List Segregated list Splitting, coalescing Hints on hints Advanced debugging with GDB Fun GDB tricks Writing a good

More information

Memory Allocation III

Memory Allocation III Memory Allocation III CSE 351 Spring 2017 Instructor: Ruth Anderson Teaching Assistants: Dylan Johnson Kevin Bi Linxing Preston Jiang Cody Ohlsen Yufang Sun Joshua Curtis Administrivia Homework 5 Due Wed

More information

Optimizing Dynamic Memory Management

Optimizing Dynamic Memory Management Optimizing Dynamic Memory Management 1 Goals of this Lecture Help you learn about: Details of K&R heap mgr Heap mgr optimizations related to Assignment #5 Faster free() via doubly-linked list, redundant

More information

10/20/2015. Midterm Topic Review. Pointer Basics. C Language III. CMSC 313 Sections 01, 02. Adapted from Richard Chang, CMSC 313 Spring 2013

10/20/2015. Midterm Topic Review. Pointer Basics. C Language III. CMSC 313 Sections 01, 02. Adapted from Richard Chang, CMSC 313 Spring 2013 Midterm Topic Review Pointer Basics C Language III CMSC 313 Sections 01, 02 1 What is a pointer? Why Pointers? Pointer Caution pointer = memory address + type A pointer can contain the memory address of

More information