# Top down vs. bottom up parsing

Size: px
Start display at page:

Transcription

1

2 Parsing A grammar describes the strings that are syntactically legal A recogniser simply accepts or rejects strings A generator produces sentences in the language described by the grammar A parser constructs a derivation or parse tree for a sentence, if possible Two common types of parsers: bottom-up or data driven top-down or hypothesis driven A recursive descent parser is a way to implement a topdown parser that is particularly simple

3 Top down vs. bottom up parsing S The parsing problem is to connect the root node S with the tree leaves, the input Top-down parsers: starts constructing the parse tree at the top (root) and move down towards the leaves. Easy to implement by hand, but requires restricted grammars. E.g.: - Predictive parsers (e.g., LL(k)) Bottom-up parsers: build nodes on the bottom of the parse tree first. Suitable for automatic parser generation, handles larger class of grammars. E.g.: shift-reduce parser (or LR(k) parsers) Both are general techniques that can be made to work for all languages (but not all grammars!). A = * 4 / 5

4 Top down vs. bottom up parsing Both are general techniques that can be made to work for all languages (but not all grammars!) Recall that a given language can be described by several grammars Both of these grammars describe the same language E -> E + Num E -> Num E -> Num + E E -> Num The first one, with its left recursion, causes problems for top down parsers For a given parsing technique, we may have to transform the grammar to work with it

5 How hard is the parsing task? Parsing an arbitrary CFG is O(n 3 ), e.g., it can take time proportional the cube of the number of input symbols. This is bad! (why?) If we constrain the grammar somewhat, we can always parse in linear time. This is good! Linear-time parsing LL parsers Recognize LL grammar Use a top-down strategy LR parsers Parsing complexity Recognize LR grammar Use a bottom-up strategy LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols. LR(n) : Left to right, Rightmost derivation in Reverse, look ahead at most n symbols.

6 Top Down Parsing Methods Simplest method is a full-backup, recursive descent parser Often used for parsing simple languages Write recursive recognizers (subroutines) for each grammar rule If rules succeeds perform some action (i.e., build a tree node, emit code, etc.) If rule fails, return failure. Caller may try another choice or fail On failure it backs up

7 Top Down Parsing Methods: Problems When going forward, the parser consumes tokens from the input, so what happens if we have to back up? suggestions? Algorithms that use backup tend to be, in general, inefficient There might be a large number of possibilities to try before finding the right one or giving up Grammar rules which are left-recursive lead to non-termination!

8 Recursive Decent Parsing: Example For the grammar: <term> -> <factor> {(* /)<factor>}* We could use the following recursive descent parsing subprogram (this one is written in C) void term() { factor(); /* parse first factor*/ while (next_token == ast_code next_token == slash_code) { lexical(); /* get next token */ factor(); /* parse next factor */ } }

9 Problems Some grammars cause problems for top down parsers Top down parsers do not work with leftrecursive grammars E.g., one with a rule like: E -> E + T We can transform a left-recursive grammar into one which is not A top down grammar can limit backtracking if it only has one rule per non-terminal The technique of rule factoring can be used to eliminate multiple rules for a non-terminal

10 Left-recursive grammars A grammar is left recursive if it has rules like X -> X β Or if it has indirect left recursion, as in X -> A β A -> X Q: Why is this a problem? A: it can lead to non-terminating recursion!

11 Left-recursive grammars Consider E -> E + Num E -> Num We can manually or automatically rewrite a grammar removing left-recursion, making it ok for a top-down parser.

12 Elimination of Left Recursion Consider left-recursive grammar S S α S -> β S generates strings β β α β α α Rewrite using right-recursion S β S S α S ε Concretely T -> T + id T-> id T generates strings id id+id id+id+id Rewrite using rightrecursion T -> id T -> id T

13 More Elimination of Left-Recursion In general S S α 1 S α n β 1 β m All strings derived from S start with one of β 1,,β m and continue with several instances of α 1,,α n Rewrite as S β 1 S β m S S α 1 S α n S ε

14 General Left Recursion The grammar S A α δ A S β is also left-recursive because S + S β α where + means can be rewritten in one or more steps This indirect left-recursion can also be automatically eliminated

15 Summary of Recursive Descent Simple and general parsing strategy Left-recursion must be eliminated first but that can be done automatically Unpopular because of backtracking Thought to be too inefficient In practice, backtracking is eliminated by restricting the grammar, allowing us to successfully predict which rule to use The gcc compiler now uses recursive descent

16 Predictive Parser A predictive parser uses information from the first terminal symbol of each expression to decide which production to use A predictive parser, aka an LL(k) parser, does a Left-to-right parse, a Leftmost-derivation, and k- symbol lookahead Grammars where one can decide which rule to use by examining only the first token are LL(1) LL(1) grammars are widely used in practice The syntax of a PL can usually be adjusted to enable it to be described with an LL(1) grammar

17 Predictive Parser Example: consider the grammar S if E then S else S S begin S L S print E L end L ; S L E num = num An S expression starts either with an IF, BEGIN, or PRINT token, and an L expression start with an END or a SEMICOLON token, and an E expression has only one production.

18 Remember Given a grammar and a string in the language defined by the grammar There may be more than one way to derive the string leading to the same parse tree it just depends on the order in which you apply the rules and what parts of the string you choose to rewrite next All of the derivations are valid To simplify the problem and the algorithms, we often focus on one of A leftmost derivation A rightmost derivation

19 LL(k) and LR(k) parsers Two important parser classes are LL(k) and LR(k) The name LL(k) means: L - Left-to-right scanning of the input L - Constructing leftmost derivation k max number of input symbols needed to select parser action The name LR(k) means: L - Left-to-right scanning of the input R - Constructing rightmost derivation in reverse k max number of input symbols needed to select parser action A LR(1) or LL(1) parser never need to look ahead more than one input token to know what parser production rule applies

20 Predictive Parsing and Left Factoring Consider the grammar E T + E E T T int T int * T T ( E ) Hard to predict because For T, two productions start with int For E, it is not clear how to predict which rule to use A grammar must be left-factored before use for predictive parsing Left-factoring involves rewriting the rules so that, if a nonterminal has more than one rule, each begins with a terminal

21 Left-Factoring Example Add new non-terminals X and Y to factor out common prefixes of rules E T + E E T T int T int * T T ( E ) E T X X + E X ε T ( E ) T int Y Y * T Y ε

22 Left Factoring Consider a rule of the form A => a B1 a B2 a B3 a Bn A top down parser generated from this grammar is not efficient as it requires backtracking. To avoid this problem we left factor the grammar. Collect all productions with the same left hand side and begin with the same symbols on the right hand side Combine common strings into a single production and append a new non-terminal to end of this new production Create new productions using this new non-terminal for each of the suffixes to the common production. After left factoring the above grammar is transformed into: A > a A1 A1 -> B1 B2 B3 Bn

23 Using Parsing Tables LL(1) means that for each non-terminal and token there is only one production Can be specified via 2D tables One dimension for current non-terminal to expand One dimension for next token A table entry contains one production Method similar to recursive descent, except For each non-terminal S We look at the next token a And chose the production shown at [S, a] We use a stack to keep track of pending non-terminals We reject when we encounter an error state We accept when we encounter end-of-input

24 LL(1) Parsing Table Example Left-factored grammar E T X X + E ε T ( E ) int Y Y * T ε End of input symbol The LL(1) parsing table int * + ( ) \$ E T X T X X + E ε ε T int Y ( E ) Y * T ε ε ε

25 LL(1) Parsing Table Example Consider the [E, int] entry When current non-terminal is E and next input is int, use production E T X Only production that can generate an int in next place Consider the [Y, +] entry When current non-terminal is Y and current token is +, get rid of Y Y can be followed by + only in a derivation where Y ε Consider the [E, *] entry Blank entries indicate error situations E T X X + E ε T ( E ) int Y Y * T ε There is no way to derive a string starting with * from non-terminal E int * + ( ) \$ E T X T X X + E ε ε T int Y ( E ) Y * T ε ε ε

26 LL(1) Parsing Algorithm initialize stack = <S \$> and next repeat case stack of <X, rest> : if T[X,*next] = Y 1 Y n then stack <Y 1 Y n rest>; else error (); <t, rest> : if t == *next ++ then stack <rest>; else error (); until stack == < > where: (1) next points to the next input token (2) X matches some non-terminal (3) t matches some terminal

27 LL(1) Parsing Example Stack Input Action E \$ int * int \$ pop();push(t X) T X \$ int * int \$ pop();push(int Y) int Y X \$ int * int \$ pop();next++ Y X \$ * int \$ pop();push(* T) * T X \$ * int \$ pop();next++ T X \$ int \$ pop();push(int Y) int Y X \$ int \$ pop();next++; Y X \$ \$ pop() X \$ \$ pop() \$ \$ ACCEPT! E TX X +E X ε T (E) T int Y Y *T Y ε int * + ( ) \$ E T X T X X + E ε ε T int Y ( E ) Y * T ε ε ε

28 Constructing Parsing Tables LL(1) languages are those defined by a parsing table for the LL(1) algorithm No table entry can be multiply defined We want to generate parsing tables from CFG If A α, where in the line of A we place α? In the column of t where t can start a string derived from α α * t β We say that t First(α) In the column of t if α is ε and t can follow an A S * β A t δ We say t Follow(A)

29 Computing First Sets Definition: First(X) = { t X * tα} {ε X * ε} Algorithm sketch (see book for details): 1. for all terminals t do First(t) { t } 2. for each production X ε do First(X) { ε } 3. if X A 1 A n α and ε First(A i ), 1 i n do add First(α) to First(X) 4. for each X A 1 A n s.t. ε First(A i ), 1 i n do add ε to First(X) 5. repeat steps 4 & 5 until no First set can be grown

30 Recall the grammar First Sets. Example E T X T ( E ) int Y X + E ε Y * T ε First sets First( ( ) = { ( } First( T ) = {int, ( } First( ) ) = { ) } First( E ) = {int, ( } First( int) = { int } First( X ) = {+, ε } First( + ) = { + } First( Y ) = {*, ε } First( * ) = { * }

31 Computing Follow Sets Definition: Follow(X) = { t S * β X t δ } Intuition If S is the start symbol then \$ Follow(S) If X A B then First(B) Follow(A) and Follow(X) Follow(B) Also if B * ε then Follow(X) Follow(A)

32 Computing Follow Sets Algorithm sketch: 1. Follow(S) { \$ } 2. For each production A α X β add First(β) - {ε} to Follow(X) 3. For each A α X β where ε First(β) add Follow(A) to Follow(X) repeat step(s) until no Follow set grows

33 Follow Sets. Example Recall the grammar E T X X + E ε T ( E ) int Y Y * T ε Follow sets Follow( + ) = { int, ( } Follow( * ) = { int, ( } Follow( ( ) = { int, ( } Follow( E ) = {), \$} Follow( X ) = {\$, ) } Follow( T ) = {+, ), \$} Follow( ) ) = {+, ), \$} Follow( Y ) = {+, ), \$} Follow( int) = {*, +, ), \$}

34 Constructing LL(1) Parsing Tables Construct a parsing table T for CFG G For each production A α in G do: For each terminal t First(α) do T[A, t] = α If ε First(α), for each t Follow(A) do T[A, t] = α If ε First(α) and \$ Follow(A) do T[A, \$] = α

35 Notes on LL(1) Parsing Tables If any entry is multiply defined then G is not LL(1) If G is ambiguous If G is left recursive If G is not left-factored Most programming language grammars are not LL(1) There are tools that build LL(1) tables

36 Bottom-up Parsing YACC uses bottom up parsing. There are two important operations that bottom-up parsers use: shift and reduce In abstract terms, we do a simulation of a Push Down Automata as a finite state automata Input: given string to be parsed and the set of productions. Goal: Trace a rightmost derivation in reverse by starting with the input string and working backwards to the start symbol

37 Algorithm 1. Start with an empty stack and a full input buffer. (The string to be parsed is in the input buffer.) 2. Repeat until the input buffer is empty and the stack contains the start symbol. a. Shift zero or more input symbols onto the stack from input buffer until a handle (beta) is found on top of the stack. If no handle is found report syntax error and exit. b. Reduce handle to the nonterminal A. (There is a production A -> beta) 3. Accept input string and return some representation of the derivation sequence found (e.g.., parse tree) The four key operations in bottom-up parsing are shift, reduce, accept and error. Bottom-up parsing is also referred to as shift-reduce parsing. Important thing to note is to know when to shift and when to reduce and to which reduce.

38 Example of Bottom-up Parsing STACK INPUT BUFFER ACTION \$ num1+num2*num3\$ shift \$num1 +num2*num3\$ reduc \$F +num2*num3\$ reduc \$T +num2*num3\$ reduc \$E +num2*num3\$ shift \$E+ num2*num3\$ shift \$E+num2 *num3\$ reduc \$E+F *num3\$ reduc \$E+T *num3\$ shift E+T* num3\$ shift E+T*num3 \$ reduc E+T*F \$ reduc E+T \$ reduc E \$ accept E -> E+T T E-T T -> T*F F T/F F -> (E) id -E num

### 8 Parsing. Parsing. Top Down Parsing Methods. Parsing complexity. Top down vs. bottom up parsing. Top down vs. bottom up parsing

8 Parsing Parsing A grammar describes syntactically legal strings in a language A recogniser simply accepts or rejects strings A generator produces strings A parser constructs a parse tree for a string

### 4 (c) parsing. Parsing. Top down vs. bo5om up parsing

4 (c) parsing Parsing A grammar describes syntac2cally legal strings in a language A recogniser simply accepts or rejects strings A generator produces strings A parser constructs a parse tree for a string

### CS1622. Today. A Recursive Descent Parser. Preliminaries. Lecture 9 Parsing (4)

CS1622 Lecture 9 Parsing (4) CS 1622 Lecture 9 1 Today Example of a recursive descent parser Predictive & LL(1) parsers Building parse tables CS 1622 Lecture 9 2 A Recursive Descent Parser. Preliminaries

### Abstract Syntax Trees & Top-Down Parsing

Abstract Syntax Trees & Top-Down Parsing Review of Parsing Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree Issues: How do we recognize that s L(G)? A parse tree

### Abstract Syntax Trees & Top-Down Parsing

Review of Parsing Abstract Syntax Trees & Top-Down Parsing Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree Issues: How do we recognize that s L(G)? A parse tree

### Abstract Syntax Trees & Top-Down Parsing

Review of Parsing Abstract Syntax Trees & Top-Down Parsing Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree Issues: How do we recognize that s L(G)? A parse tree

### Top-Down Parsing and Intro to Bottom-Up Parsing. Lecture 7

Top-Down Parsing and Intro to Bottom-Up Parsing Lecture 7 1 Predictive Parsers Like recursive-descent but parser can predict which production to use Predictive parsers are never wrong Always able to guess

### Top-Down Parsing and Intro to Bottom-Up Parsing. Lecture 7

Top-Down Parsing and Intro to Bottom-Up Parsing Lecture 7 1 Predictive Parsers Like recursive-descent but parser can predict which production to use Predictive parsers are never wrong Always able to guess

### Compilers. Predictive Parsing. Alex Aiken

Compilers Like recursive-descent but parser can predict which production to use By looking at the next fewtokens No backtracking Predictive parsers accept LL(k) grammars L means left-to-right scan of input

### Building a Parser III. CS164 3:30-5:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 6 1

Building a Parser III CS164 3:30-5:00 TT 10 Evans 1 Overview Finish recursive descent parser when it breaks down and how to fix it eliminating left recursion reordering productions Predictive parsers (aka

### Administrativia. WA1 due on Thu PA2 in a week. Building a Parser III. Slides on the web site. CS164 3:30-5:00 TT 10 Evans.

Administrativia Building a Parser III CS164 3:30-5:00 10 vans WA1 due on hu PA2 in a week Slides on the web site I do my best to have slides ready and posted by the end of the preceding logical day yesterday,

### Syntactic Analysis. Top-Down Parsing

Syntactic Analysis Top-Down Parsing Copyright 2017, Pedro C. Diniz, all rights reserved. Students enrolled in Compilers class at University of Southern California (USC) have explicit permission to make

### CSCI312 Principles of Programming Languages

Copyright 2006 The McGraw-Hill Companies, Inc. CSCI312 Principles of Programming Languages! LL Parsing!! Xu Liu Derived from Keith Cooper s COMP 412 at Rice University Recap Copyright 2006 The McGraw-Hill

### Ambiguity, Precedence, Associativity & Top-Down Parsing. Lecture 9-10

Ambiguity, Precedence, Associativity & Top-Down Parsing Lecture 9-10 (From slides by G. Necula & R. Bodik) 9/18/06 Prof. Hilfinger CS164 Lecture 9 1 Administrivia Please let me know if there are continued

### Table-Driven Parsing

Table-Driven Parsing It is possible to build a non-recursive predictive parser by maintaining a stack explicitly, rather than implicitly via recursive calls [1] The non-recursive parser looks up the production

### Parsing. Roadmap. > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing

Roadmap > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing The role of the parser > performs context-free syntax analysis > guides

### Monday, September 13, Parsers

Parsers Agenda Terminology LL(1) Parsers Overview of LR Parsing Terminology Grammar G = (Vt, Vn, S, P) Vt is the set of terminals Vn is the set of non-terminals S is the start symbol P is the set of productions

### Syntax Analysis. Martin Sulzmann. Martin Sulzmann Syntax Analysis 1 / 38

Syntax Analysis Martin Sulzmann Martin Sulzmann Syntax Analysis 1 / 38 Syntax Analysis Objective Recognize individual tokens as sentences of a language (beyond regular languages). Example 1 (OK) Program

### CS2210: Compiler Construction Syntax Analysis Syntax Analysis

Comparison with Lexical Analysis The second phase of compilation Phase Input Output Lexer string of characters string of tokens Parser string of tokens Parse tree/ast What Parse Tree? CS2210: Compiler

### LL(k) Parsing. Predictive Parsers. LL(k) Parser Structure. Sample Parse Table. LL(1) Parsing Algorithm. Push RHS in Reverse Order 10/17/2012

Predictive Parsers LL(k) Parsing Can we avoid backtracking? es, if for a given input symbol and given nonterminal, we can choose the alternative appropriately. his is possible if the first terminal of

### Extra Credit Question

Top-Down Parsing #1 Extra Credit Question Given this grammar G: E E+T E T T T * int T int T (E) Is the string int * (int + int) in L(G)? Give a derivation or prove that it is not. #2 Revenge of Theory

### 1 Introduction. 2 Recursive descent parsing. Predicative parsing. Computer Language Implementation Lecture Note 3 February 4, 2004

CMSC 51086 Winter 2004 Computer Language Implementation Lecture Note 3 February 4, 2004 Predicative parsing 1 Introduction This note continues the discussion of parsing based on context free languages.

### Types of parsing. CMSC 430 Lecture 4, Page 1

Types of parsing Top-down parsers start at the root of derivation tree and fill in picks a production and tries to match the input may require backtracking some grammars are backtrack-free (predictive)

### CA Compiler Construction

CA4003 - Compiler Construction David Sinclair A top-down parser starts with the root of the parse tree, labelled with the goal symbol of the grammar, and repeats the following steps until the fringe of

### Compilers. Yannis Smaragdakis, U. Athens (original slides by Sam

Compilers Parsing Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts) Next step text chars Lexical analyzer tokens Parser IR Errors Parsing: Organize tokens into sentences Do tokens conform

### Chapter 3. Parsing #1

Chapter 3 Parsing #1 Parser source file get next character scanner get token parser AST token A parser recognizes sequences of tokens according to some grammar and generates Abstract Syntax Trees (ASTs)

### Parsing III. CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones

Parsing III (Top-down parsing: recursive descent & LL(1) ) (Bottom-up parsing) CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones Copyright 2003, Keith D. Cooper,

### CS502: Compilers & Programming Systems

CS502: Compilers & Programming Systems Top-down Parsing Zhiyuan Li Department of Computer Science Purdue University, USA There exist two well-known schemes to construct deterministic top-down parsers:

### Note that for recursive descent to work, if A ::= B1 B2 is a grammar rule we need First k (B1) disjoint from First k (B2).

LL(k) Grammars We need a bunch of terminology. For any terminal string a we write First k (a) is the prefix of a of length k (or all of a if its length is less than k) For any string g of terminal and

### Parsing Part II (Top-down parsing, left-recursion removal)

Parsing Part II (Top-down parsing, left-recursion removal) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit

### Wednesday, August 31, Parsers

Parsers How do we combine tokens? Combine tokens ( words in a language) to form programs ( sentences in a language) Not all combinations of tokens are correct programs (not all sentences are grammatically

### Wednesday, September 9, 15. Parsers

Parsers What is a parser A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure of a program (think: diagramming a sentence) Agenda

### Parsers. What is a parser. Languages. Agenda. Terminology. Languages. A parser has two jobs:

What is a parser Parsers A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure of a program (think: diagramming a sentence) Agenda

### Parsers. Xiaokang Qiu Purdue University. August 31, 2018 ECE 468

Parsers Xiaokang Qiu Purdue University ECE 468 August 31, 2018 What is a parser A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure

SYNTAX ANALYSIS 1. Define parser. Hierarchical analysis is one in which the tokens are grouped hierarchically into nested collections with collective meaning. Also termed as Parsing. 2. Mention the basic

### 3. Parsing. Oscar Nierstrasz

3. Parsing Oscar Nierstrasz Thanks to Jens Palsberg and Tony Hosking for their kind permission to reuse and adapt the CS132 and CS502 lecture notes. http://www.cs.ucla.edu/~palsberg/ http://www.cs.purdue.edu/homes/hosking/

### LL Parsing: A piece of cake after LR

LL Parsing: A piece of cake after LR Lecture 11 Dr. Sean Peisert ECS 142 Spring 2009 1 LL Parsing Still specified using a CFG Still reads left-to-right (Lx) Now is leftmost derivation (xl) rather than

### Parsing #1. Leonidas Fegaras. CSE 5317/4305 L3: Parsing #1 1

Parsing #1 Leonidas Fegaras CSE 5317/4305 L3: Parsing #1 1 Parser source file get next character scanner get token parser AST token A parser recognizes sequences of tokens according to some grammar and

### Prelude COMP 181 Tufts University Computer Science Last time Grammar issues Key structure meaning Tufts University Computer Science

Prelude COMP Lecture Topdown Parsing September, 00 What is the Tufts mascot? Jumbo the elephant Why? P. T. Barnum was an original trustee of Tufts : donated \$0,000 for a natural museum on campus Barnum

### Ambiguity. Grammar E E + E E * E ( E ) int. The string int * int + int has two parse trees. * int

Administrivia Ambiguity, Precedence, Associativity & op-down Parsing eam assignments this evening for all those not listed as having one. HW#3 is now available, due next uesday morning (Monday is a holiday).

### COMP 181. Prelude. Next step. Parsing. Study of parsing. Specifying syntax with a grammar

COMP Lecture Parsing September, 00 Prelude What is the common name of the fruit Synsepalum dulcificum? Miracle fruit from West Africa What is special about miracle fruit? Contains a protein called miraculin

### Parsing III. (Top-down parsing: recursive descent & LL(1) )

Parsing III (Top-down parsing: recursive descent & LL(1) ) Roadmap (Where are we?) Previously We set out to study parsing Specifying syntax Context-free grammars Ambiguity Top-down parsers Algorithm &

### Lexical and Syntax Analysis

Lexical and Syntax Analysis (of Programming Languages) Top-Down Parsing Lexical and Syntax Analysis (of Programming Languages) Top-Down Parsing Easy for humans to write and understand String of characters

### Syntax Analysis. COMP 524: Programming Language Concepts Björn B. Brandenburg. The University of North Carolina at Chapel Hill

Syntax Analysis Björn B. Brandenburg The University of North Carolina at Chapel Hill Based on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts. The Big Picture Character

### Syntax Analysis. The Big Picture. The Big Picture. COMP 524: Programming Languages Srinivas Krishnan January 25, 2011

Syntax Analysis COMP 524: Programming Languages Srinivas Krishnan January 25, 2011 Based in part on slides and notes by Bjoern Brandenburg, S. Olivier and A. Block. 1 The Big Picture Character Stream Token

### Lexical and Syntax Analysis. Top-Down Parsing

Lexical and Syntax Analysis Top-Down Parsing Easy for humans to write and understand String of characters Lexemes identified String of tokens Easy for programs to transform Data structure Syntax A syntax

### Parsing. Handle, viable prefix, items, closures, goto s LR(k): SLR(1), LR(1), LALR(1)

TD parsing - LL(1) Parsing First and Follow sets Parse table construction BU Parsing Handle, viable prefix, items, closures, goto s LR(k): SLR(1), LR(1), LALR(1) Problems with SLR Aho, Sethi, Ullman, Compilers

### Compilerconstructie. najaar Rudy van Vliet kamer 140 Snellius, tel rvvliet(at)liacs(dot)nl. college 3, vrijdag 22 september 2017

Compilerconstructie najaar 2017 http://www.liacs.leidenuniv.nl/~vlietrvan1/coco/ Rudy van Vliet kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl college 3, vrijdag 22 september 2017 + werkcollege

### Introduction to Parsing. Comp 412

COMP 412 FALL 2010 Introduction to Parsing Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make

### 4. Lexical and Syntax Analysis

4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal

### Chapter 4. Lexical and Syntax Analysis. Topics. Compilation. Language Implementation. Issues in Lexical and Syntax Analysis.

Topics Chapter 4 Lexical and Syntax Analysis Introduction Lexical Analysis Syntax Analysis Recursive -Descent Parsing Bottom-Up parsing 2 Language Implementation Compilation There are three possible approaches

### Parsing. Lecture 11: Parsing. Recursive Descent Parser. Arithmetic grammar. - drops irrelevant details from parse tree

Parsing Lecture 11: Parsing CSC 131 Fall, 2014 Kim Bruce Build parse tree from an expression Interested in abstract syntax tree - drops irrelevant details from parse tree Arithmetic grammar ::=

### 4. Lexical and Syntax Analysis

4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal

### Formal Languages and Compilers Lecture VII Part 3: Syntactic A

Formal Languages and Compilers Lecture VII Part 3: Syntactic Analysis Free University of Bozen-Bolzano Faculty of Computer Science POS Building, Room: 2.03 artale@inf.unibz.it http://www.inf.unibz.it/

### MIT Parse Table Construction. Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

MIT 6.035 Parse Table Construction Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology Parse Tables (Review) ACTION Goto State ( ) \$ X s0 shift to s2 error error goto s1

### CSC 4181 Compiler Construction. Parsing. Outline. Introduction

CC 4181 Compiler Construction Parsing 1 Outline Top-down v.s. Bottom-up Top-down parsing Recursive-descent parsing LL1) parsing LL1) parsing algorithm First and follow sets Constructing LL1) parsing table

### Parser. Larissa von Witte. 11. Januar Institut für Softwaretechnik und Programmiersprachen. L. v. Witte 11. Januar /23

Parser Larissa von Witte Institut für oftwaretechnik und Programmiersprachen 11. Januar 2016 L. v. Witte 11. Januar 2016 1/23 Contents Introduction Taxonomy Recursive Descent Parser hift Reduce Parser

### Lexical and Syntax Analysis

Lexical and Syntax Analysis In Text: Chapter 4 N. Meng, F. Poursardar Lexical and Syntactic Analysis Two steps to discover the syntactic structure of a program Lexical analysis (Scanner): to read the input

### Compiler Design 1. Top-Down Parsing. Goutam Biswas. Lect 5

Compiler Design 1 Top-Down Parsing Compiler Design 2 Non-terminal as a Function In a top-down parser a non-terminal may be viewed as a generator of a substring of the input. We may view a non-terminal

### CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages Lecture 5: Syntax Analysis (Parsing) Zheng (Eddy) Zhang Rutgers University January 31, 2018 Class Information Homework 1 is being graded now. The sample solution

### CSE 130 Programming Language Principles & Paradigms Lecture # 5. Chapter 4 Lexical and Syntax Analysis

Chapter 4 Lexical and Syntax Analysis Introduction - Language implementation systems must analyze source code, regardless of the specific implementation approach - Nearly all syntax analysis is based on

### Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1. Top-Down Parsing. Lect 5. Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1 Top-Down Parsing Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 2 Non-terminal as a Function In a top-down parser a non-terminal may be viewed

### Fall Compiler Principles Lecture 2: LL parsing. Roman Manevich Ben-Gurion University of the Negev

Fall 2017-2018 Compiler Principles Lecture 2: LL parsing Roman Manevich Ben-Gurion University of the Negev 1 Books Compilers Principles, Techniques, and Tools Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman

### Syntax Analysis/Parsing. Context-free grammars (CFG s) Context-free grammars vs. Regular Expressions. BNF description of PL/0 syntax

Susan Eggers 1 CSE 401 Syntax Analysis/Parsing Context-free grammars (CFG s) Purpose: determine if tokens have the right form for the language (right syntactic structure) stream of tokens abstract syntax

### Derivations vs Parses. Example. Parse Tree. Ambiguity. Different Parse Trees. Context Free Grammars 9/18/2012

Derivations vs Parses Grammar is used to derive string or construct parser Context ree Grammars A derivation is a sequence of applications of rules Starting from the start symbol S......... (sentence)

### Compilation Lecture 3: Syntax Analysis: Top-Down parsing. Noam Rinetzky

Compilation 0368-3133 Lecture 3: Syntax Analysis: Top-Down parsing Noam Rinetzky 1 Recursive descent parsing Define a function for every nonterminal Every function work as follows Find applicable production

### Parsing. Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice.

Parsing Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice. Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students

### Part III : Parsing. From Regular to Context-Free Grammars. Deriving a Parser from a Context-Free Grammar. Scanners and Parsers.

Part III : Parsing From Regular to Context-Free Grammars Deriving a Parser from a Context-Free Grammar Scanners and Parsers A Parser for EBNF Left-Parsable Grammars Martin Odersky, LAMP/DI 1 From Regular

### Syntax Analysis. Amitabha Sanyal. (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

Syntax Analysis (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay September 2007 College of Engineering, Pune Syntax Analysis: 2/124 Syntax

### Review of CFGs and Parsing II Bottom-up Parsers. Lecture 5. Review slides 1

Review of CFGs and Parsing II Bottom-up Parsers Lecture 5 1 Outline Parser Overview op-down Parsers (Covered largely through labs) Bottom-up Parsers 2 he Functionality of the Parser Input: sequence of

### The procedure attempts to "match" the right hand side of some production for a nonterminal.

Parsing A parser is an algorithm that determines whether a given input string is in a language and, as a side-effect, usually produces a parse tree for the input. There is a procedure for generating a

### CS 406/534 Compiler Construction Parsing Part I

CS 406/534 Compiler Construction Parsing Part I Prof. Li Xu Dept. of Computer Science UMass Lowell Fall 2004 Part of the course lecture notes are based on Prof. Keith Cooper, Prof. Ken Kennedy and Dr.

### How do LL(1) Parsers Build Syntax Trees?

How do LL(1) Parsers Build Syntax Trees? So far our LL(1) parser has acted like a recognizer. It verifies that input token are syntactically correct, but it produces no output. Building complete (concrete)

### BSCS Fall Mid Term Examination December 2012

PUNJAB UNIVERSITY COLLEGE OF INFORMATION TECHNOLOGY University of the Punjab Sheet No.: Invigilator Sign: BSCS Fall 2009 Date: 14-12-2012 Mid Term Examination December 2012 Student ID: Section: Morning

### Syntax Analysis, III Comp 412

COMP 412 FALL 2017 Syntax Analysis, III Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp

### CS 4120 Introduction to Compilers

CS 4120 Introduction to Compilers Andrew Myers Cornell University Lecture 6: Bottom-Up Parsing 9/9/09 Bottom-up parsing A more powerful parsing technology LR grammars -- more expressive than LL can handle

### Table-driven using an explicit stack (no recursion!). Stack can be viewed as containing both terminals and non-terminals.

Bottom-up Parsing: Table-driven using an explicit stack (no recursion!). Stack can be viewed as containing both terminals and non-terminals. Basic operation is to shift terminals from the input to the

### A programming language requires two major definitions A simple one pass compiler

A programming language requires two major definitions A simple one pass compiler [Syntax: what the language looks like A context-free grammar written in BNF (Backus-Naur Form) usually suffices. [Semantics:

### DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

KATHMANDU UNIVERSITY SCHOOL OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING REPORT ON NON-RECURSIVE PREDICTIVE PARSER Fourth Year First Semester Compiler Design Project Final Report submitted

### CS 406/534 Compiler Construction Parsing Part II LL(1) and LR(1) Parsing

CS 406/534 Compiler Construction Parsing Part II LL(1) and LR(1) Parsing Prof. Li Xu Dept. of Computer Science UMass Lowell Fall 2004 Part of the course lecture notes are based on Prof. Keith Cooper, Prof.

### Introduction to parsers

Syntax Analysis Introduction to parsers Context-free grammars Push-down automata Top-down parsing LL grammars and parsers Bottom-up parsing LR grammars and parsers Bison/Yacc - parser generators Error

### Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.

Eliminating Ambiguity Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. Example: consider the following grammar stat if expr then stat if expr then stat else stat other One can

### Example CFG. Lectures 16 & 17 Bottom-Up Parsing. LL(1) Predictor Table Review. Stacks in LR Parsing 1. Sʹ " S. 2. S " AyB. 3. A " ab. 4.

Example CFG Lectures 16 & 17 Bottom-Up Parsing CS 241: Foundations of Sequential Programs Fall 2016 1. Sʹ " S 2. S " AyB 3. A " ab 4. A " cd Matt Crane University of Waterloo 5. B " z 6. B " wz 2 LL(1)

### Compila(on (Semester A, 2013/14)

Compila(on 0368-3133 (Semester A, 2013/14) Lecture 4: Syntax Analysis (Top- Down Parsing) Modern Compiler Design: Chapter 2.2 Noam Rinetzky Slides credit: Roman Manevich, Mooly Sagiv, Jeff Ullman, Eran

### CS 2210 Sample Midterm. 1. Determine if each of the following claims is true (T) or false (F).

CS 2210 Sample Midterm 1. Determine if each of the following claims is true (T) or false (F). F A language consists of a set of strings, its grammar structure, and a set of operations. (Note: a language

### Bottom up parsing. The sentential forms happen to be a right most derivation in the reverse order. S a A B e a A d e. a A d e a A B e S.

Bottom up parsing Construct a parse tree for an input string beginning at leaves and going towards root OR Reduce a string w of input to start symbol of grammar Consider a grammar S aabe A Abc b B d And

### Syntax Analysis, III Comp 412

Updated algorithm for removal of indirect left recursion to match EaC3e (3/2018) COMP 412 FALL 2018 Midterm Exam: Thursday October 18, 7PM Herzstein Amphitheater Syntax Analysis, III Comp 412 source code

### PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Computer Science and Engineering

TEST 1 Date : 24 02 2015 Marks : 50 Subject & Code : Compiler Design ( 10CS63) Class : VI CSE A & B Name of faculty : Mrs. Shanthala P.T/ Mrs. Swati Gambhire Time : 8:30 10:00 AM SOLUTION MANUAL 1. a.

### Fall Compiler Principles Lecture 2: LL parsing. Roman Manevich Ben-Gurion University of the Negev

Fall 2016-2017 Compiler Principles Lecture 2: LL parsing Roman Manevich Ben-Gurion University of the Negev 1 Books Compilers Principles, Techniques, and Tools Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman

### CS 321 Programming Languages and Compilers. VI. Parsing

CS 321 Programming Languages and Compilers VI. Parsing Parsing Calculate grammatical structure of program, like diagramming sentences, where: Tokens = words Programs = sentences For further information,

### LECTURE 7. Lex and Intro to Parsing

LECTURE 7 Lex and Intro to Parsing LEX Last lecture, we learned a little bit about how we can take our regular expressions (which specify our valid tokens) and create real programs that can recognize them.

### Syntax Analysis Part I

Syntax Analysis Part I Chapter 4: Context-Free Grammars Slides adapted from : Robert van Engelen, Florida State University Position of a Parser in the Compiler Model Source Program Lexical Analyzer Token,

### CS308 Compiler Principles Syntax Analyzer Li Jiang

CS308 Syntax Analyzer Li Jiang Department of Computer Science and Engineering Shanghai Jiao Tong University Syntax Analyzer Syntax Analyzer creates the syntactic structure of the given source program.

### More Bottom-Up Parsing

More Bottom-Up Parsing Lecture 7 Dr. Sean Peisert ECS 142 Spring 2009 1 Status Project 1 Back By Wednesday (ish) savior lexer in ~cs142/s09/bin Project 2 Due Friday, Apr. 24, 11:55pm My office hours 3pm

### Section A. A grammar that produces more than one parse tree for some sentences is said to be ambiguous.

Section A 1. What do you meant by parser and its types? A parser for grammar G is a program that takes as input a string w and produces as output either a parse tree for w, if w is a sentence of G, or

### COP 3402 Systems Software Top Down Parsing (Recursive Descent)

COP 3402 Systems Software Top Down Parsing (Recursive Descent) Top Down Parsing 1 Outline 1. Top down parsing and LL(k) parsing 2. Recursive descent parsing 3. Example of recursive descent parsing of arithmetic

### Parsing Algorithms. Parsing: continued. Top Down Parsing. Predictive Parser. David Notkin Autumn 2008

Parsing: continued David Notkin Autumn 2008 Parsing Algorithms Earley s algorithm (1970) works for all CFGs O(N 3 ) worst case performance O(N 2 ) for unambiguous grammars Based on dynamic programming,