CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii)
|
|
- Chastity Harrington
- 3 years ago
- Views:
Transcription
1 CONTENTS Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CHAPTER 1: NUMBER SYSTEM 1.1 Digital Electronics Introduction Advantages of Digital Systems Comparison of Digital and Analog Systems Data Representation and Coding Data Representation in Digital System Data Representation in Coding Schemes Number Representation Fixed Point Representation Floating Point Representation Digital Number System Binary Number System Octal Number System Decimal Number System Hexadecimal Number System Number System Conversion Conversion from Binary Number System to any other Base Conversion from Decimal Number System to any other Base Conversion from Octal Number System to any other Base Conversion from Hexadecimal Number System any other Base (xiii)
2 (xiv) Contents 1.6 Binary Arithmetic Binary Addition Binary Subtraction Binary Multiplication Binary Division Representation of Signed Number Sign Magnitude Representation s Complement Representation s Complement Representation Complements r s and (r-1) s Diminished Radix Complement (r-1) s Complement Radix Complement r s Complement Subtraction using Complements Difference between 1 s Complement and 2 s Complement Hexadecimal Arithmetic Hexadecimal Addition Hexadecimal Subtraction Codes Binary Coded Decimal (BCD) Excess-3 Code Gray Code Sequential Code Alphanumeric Code Error Detection Code Parity Bit Check Sum Parity Data Codes Error Correcting Code Number of Parity Bits Short Answer Questions Previous Year GATE Questions Practice Questions CHAPTER 2: COMBINATIONAL LOGIC SYSTEM 2.1 Introduction Basic Logic Gates AND Gate... 64
3 Contents (xv) OR Gate NOT Gate Advanced Logic Gates NAND Gate NOR Gate EX-OR or XOR Gate EX-NOR or XNOR Gate Boolean Algebra Boolean Variables Boolean Operators Boolean Laws and Theorems Principle of Duality Standard Forms of Boolean Expression Sum of Products (SOP) Product of Sums (POS) Canonical Form Converting SOP to POS Conversion from POS to SOP Karnaugh Map Plotting of Karnaugh Map Grouping of Cells Writing the Equivalent Expression Short Answer Questions Previous Year GATE Questions Practice Questions CHAPTER 3: COMBINATIONAL LOGIC CIRCUITS 3.1 Introduction Design Strategy of Combinational Logic Circuits Adders Half Adder Full Adder Subtractor Half Subtractor Full Subtractor Digital Comparator One-bit Magnitude Comparator Two-bit Magnitude Comparator
4 (xvi) Contents 3.6 Multiplexer to 1 Multiplexer to 1 Multiplexer to 1 Multiplexer Designing of Logic Gates using 2:1 Multiplexer AND Gate OR Gate NAND Gate NOR Gate EXCLUSIVE-OR(XOR) Gate EXCLUSIVE-NOR(XNOR) Gate NOT Gate Demultiplexer to 2 Demultiplexer to 4 Demultiplexer to 8 Demultiplexer Encoder Octal to Binary Encoder Decimal to BCD Encoder Priority Encoder Decoder to 4 Decoder to 8 Decoder Code Converter Binary to BCD Code Converter BCD to Excess-3 Code Converter BCD to Seven Segment Decoder Parity Circuits bit Odd/Even Parity Generator Short Answer Questions Previous Year GATE Questions Practice Questions CHAPTER 4: SEQUENTIAL LOGIC SYSTEMS AND CIRCUITS 4.1 Introduction Types of Sequential Logic Circuits Types of Triggering
5 Contents (xvii) 4.4 Basic Sequential Circuits SR Latch Flip-flops SR Flip-Flop JK Flip-Flop D Flip-Flop T Flip-Flop Conversion of Flip-Flops Convert SR Flip-Flop into JK Flip-Flop Convert JK Flip-Flop into SR Flip-Flop Shift Registers Classification of Shift Registers Shift Registers Counters Counters Classification of Counters Asynchronous Counters Synchronous Counters Design of Counters using Flip-Flops Short Answer Questions Previous Year GATE Questions Practice Questions CHAPTER 5: DIGITAL LOGIC FAMILIES 5.1 Introduction Level of Integration Classification of Logic Families Nomenclature of Logic Family Resistor Transistor Logic (RTL) Diode Transistor Logic (DTL) Transistor Transistor Logic (TTL) TTL with Open Collector Output Configuration TTL with Totem-Pole Configuration TTL with Tri-State Logic Emitter Coupled Logic (ECL)
6 (xviii) Contents 5.7 Complementary Metal Oxide Semiconductor (CMOS) Logic CMOS Inverter CMOS NAND Logic CMOS NOR Logic CMOS TTL Interfacing TTL Driving CMOS CMOS Driving TTL Characteristics of Digital Logic Families Speed of Operation Power Dissipation Fan-in and Fan-Out Noise Margin Operating Temperature Comparison of all Logic Families Short Answer Questions Previous Year GATE Questions Practice Questions CHAPTER 6: SEMICONDUCTOR MEMORIES 6.1 Introduction Semiconductor Memory Memory Capacity Memory Organisation Speed of Memory Chip Memory Operation Classifications of Semiconductor Memory Random Access Memory (RAM) Read Only Memory (ROM) Sequential Access Memory (SAM) Charged Coupled Device (CCD) Memory Content Addressable Memory (CAM) Memory Expansion Word Length Expansion Word Capacity Expansion Short Answer Questions Previous Year GATE Questions Practice Questions
7 Contents (xix) CHAPTER 7: PROGRAMMABLE LOGIC DEVICES 7.1 Introduction Classification of PLDs Simple Programmable Logic Device (SPLD) Programmable Read Only Memory (PROM) Programmable Logic Array (PLA) Programmable Array Logic (PAL) Complex Programmable Logic Device (CPLD) Architecture of CPLD Field Programmable Gate Array (FPGA) Short Answer Questions Previous Year GATE Questions Practice Questions CHAPTER 8: A/D AND D/A CONVERTERS 8.1 Introduction Need of Conversion Digital to Analog Converters Weighted Resistor D/A Converter R-2R Ladder D/A Converter Specifications of D/A Converters Applications of D/A Converters Examples of D/A Converter ICs Analog to Digital Converter Sample and Hold Circuit Quantization and Encoding Types of A/D Converters Flash Type A/D Converters Counter Type A/D Converters Successive Approximation A/D Converter Dual Slope Type A/D Converters Specifications of A/D Converter
8 (xx) Contents 8.9 Applications of A/D Converters Examples of A/D Converter ICs Short Answer Questions Previous Year GATE Questions Practice Question CHAPTER 9: INTRODUCTION TO VERILOG HDL PROGRAM FOR DIGITAL CIRCUIT 9.1 Introduction Need of HDL Digital System Design using Verilog Modelling Styles in Verilog Verilog HDL for Truth Table Verilog HDL for Combinational Logic Circuits Verilog HDL Program for all Logic Gates using Structural Modelling Verilog HDL Program for Half Adder using Structural Modelling Verilog HDL Program for 4-bit Full Adder using Structural Modelling Verilog HDL Program for 1-bit Half Subtractor using Data Flow Modelling Verilog Code for 1-bit Full Subtractor using Data Flow Modelling Verilog HDL Program for 3:8 Decoder using Dataflow Modelling Verilog Code for 8:3 Priority Encoder using Structural Modelling Verilog HDL Program for 1:4Demultiplexer using Behavioral Modelling Verilog HDL Program for 4:1 Multiplexer using Structural Modelling Verilog HDL Program for Sequential Circuits Verilog Code for 4-bit Binary Up-down Counter using Behavioral Modelling
9 Contents (xxi) Verilog HDL Program for D Latch using Behavioral Modelling Verilog HDL Program for D Flip-flop using Behavioral Modelling Verilog HDL Program for JK Flip-flop using Behavioral Modelling Short Answer Questions Practice Questions Annexure I: Digital Circuit IC Numbers Annexure II: List of Keywords, System Tasks & Compilers Directives used in Verilog HDL Program Index
Principles of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system.
Assignment No. 1 1. State advantages of digital system over analog system. 2. Convert following numbers a. (138.56) 10 = (?) 2 = (?) 8 = (?) 16 b. (1110011.011) 2 = (?) 10 = (?) 8 = (?) 16 c. (3004.06)
(ii) Simplify and implement the following SOP function using NOR gates:
DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EE6301 DIGITAL LOGIC CIRCUITS UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES PART A 1. How can an OR gate be
END-TERM EXAMINATION
(Please Write your Exam Roll No. immediately) END-TERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA-103 Subject: Digital Electronics Time: 3 Hours Maximum
HANSABA COLLEGE OF ENGINEERING & TECHNOLOGY (098) SUBJECT: DIGITAL ELECTRONICS ( ) Assignment
Assignment 1. What is multiplexer? With logic circuit and function table explain the working of 4 to 1 line multiplexer. 2. Implement following Boolean function using 8: 1 multiplexer. F(A,B,C,D) = (2,3,5,7,8,9,12,13,14,15)
3. The high voltage level of a digital signal in positive logic is : a) 1 b) 0 c) either 1 or 0
1. The number of level in a digital signal is: a) one b) two c) four d) ten 2. A pure sine wave is : a) a digital signal b) analog signal c) can be digital or analog signal d) neither digital nor analog
DIGITAL ELECTRONICS. Vayu Education of India
DIGITAL ELECTRONICS ARUN RANA Assistant Professor Department of Electronics & Communication Engineering Doon Valley Institute of Engineering & Technology Karnal, Haryana (An ISO 9001:2008 ) Vayu Education
B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN
B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is ----- Write the first 9 decimal digits in base 3. (c) What is meant by don
VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS YEAR / SEMESTER: II / III ACADEMIC YEAR: 2015-2016 (ODD
SHRI ANGALAMMAN COLLEGE OF ENGINEERING. (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI
SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI 621 105 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC1201 DIGITAL
Scheme G. Sample Test Paper-I
Sample Test Paper-I Marks : 25 Times:1 Hour 1. All questions are compulsory. 2. Illustrate your answers with neat sketches wherever necessary. 3. Figures to the right indicate full marks. 4. Assume suitable
R10. II B. Tech I Semester, Supplementary Examinations, May
SET - 1 1. a) Convert the following decimal numbers into an equivalent binary numbers. i) 53.625 ii) 4097.188 iii) 167 iv) 0.4475 b) Add the following numbers using 2 s complement method. i) -48 and +31
Injntu.com Injntu.com Injntu.com R16
1. a) What are the three methods of obtaining the 2 s complement of a given binary (3M) number? b) What do you mean by K-map? Name it advantages and disadvantages. (3M) c) Distinguish between a half-adder
UPY14602-DIGITAL ELECTRONICS AND MICROPROCESSORS Lesson Plan
UPY14602-DIGITAL ELECTRONICS AND MICROPROCESSORS Lesson Plan UNIT I - NUMBER SYSTEMS AND LOGIC GATES Introduction to decimal- Binary- Octal- Hexadecimal number systems-inter conversions-bcd code- Excess
SUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3
UNIT - I PART A (2 Marks) 1. Using Demorgan s theorem convert the following Boolean expression to an equivalent expression that has only OR and complement operations. Show the function can be implemented
Hours / 100 Marks Seat No.
17320 21718 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Figures to the right indicate full marks. (4) Assume suitable data,
COPYRIGHTED MATERIAL INDEX
INDEX Absorption law, 31, 38 Acyclic graph, 35 tree, 36 Addition operators, in VHDL (VHSIC hardware description language), 192 Algebraic division, 105 AND gate, 48 49 Antisymmetric, 34 Applicable input
Hours / 100 Marks Seat No.
17333 13141 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK NAME OF THE SUBJECT: EE 2255 DIGITAL LOGIC CIRCUITS
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK NAME OF THE SUBJECT: EE 2255 DIGITAL LOGIC CIRCUITS YEAR / SEM: II / IV UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni-625531 Question Bank for the Units I to V SEMESTER BRANCH SUB CODE 3rd Semester B.E. / B.Tech. Electrical and Electronics Engineering
COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS UNIT I
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS YEAR / SEM: III / V UNIT I NUMBER SYSTEM & BOOLEAN ALGEBRA
R a) Simplify the logic functions from binary to seven segment display code converter (8M) b) Simplify the following using Tabular method
SET - 1 1. a) Convert the decimal number 250.5 to base 3, base 4 b) Write and prove de-morgan laws c) Implement two input EX-OR gate from 2 to 1 multiplexer (3M) d) Write the demerits of PROM (3M) e) What
MGU-BCA-205- Second Sem- Core VI- Fundamentals of Digital Systems- MCQ s. 2. Why the decimal number system is also called as positional number system?
MGU-BCA-205- Second Sem- Core VI- Fundamentals of Digital Systems- MCQ s Unit-1 Number Systems 1. What does a decimal number represents? A. Quality B. Quantity C. Position D. None of the above 2. Why the
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT COE 202: Digital Logic Design Term 162 (Spring 2017) Instructor: Dr. Abdulaziz Barnawi Class time: U.T.R.: 11:00-11:50AM Class
VALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY & COMPUTER SCIENCE AND ENGINEERING QUESTION BANK II SEMESTER CS6201- DIGITAL PRINCIPLE AND SYSTEM DESIGN
UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PART-A (2 MARKS)
SUBJECT NAME: DIGITAL LOGIC CIRCUITS YEAR / SEM : II / III DEPARTMENT : EEE UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS 1. What is variable mapping? 2. Name the two canonical forms for Boolean algebra.
DIRECTORATE OF TECHNICAL EDUCATION DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING II YEAR M SCHEME IV SEMESTER.
DIRECTORATE OF TECHNICAL EDUCATION DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING II YEAR M SCHEME IV SEMESTER 2015 2016 onwards DIGITAL ELECTRONICS CURRICULUM DEVELOPMENT CENTRE Curriculum Development
Digital System Design with SystemVerilog
Digital System Design with SystemVerilog Mark Zwolinski AAddison-Wesley Upper Saddle River, NJ Boston Indianapolis San Francisco New York Toronto Montreal London Munich Paris Madrid Capetown Sydney Tokyo
Code No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
Digital Design Using Digilent FPGA Boards -- Verilog / Active-HDL Edition
Digital Design Using Digilent FPGA Boards -- Verilog / Active-HDL Edition Table of Contents 1. Introduction to Digital Logic 1 1.1 Background 1 1.2 Digital Logic 5 1.3 Verilog 8 2. Basic Logic Gates 9
DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY
DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY Dept/Sem: II CSE/03 DEPARTMENT OF ECE CS8351 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT I BOOLEAN ALGEBRA AND LOGIC GATES PART A 1. How many
CHAPTER - 2 : DESIGN OF ARITHMETIC CIRCUITS
Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : BASIC VERILOG HDL Introduction to HDLs, Overview of Digital Design With Verilog HDL, Basic Concepts, Data Types, System Tasks and Compiler
BHARATHIDASAN ENGINEERING COLLEGE Degree / Branch : B.E./ECE Year / Sem : II/ III Sub.Code / Name : EC6302/DIGITAL ELECTRONICS
BHARATHIDASAN ENGINEERING COLLEGE Degree / Branch : B.E./ECE Year / Sem : II/ III Sub.Code / Name : EC6302/DIGITAL ELECTRONICS FREQUENTLY ASKED QUESTIONS UNIT I MINIMIZATION TECHNIQUES AND LOGIC GATES
VALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Academic Year 2018 19 III SEMESTER CS8351-DIGITAL PRINCIPLES AND SYSTEM DESIGN Regulation
Digital logic fundamentals. Question Bank. Unit I
Digital logic fundamentals Question Bank Subject Name : Digital Logic Fundamentals Subject code: CA102T Staff Name: R.Roseline Unit I 1. What is Number system? 2. Define binary logic. 3. Show how negative
R07. Code No: V0423. II B. Tech II Semester, Supplementary Examinations, April
SET - 1 II B. Tech II Semester, Supplementary Examinations, April - 2012 SWITCHING THEORY AND LOGIC DESIGN (Electronics and Communications Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions
D I G I T A L C I R C U I T S E E
D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,
Course Batch Semester Subject Code Subject Name. B.E-Marine Engineering B.E- ME-16 III UBEE307 Integrated Circuits
Course Batch Semester Subject Code Subject Name B.E-Marine Engineering B.E- ME-16 III UBEE307 Integrated Circuits Part-A 1 Define De-Morgan's theorem. 2 Convert the following hexadecimal number to decimal
SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN
SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN SUBJECT: CSE 2.1.6 DIGITAL LOGIC DESIGN CLASS: 2/4 B.Tech., I SEMESTER, A.Y.2017-18 INSTRUCTOR: Sri A.M.K.KANNA
Code No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science
Chapter 2. Boolean Algebra and Logic Gates
Chapter 2. Boolean Algebra and Logic Gates Tong In Oh 1 Basic Definitions 2 3 2.3 Axiomatic Definition of Boolean Algebra Boolean algebra: Algebraic structure defined by a set of elements, B, together
www.vidyarthiplus.com Question Paper Code : 31298 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013. Third Semester Computer Science and Engineering CS 2202/CS 34/EC 1206 A/10144 CS 303/080230012--DIGITAL
Code No: 07A3EC03 Set No. 1
Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,
R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai
L T P C R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai- 601206 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC8392 UNIT - I 3 0 0 3 OBJECTIVES: To present the Digital fundamentals, Boolean
APPENDIX A SHORT QUESTIONS AND ANSWERS
APPENDIX A SHORT QUESTIONS AND ANSWERS Unit I Boolean Algebra and Logic Gates Part - A 1. Define binary logic? Binary logic consists of binary variables and logical operations. The variables are designated
Code No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
Computer Arithmetic andveriloghdl Fundamentals
Computer Arithmetic andveriloghdl Fundamentals Joseph Cavanagh Santa Clara University California, USA ( r ec) CRC Press vf J TayiorS«. Francis Group ^"*" "^ Boca Raton London New York CRC Press is an imprint
Logic design Ibn Al Haitham collage /Computer science Eng. Sameer
DEMORGAN'S THEOREMS One of DeMorgan's theorems stated as follows: The complement of a product of variables is equal to the sum of the complements of the variables. DeMorgan's second theorem is stated as
FUNDAMENTALS OF DIGITAL CIRCUITS
FUNDAMENTALS OF DIGITAL CIRCUITS THIRD EDITION A. Anand Kumar Principal K.L. University College of Engineering K.L. University Green Fields, Vaddeswaram Guntur District Andhra Pradesh Delhi-110092 2014
1. Mark the correct statement(s)
1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another
Computer Logical Organization Tutorial
Computer Logical Organization Tutorial COMPUTER LOGICAL ORGANIZATION TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Computer Logical Organization Tutorial Computer
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech
PART B. 3. Minimize the following function using K-map and also verify through tabulation method. F (A, B, C, D) = +d (0, 3, 6, 10).
II B. Tech II Semester Regular Examinations, May/June 2015 SWITCHING THEORY AND LOGIC DESIGN (Com. to EEE, ECE, ECC, EIE.) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A
This tutorial gives a complete understanding on Computer Logical Organization starting from basic computer overview till its advanced architecture.
About the Tutorial Computer Logical Organization refers to the level of abstraction above the digital logic level, but below the operating system level. At this level, the major components are functional
DIGITAL ELECTRONICS. P41l 3 HOURS
UNIVERSITY OF SWAZILAND FACUL TY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS MAIN EXAMINATION 2015/16 TITLE OF PAPER: COURSE NUMBER: TIME ALLOWED: INSTRUCTIONS: DIGITAL ELECTRONICS P41l 3 HOURS ANSWER
II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Answer ONE question from each unit.
Hall Ticket Number: 14CS IT303 November, 2017 Third Semester Time: Three Hours Answer Question No.1 compulsorily. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION Common for CSE & IT Digital Logic
NOTIFICATION (Advt No. 1/2018) Syllabus (Paper III)
NOTIFICATION (Advt No. 1/2018) Syllabus (Paper III) Post Code - 302 Area: Instrumentation COMPUTER PROGRAMMING AND APPLICATION 1. OVERVIEW OF PROGRAMMING: Steps in program development, problem identification,
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Name : DIGITAL LOGIC DESISN Code : AEC020 Class : B Tech III Semester
Programmable Logic Devices
Programmable Logic Devices Programmable Logic Devices Fig. (1) General structure of PLDs Programmable Logic Device (PLD): is an integrated circuit with internal logic gates and/or connections that can
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500043 Course Name : DIGITAL LOGIC DESISN Course Code : AEC020 Class : B Tech III Semester Branch : CSE Academic Year : 2018 2019
Digital Design. Verilo. and. Fundamentals. fit HDL. Joseph Cavanagh. CRC Press Taylor & Francis Group Boca Raton London New York
Digital Design and Verilo fit HDL Fundamentals Joseph Cavanagh Santa Clara University California, USA CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor &
St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad
St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: Digital Design Using Verilog Hdl Class : ECE-II Group A (Short Answer Questions) UNIT-I 1 Define verilog HDL? 2 List levels of
Boolean Algebra and Logic Gates
Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can
ii) Do the following conversions: output is. (a) (101.10) 10 = (?) 2 i) Define X-NOR gate. (b) (10101) 2 = (?) Gray (2) /030832/31034
No. of Printed Pages : 4 Roll No.... rd 3 Sem. / ECE Subject : Digital Electronics - I SECTION-A Note: Very Short Answer type questions. Attempt any 15 parts. (15x2=30) Q.1 a) Define analog signal. b)
Philadelphia University Student Name: Student Number:
Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, First Semester: 2018/2019 Dept. of Computer Engineering Course Title: Logic Circuits Date: 03/01/2019
Honorary Professor Supercomputer Education and Research Centre Indian Institute of Science, Bangalore
COMPUTER ORGANIZATION AND ARCHITECTURE V. Rajaraman Honorary Professor Supercomputer Education and Research Centre Indian Institute of Science, Bangalore T. Radhakrishnan Professor of Computer Science
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNICATIONS ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATIONS ENGINEERING QUESTION BANK Course Name : DIGITAL DESIGN USING VERILOG HDL Course Code : A00 Class : II - B.
Digital Logic Design Exercises. Assignment 1
Assignment 1 For Exercises 1-5, match the following numbers with their definition A Number Natural number C Integer number D Negative number E Rational number 1 A unit of an abstract mathematical system
DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES
DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the
Preface... xxi Chapter One: Digital Signals and Systems... 1 Chapter Two: Numbering Systems... 17
TABLE OF CONTENTS Preface...xxi Chapter One: Digital Signals and Systems... 1 1.1 Should Software Engineers Worry About Hardware?... 1 1.2 Non-Digital Signals... 3 1.3 Digital Signals... 4 1.4 Conversion
Department of Computer Science University of Peshawar UNDERGTRADUATE CURRICULUM BCS
Department of Computer Science University of Peshawar UNDERGTRADUATE CURRICULUM BCS Code: BCS231 Credit Hours: 3 Digital Logic Design Numbering Systems a) Number Representation, Conversion, and Arithmetic
Objectives: 1. Design procedure. 2. Fundamental circuits. 1. Design procedure
Objectives: 1. Design procedure. 2. undamental circuits. 1. Design procedure Design procedure has five steps: o Specification. o ormulation. o Optimization. o Technology mapping. o Verification. Specification:
MLR Institute of Technology
MLR Institute of Technology Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad 500 043 Course Name Course Code Class Branch ELECTRONICS AND COMMUNICATIONS ENGINEERING QUESTION BANK : DIGITAL DESIGN
DE Solution Set QP Code : 00904
DE Solution Set QP Code : 00904 1. Attempt any three of the following: 15 a. Define digital signal. (1M) With respect to digital signal explain the terms digits and bits.(2m) Also discuss active high and
TEACHING & EXAMINATION SCHEME For the Examination COMPUTER SCIENCE. B.Sc. Part-I
TEACHING & EXAMINATION SCHEME For the Examination -2015 COMPUTER SCIENCE THEORY B.Sc. Part-I CS.101 Paper I Computer Oriented Numerical Methods and FORTRAN Pd/W Exam. Max. (45mts.) Hours Marks 150 2 3
DIRECTORATE OF DISTANCE EDUCATION COMPUTER ORGANIZATION AND ARCHITECTURE/INTRODUCTION TO COMPUTER ORGANIZATION AND ARCHITECTURE
www.lpude.in DIRECTORATE OF DISTANCE EDUCATION COMPUTER ORGANIZATION AND ARCHITECTURE/INTRODUCTION TO COMPUTER ORGANIZATION AND ARCHITECTURE Copyright 2012 Lovely Professional University All rights reserved
UNIT II - COMBINATIONAL LOGIC Part A 2 Marks. 1. Define Combinational circuit A combinational circuit consist of logic gates whose outputs at anytime are determined directly from the present combination
Computer Organization
A Text Book of Computer Organization and Architecture Prof. JATINDER SINGH Director, GGI, Dhaliwal Er. AMARDEEP SINGH M.Tech (IT) AP&HOD, Deptt.of CSE, SVIET, Banur Er. GURJEET SINGH M.Tech (CSE) Head,
Boolean Algebra. BME208 Logic Circuits Yalçın İŞLER
Boolean Algebra BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 5 Boolean Algebra /2 A set of elements B There exist at least two elements x, y B s. t. x y Binary operators: +
Number Systems UNIT. Learning Objectives. 1.0 Introduction
UNIT 1 Number Systems Learning Objectives To study Binary, Octal, Hexadecimal, Decimal number systems. Conversion of Binary to Octal, Binary to decimal, Binary to Hexa decimal and Conversion. Binary Addition,
LECTURE NOTES DIGITAL LOGIC DESIGN
LECTURE NOTES ON DIGITAL LOGIC DESIGN 2018 2019 II B. Tech I Semester (Autonomous-R17) Ms. I. Sheeba, Assistant Professor CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta
R07
www..com www..com SET - 1 II B. Tech I Semester Supplementary Examinations May 2013 SWITCHING THEORY AND LOGIC DESIGN (Com. to EEE, EIE, BME, ECC) Time: 3 hours Max. Marks: 80 Answer any FIVE Questions
Reference Sheet for C112 Hardware
Reference Sheet for C112 Hardware 1 Boolean Algebra, Gates and Circuits Autumn 2016 Basic Operators Precedence : (strongest),, + (weakest). AND A B R 0 0 0 0 1 0 1 0 0 1 1 1 OR + A B R 0 0 0 0 1 1 1 0
CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES
CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES This chapter in the book includes: Objectives Study Guide 9.1 Introduction 9.2 Multiplexers 9.3 Three-State Buffers 9.4 Decoders and Encoders
SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR
SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS LESSON PLAN (207-208) Course / Branch : B.Sc CS Total Hours : 50 Subject Name : Digital Electronics
Chap.3 3. Chap reduces the complexity required to represent the schematic diagram of a circuit Library
3.1 Combinational Circuits 2 Chap 3. logic circuits for digital systems: combinational vs sequential Combinational Logic Design Combinational Circuit (Chap 3) outputs are determined by the present applied
Combinational Logic Circuits
Combinational Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch- Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has
COMBINATIONAL LOGIC CIRCUITS
COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic
Topics. Midterm Finish Chapter 7
Lecture 9 Topics Midterm Finish Chapter 7 ROM (review) Memory device in which permanent binary information is stored. Example: 32 x 8 ROM Five input lines (2 5 = 32) 32 outputs, each representing a memory
Lecture (05) Boolean Algebra and Logic Gates
Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either
Chapter Three. Digital Components
Chapter Three 3.1. Combinational Circuit A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs. The binary values of the outputs are a function of the binary
Chapter 4. Combinational Logic
Chapter 4. Combinational Logic Tong In Oh 1 4.1 Introduction Combinational logic: Logic gates Output determined from only the present combination of inputs Specified by a set of Boolean functions Sequential
Switching Theory & Logic Design/Digital Logic Design Question Bank
Switching Theory & Logic Design/Digital Logic Design Question Bank UNIT I NUMBER SYSTEMS AND CODES 1. A 12-bit Hamming code word containing 8-bits of data and 4 parity bits is read from memory. What was
Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru
Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Course Title: DIGITAL ELECTRONICS Course Code : 15EE34T Semester : III Course Group : Core Teaching
UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT
UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, Random-Access memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable
GATE CSE. GATE CSE Book. November 2016 GATE CSE
GATE CSE GATE CSE Book November 2016 GATE CSE Preface This book is made thanks to the effort of GATE CSE members and Praneeth who made most of the latex notes for GATE CSE. Remaining work of completing
CS6201-DIGITAL PRINCIPLE AND SYSTEM DESIGN I YEAR/II SEM PART-B UNIT-I BOOLEAN ALGEBRA AND LOGIC GATES.
CS6201-DIGITAL PRINCIPLE AND SYSTEM DESIGN I YEAR/II SEM PART-B UNIT-I BOOLEAN ALGEBRA AND LOGIC GATES. 1) Simplify the boolean function using tabulation method. F = (0, 1, 2, 8, 10, 11, 14, 15) List all
Memory and Programmable Logic
Digital Circuit Design and Language Memory and Programmable Logic Chang, Ik Joon Kyunghee University Memory Classification based on functionality ROM : Read-Only Memory RWM : Read-Write Memory RWM NVRWM
Chapter 2 Basic Logic Circuits and VHDL Description
Chapter 2 Basic Logic Circuits and VHDL Description We cannot solve our problems with the same thinking we used when we created them. ----- Albert Einstein Like a C or C++ programmer don t apply the logic.
ELCT 501: Digital System Design
ELCT 501: Digital System Lecture 4: CAD tools (Continued) Dr. Mohamed Abd El Ghany, Basic VHDL Concept Via an Example Problem: write VHDL code for 1-bit adder 4-bit adder 2 1-bit adder Inputs: A (1 bit)
EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE
EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE 1 Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables, logic gates, and output