The Instruction Set. Chapter 5

Size: px
Start display at page:

Download "The Instruction Set. Chapter 5"

Transcription

1 The Instruction Set Architecture Level(ISA) Chapter 5 1

2 ISA Level The ISA level l is the interface between the compilers and the hardware. (ISA level code is what a compiler outputs) 2

3 Memory Models An 8-byte word in a little-endian memory. (a) Aligned. (b) Not aligned. Some machines require that words in memory be aligned. 3

4 Overview of the Pentium 4 ISA Level The Pentium 4 s primary registers. P4 fetches 8bytes at a time from the memory is 32-bit, all called IA-32. 4

5 1. Special purpose register 2. General purpose register Registers SPR : program counter, stack pointer. GPR : hold local variable, intermediate results of calculations. P4 has three operating modes: real mode: behaves like 8088, any wrong in the program crash. Virtual 8086 mode: operating system control the whole machine. Protected mode: behaves like P4. 5

6 Registers a) Use 8-bit name, 16-bit name, or 32-bit name b) Applies to EAX, EBX, ECX, and EDX 8 AH 8 AL 8 bits + 8 bits AX 16 bits EAX 32 bits 6

7 General-Purpose Registers a) EAX Accumulator for operands and results data, div&mul b) EBX Pointer to data in the DS segment (Memory address) c) ECX Counter for string and loop operations d) EDX I/O pointer e) ESI (Source index) Pointer to data in the segment pointed to by the DS register; source pointer for string operations f) EDI (Destination index) Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for string operations g) ESP (Stack pointer) Stack pointer (in the SS segment) h) EBP (Base pointer )Pointer to data on the stack (in the SS segment) point to the base of the current stack. 7

8 Register a) Segment CS code segment DS data segment SS stack segment ES, FS, GS - additional segments b) EIP instruction pointer c) EFLAGS control flags (control CPU s operation, e.g. break, interrupt, enter 8086/protected mode) Status flag each flag is a single binary bit (set or clear) 8

9 Status Flags Carry (CF) unsigned arithmetic out of range Overflow (OF) signed arithmetic out of range Sign (SF) result is negative Zero (ZF) result is zero Auxiliary Carry (AC) carry from bit 3 to bit 4 in 8-bit operand Parity (PF) sum of 1 bits in least-significant byte is an even number 9

10 Segment Registers 10

11 Overview of the 8051 ISA Level (a) On chip memory organization for the 8051 (a) On-chip memory organization for the (b) Major 8051 registers. 11

12 8051 Summary of features of the standard K bytes internal ROM (program) 128 bytes internal RAM (data) Four 8-bit I/O ports Two 16-bit timers Serial interface 64K external code memory space 64K external data memory space 210 bit-addressable bl locations 12

13 implements a separate memory space for programs (code) and data. Both code and data may be internal, however, both expand using external components to a maximum of 64K code memory and 64K data memory. Internal memory consists of on-chip ROM and on-chip data RAM. On-chip RAM contains a rich arrangement of general purpose p storage, bit addressable storage, register banks, and special function registers. In the 8051, the registers and input/output ports are memory mapped and accessible like any other memory location. In the 8051, the stack resides within the internal RAM, rather than in external RAM. 13

14 14

15 15

16 16

17 17

18 Data Types on the Pentium 4 The Pentium 4 numeric data types. Supported types are marked with. 18

19 Data Types on the 8051 The 8051 numeric data types. Supported types are marked with. 19

20 Instruction Formats (1) Four common instruction formats: (a) Zero-address instruction. (b) One-address instruction (c) Two-address instruction. (d) Three-address instruction. 20

21 Instruction Formats (2) Some possible relationships between instruction and word length. 21

22 Expanding Opcodes (1) An instruction ti with a 4-bit opcode and three 4-bit address fields. 22

23 Expanding Opcodes (2) An expanding opcode allowing 15 three-address instructions, 14 two-address instructions, 31 one-address instructions, and 16 zero-address instructions. ti The fields marked xxxx, yyyy, and zzzz are 4-bit address fields. 23

24 The Pentium 4 Instruction Formats The Pentium 4 instruction ti formats. 24

25 The 8051 Instruction Formats The 8051 instruction ti formats. 25

26 Addressing Modes a) Immediate b) Direct c) Indirect d) Register e) Register Indirect f) Displacement (Indexed) g) Stack 26

27 Immediate Addressing a) Operand is part of instruction b) Operand = address field c) e.g. ADD 5 Add 5 to contents of accumulator 5 is operand d) No memory reference to fetch data e) Fast f) Limited range Opcode Operand 27

28 Direct Addressing a) Address field contains address of operand b) Effective address (EA) = address field (A) c) e.g. ADD A Add contents of cell A to accumulator Look in memory at address A for operand d) Single memory reference to access data e) No additional calculations to work out effective address f) Limited address space 28

29 Direct Addressing Diagram Instruction ti Opcode Address A Memory Operand 29

30 Indirect Addressing (1) a) Memory cell pointed to by address field contains the address of (pointer to) the operand b) EA = (A) Look in A, find address (A) and look there for operand c) e.g. ADD (A) Add contents of cell pointed to by contents of A to accumulator 30

31 Indirect Addressing (2) a) Large address space b) 2 n where n = word length c) Multiple memory accesses to find operand d) Hence slower 31

32 Indirect Addressing Diagram Instruction Opcode Address A Memory Pointer to operand Operand 32

33 Register Addressing (1) a) Operand is held in register named in address filed b) EA = R c) Limited number of registers d) Very small address field needed Shorter instructions Faster instruction fetch 33

34 Register Addressing (2) a) No memory access b) Very fast execution c) Very limited address space d) Multiple registers helps performance e) Direct addressing 34

35 Register Addressing Diagram Instruction ti Opcode Register Address R Registers s Operand 35

36 Register Indirect Addressing a) indirect addressing b) EA = (R) c) Operand is in memory cell pointed to by contents of register R d) Large address space (2 n ) e) One fewer memory access than indirect addressing 36

37 Register Indirect Addressing Diagram Instruction Opcode Register Address R Memory Registers Pointer to Operand Operand 37

38 Displacement Addressing a) EA = A + (R) b) Address field hold two values A = base value R = register that holds displacement or vice versa 38

39 Displacement Addressing Diagram Instruction Opcode Register R Address A Memory Registers Pointer to Operand + Operand 39

40 Relative Addressing a) A version of displacement addressing b) R = Program counter, PC c) EA = A + (PC) d) i.e. get operand from A cells from current location pointed to by PC e) locality of reference & cache usage

41 Base-Register Addressing a) A holds displacement b) R holds pointer to base address c) R may be explicit or implicit d) e.g. segment registers in 80x8686

42 Indexed Addressing a) A = base b) R = displacement c) EA = A + R d) Good for accessing arrays EA = A + R R++

43 Indexed Addressing (1) A generic assembly program for computing the OR of Ai AND Bi for two 1024-element arrays.

44 Indexed Addressing (2) A possible representation of MOV R4,A(R2).

45 Combinations a) Post index b) EA = (A) + (R) c) Pre index d) EA = (A+(R))

46 Pentium Addressing Modes a) Virtual or effective address is offset into segment Starting address plus offset gives linear address This goes through page translation if paging enabled b) 12 addressing modes available Immediate Register operand Displacement Base Base with displacement Scaled index with displacement Base with index and displacement Base scaled index with displacement

47 he Pentium 4 Addressing Modes (1) The Pentium 4 32-bit addressing modes. M[x]

48 he Pentium 4 Addressing Modes (2) Access to a[i].

49 Loop Control (a) Test-at-the-end loop. (b) Test-at-the-beginning loop.

50 Input/Output (1) Three different I/O schemes are in current use in personal computers Programmed I/O with busy waiting. Interrupt-driven I/O. DMA I/O.

51 Input/Output (1) Device registers for a simple terminal (Status & Data). 4, each is 1 Byte, two for (In) and two for (out). Memory mapped I/O, part of the memory, Ordinary instructions. Otherwise use IN, OUT. Bit 7 sits by the hardware whenever a character arrives. If the software has previously set bit 6, an interrupt is generated In programmed I/O, CPU sits a tight loop repeatedly reading the keyboard status register then the software read the buffer. To write a character to the screen, the software first reads the display status t register to see if the READY bit is 1.

52 Input/Output (2) An example of programmed I/O.

53 Input/Output (2) Disadvantage of programmed I/O. CPU spends most of the time waiting the device to be ready (called busy waiting) The way to get rid of busy waiting is to have the CPU start the I/O device and tell it to generate an interrupt when it is done. Disadvantage is that, interrupt is required for every character transmitted.

54 Input/Output (3) DMA (Direct Memory Access) chip has at least four registers. The first one contains the memory address to be read. The second one contains the count, how many bytes (or word ) are to be transferred. The third one specifies the device number or I/O space address to use. Thus specifying i which h I/O device is desired. d The fourth one tells whether data are to be read from or writing to the I/O device. To write a block of 32 bytes from memory address 100 to terminal 4, the CPU writes 32, 100, 4, and 1 for write. DMA controller makes a bus request to read from memory, the another request to write to the terminal. When the count reach 0, DMA controller asserts the interrupt line on the CPU chip.

55 Input/Output t t (3) A system with a DMA controller.

56 The Pentium 4 Instructions (1) A selection of the Pentium 4 integer instructions.

57 The Pentium 4 Instructions (2) A selection of the Pentium 4 integer instructions.

58 The Pentium 4 Instructions (3) A selection of the Pentium 4 integer instructions.

59 The Pentium 4 Instructions (4) A selection of the Pentium 4 integer instructions.

60 8051 Instructions (1) The 8051 Instruction set.

61 8051 Instructions (2) The 8051 Instruction set.

62 8051 Instructions (3) The 8051 Instruction set.

63 8051 Instructions (4) The 8051 Instruction set.

64 8051 Instructions (5) The 8051 Instruction set.

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit Slides prepared by Kip R. Irvine Revision date: 09/25/2002

More information

Complex Instruction Set Computer (CISC)

Complex Instruction Set Computer (CISC) Introduction ti to IA-32 IA-32 Processors Evolutionary design Starting in 1978 with 886 Added more features as time goes on Still support old features, although obsolete Totally dominate computer market

More information

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM EXPERIMENT WRITE UP AIM: Assembly language program for 16 bit BCD addition LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM TOOLS/SOFTWARE

More information

Module 3 Instruction Set Architecture (ISA)

Module 3 Instruction Set Architecture (ISA) Module 3 Instruction Set Architecture (ISA) I S A L E V E L E L E M E N T S O F I N S T R U C T I O N S I N S T R U C T I O N S T Y P E S N U M B E R O F A D D R E S S E S R E G I S T E R S T Y P E S O

More information

Computer Architecture and Organization. Instruction Sets: Addressing Modes and Formats

Computer Architecture and Organization. Instruction Sets: Addressing Modes and Formats Computer Architecture and Organization Instruction Sets: Addressing Modes and Formats Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack Immediate Addressing

More information

Computer Organization & Assembly Language Programming

Computer Organization & Assembly Language Programming Computer Organization & Assembly Language Programming CSE 2312-002 (Fall 2011) Lecture 8 ISA & Data Types & Instruction Formats Junzhou Huang, Ph.D. Department of Computer Science and Engineering Fall

More information

Introduction to IA-32. Jo, Heeseung

Introduction to IA-32. Jo, Heeseung Introduction to IA-32 Jo, Heeseung IA-32 Processors Evolutionary design Starting in 1978 with 8086 Added more features as time goes on Still support old features, although obsolete Totally dominate computer

More information

INTRODUCTION TO IA-32. Jo, Heeseung

INTRODUCTION TO IA-32. Jo, Heeseung INTRODUCTION TO IA-32 Jo, Heeseung IA-32 PROCESSORS Evolutionary design Starting in 1978 with 8086 Added more features as time goes on Still support old features, although obsolete Totally dominate computer

More information

Dr. Ramesh K. Karne Department of Computer and Information Sciences, Towson University, Towson, MD /12/2014 Slide 1

Dr. Ramesh K. Karne Department of Computer and Information Sciences, Towson University, Towson, MD /12/2014 Slide 1 Dr. Ramesh K. Karne Department of Computer and Information Sciences, Towson University, Towson, MD 21252 rkarne@towson.edu 11/12/2014 Slide 1 Intel x86 Aseembly Language Assembly Language Assembly Language

More information

Computer System Architecture

Computer System Architecture CSC 203 1.5 Computer System Architecture Department of Statistics and Computer Science University of Sri Jayewardenepura Instruction Set Architecture (ISA) Level 2 Introduction 3 Instruction Set Architecture

More information

Addressing Modes. Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack

Addressing Modes. Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack Addressing Modes Addressing Modes and Formats Nizamettin AYDIN naydin@yildiz.edu.tr http://www.yildiz.edu.tr/~naydin http://akademik.bahcesehir.edu.tr/~naydin Immediate Direct Indirect Register Register

More information

Basic Execution Environment

Basic Execution Environment Basic Execution Environment 3 CHAPTER 3 BASIC EXECUTION ENVIRONMENT This chapter describes the basic execution environment of an Intel Architecture processor as seen by assembly-language programmers.

More information

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam Assembly Language Lecture 2 - x86 Processor Architecture Ahmed Sallam Introduction to the course Outcomes of Lecture 1 Always check the course website Don t forget the deadline rule!! Motivations for studying

More information

Assembler Programming. Lecture 2

Assembler Programming. Lecture 2 Assembler Programming Lecture 2 Lecture 2 8086 family architecture. From 8086 to Pentium4. Registers, flags, memory organization. Logical, physical, effective address. Addressing modes. Processor Processor

More information

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,...

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,... COMPUTER ARCHITECTURE II: MICROPROCESSOR PROGRAMMING We can study computer architectures by starting with the basic building blocks Transistors and logic gates To build more complex circuits Adders, decoders,

More information

For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to

For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to access them. Contents at a Glance About the Author...xi

More information

Low Level Programming Lecture 2. International Faculty of Engineerig, Technical University of Łódź

Low Level Programming Lecture 2. International Faculty of Engineerig, Technical University of Łódź Low Level Programming Lecture 2 Intel processors' architecture reminder Fig. 1. IA32 Registers IA general purpose registers EAX- accumulator, usually used to store results of integer arithmetical or binary

More information

Assembly Language. Lecture 2 x86 Processor Architecture

Assembly Language. Lecture 2 x86 Processor Architecture Assembly Language Lecture 2 x86 Processor Architecture Ahmed Sallam Slides based on original lecture slides by Dr. Mahmoud Elgayyar Introduction to the course Outcomes of Lecture 1 Always check the course

More information

Hardware and Software Architecture. Chapter 2

Hardware and Software Architecture. Chapter 2 Hardware and Software Architecture Chapter 2 1 Basic Components The x86 processor communicates with main memory and I/O devices via buses Data bus for transferring data Address bus for the address of a

More information

Addressing Modes on the x86

Addressing Modes on the x86 Addressing Modes on the x86 register addressing mode mov ax, ax, mov ax, bx mov ax, cx mov ax, dx constant addressing mode mov ax, 25 mov bx, 195 mov cx, 2056 mov dx, 1000 accessing data in memory There

More information

Memory Models. Registers

Memory Models. Registers Memory Models Most machines have a single linear address space at the ISA level, extending from address 0 up to some maximum, often 2 32 1 bytes or 2 64 1 bytes. Some machines have separate address spaces

More information

The Microprocessor and its Architecture

The Microprocessor and its Architecture The Microprocessor and its Architecture Contents Internal architecture of the Microprocessor: The programmer s model, i.e. The registers model The processor model (organization) Real mode memory addressing

More information

CS 16: Assembly Language Programming for the IBM PC and Compatibles

CS 16: Assembly Language Programming for the IBM PC and Compatibles CS 16: Assembly Language Programming for the IBM PC and Compatibles Discuss the general concepts Look at IA-32 processor architecture and memory management Dive into 64-bit processors Explore the components

More information

Lecture 15 Intel Manual, Vol. 1, Chapter 3. Fri, Mar 6, Hampden-Sydney College. The x86 Architecture. Robb T. Koether. Overview of the x86

Lecture 15 Intel Manual, Vol. 1, Chapter 3. Fri, Mar 6, Hampden-Sydney College. The x86 Architecture. Robb T. Koether. Overview of the x86 Lecture 15 Intel Manual, Vol. 1, Chapter 3 Hampden-Sydney College Fri, Mar 6, 2009 Outline 1 2 Overview See the reference IA-32 Intel Software Developer s Manual Volume 1: Basic, Chapter 3. Instructions

More information

Assembly Language for x86 Processors 7 th Edition. Chapter 2: x86 Processor Architecture

Assembly Language for x86 Processors 7 th Edition. Chapter 2: x86 Processor Architecture Assembly Language for x86 Processors 7 th Edition Kip Irvine Chapter 2: x86 Processor Architecture Slides prepared by the author Revision date: 1/15/2014 (c) Pearson Education, 2015. All rights reserved.

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 5 Ch.2 A Top-Level View of Computer Function (Cont.) 24-Feb-15 1 CPU (CISC & RISC) Intel CISC, Motorola RISC CISC (Complex Instruction

More information

Machine-level Representation of Programs. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Machine-level Representation of Programs. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Machine-level Representation of Programs Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Program? 짬뽕라면 준비시간 :10 분, 조리시간 :10 분 재료라면 1개, 스프 1봉지, 오징어

More information

The x86 Architecture

The x86 Architecture The x86 Architecture Lecture 24 Intel Manual, Vol. 1, Chapter 3 Robb T. Koether Hampden-Sydney College Fri, Mar 20, 2015 Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015

More information

Computer System Architecture

Computer System Architecture CSC 203 1.5 Computer System Architecture Department of Statistics and Computer Science University of Sri Jayewardenepura Addressing 2 Addressing Subject of specifying where the operands (addresses) are

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats William Stallings Computer Organization and Architecture 8 th Edition Chapter 11 Instruction Sets: Addressing Modes and Formats Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement

More information

Load Effective Address Part I Written By: Vandad Nahavandi Pour Web-site:

Load Effective Address Part I Written By: Vandad Nahavandi Pour   Web-site: Load Effective Address Part I Written By: Vandad Nahavandi Pour Email: AlexiLaiho.cob@GMail.com Web-site: http://www.asmtrauma.com 1 Introduction One of the instructions that is well known to Assembly

More information

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017)

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017) Microprocessor and Assembly Language Week-5 System Programming, BCS 6th, IBMS (2017) High Speed Memory Registers CPU store data temporarily in these location CPU process, store and transfer data from one

More information

Lecture (02) The Microprocessor and Its Architecture By: Dr. Ahmed ElShafee

Lecture (02) The Microprocessor and Its Architecture By: Dr. Ahmed ElShafee Lecture (02) The Microprocessor and Its Architecture By: Dr. Ahmed ElShafee ١ INTERNAL MICROPROCESSOR ARCHITECTURE Before a program is written or instruction investigated, internal configuration of the

More information

Chapter 11. Instruction Sets: Addressing Modes and Formats. Yonsei University

Chapter 11. Instruction Sets: Addressing Modes and Formats. Yonsei University Chapter 11 Instruction Sets: Addressing Modes and Formats Contents Addressing Pentium and PowerPC Addressing Modes Instruction Formats Pentium and PowerPC Instruction Formats 11-2 Common Addressing Techniques

More information

6/17/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to:

6/17/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to: Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Introduction This chapter presents the microprocessor

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

Interfacing Compiler and Hardware. Computer Systems Architecture. Processor Types And Instruction Sets. What Instructions Should A Processor Offer?

Interfacing Compiler and Hardware. Computer Systems Architecture. Processor Types And Instruction Sets. What Instructions Should A Processor Offer? Interfacing Compiler and Hardware Computer Systems Architecture FORTRAN 90 program C++ program Processor Types And Sets FORTRAN 90 Compiler C++ Compiler set level Hardware 1 2 What s Should A Processor

More information

IA-32 Architecture COE 205. Computer Organization and Assembly Language. Computer Engineering Department

IA-32 Architecture COE 205. Computer Organization and Assembly Language. Computer Engineering Department IA-32 Architecture COE 205 Computer Organization and Assembly Language Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Basic Computer Organization Intel

More information

Practical Malware Analysis

Practical Malware Analysis Practical Malware Analysis Ch 4: A Crash Course in x86 Disassembly Revised 1-16-7 Basic Techniques Basic static analysis Looks at malware from the outside Basic dynamic analysis Only shows you how the

More information

Chapter 2: The Microprocessor and its Architecture

Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Introduction This chapter presents the microprocessor

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Describe the Intel family of microprocessors from 8085 to Pentium. In terms of bus size, physical memory & special

More information

Chapter 11. Addressing Modes

Chapter 11. Addressing Modes Chapter 11 Addressing Modes 1 2 Chapter 11 11 1 Register addressing mode is the most efficient addressing mode because the operands are in the processor itself (there is no need to access memory). Chapter

More information

Computer Organization (II) IA-32 Processor Architecture. Pu-Jen Cheng

Computer Organization (II) IA-32 Processor Architecture. Pu-Jen Cheng Computer Organization & Assembly Languages Computer Organization (II) IA-32 Processor Architecture Pu-Jen Cheng Materials Some materials used in this course are adapted from The slides prepared by Kip

More information

CS 31: Intro to Systems ISAs and Assembly. Martin Gagné Swarthmore College February 7, 2017

CS 31: Intro to Systems ISAs and Assembly. Martin Gagné Swarthmore College February 7, 2017 CS 31: Intro to Systems ISAs and Assembly Martin Gagné Swarthmore College February 7, 2017 ANNOUNCEMENT All labs will meet in SCI 252 (the robot lab) tomorrow. Overview How to directly interact with hardware

More information

EEM336 Microprocessors I. The Microprocessor and Its Architecture

EEM336 Microprocessors I. The Microprocessor and Its Architecture EEM336 Microprocessors I The Microprocessor and Its Architecture Introduction This chapter presents the microprocessor as a programmable device by first looking at its internal programming model and then

More information

Computer Organization CS 206 T Lec# 2: Instruction Sets

Computer Organization CS 206 T Lec# 2: Instruction Sets Computer Organization CS 206 T Lec# 2: Instruction Sets Topics What is an instruction set Elements of instruction Instruction Format Instruction types Types of operations Types of operand Addressing mode

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

X86 Addressing Modes Chapter 3" Review: Instructions to Recognize"

X86 Addressing Modes Chapter 3 Review: Instructions to Recognize X86 Addressing Modes Chapter 3" Review: Instructions to Recognize" 1 Arithmetic Instructions (1)! Two Operand Instructions" ADD Dest, Src Dest = Dest + Src SUB Dest, Src Dest = Dest - Src MUL Dest, Src

More information

Faculty of Engineering Computer Engineering Department Islamic University of Gaza Assembly Language Lab # 2 Assembly Language Fundamentals

Faculty of Engineering Computer Engineering Department Islamic University of Gaza Assembly Language Lab # 2 Assembly Language Fundamentals Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2011 Assembly Language Lab # 2 Assembly Language Fundamentals Assembly Language Lab # 2 Assembly Language Fundamentals

More information

Computer Architecture 1 ح 303

Computer Architecture 1 ح 303 Lecture 4 A. Addressing MODES 1. Introduction to assembly language programming: Program is a sequence of commands used to tell a microcomputer what to do. Each command in a program is an instruction Programs

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) UNIT I THE 8086 MICROPROCESSOR PART A (2 MARKS) 1. What are the functional

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

Machine and Assembly Language Principles

Machine and Assembly Language Principles Machine and Assembly Language Principles Assembly language instruction is synonymous with a machine instruction. Therefore, need to understand machine instructions and on what they operate - the architecture.

More information

Assembly Language Programming Introduction

Assembly Language Programming Introduction Assembly Language Programming Introduction October 10, 2017 Motto: R7 is used by the processor as its program counter (PC). It is recommended that R7 not be used as a stack pointer. Source: PDP-11 04/34/45/55

More information

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313)

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 02/06/2018 Section 1 Weighting 40% of

More information

Moodle WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics

Moodle WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics Moodle 4 WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics Advanced Microprocessors and Introduction to Microcontroller Moodle developed By Dr. S. R. Kumbhar Department of Electronics Willingdon

More information

Instruction Sets: Characteristics and Functions Addressing Modes

Instruction Sets: Characteristics and Functions Addressing Modes Instruction Sets: Characteristics and Functions Addressing Modes Chapters 10 and 11, William Stallings Computer Organization and Architecture 7 th Edition What is an Instruction Set? The complete collection

More information

SYSC3601 Microprocessor Systems. Unit 2: The Intel 8086 Architecture and Programming Model

SYSC3601 Microprocessor Systems. Unit 2: The Intel 8086 Architecture and Programming Model SYSC3601 Microprocessor Systems Unit 2: The Intel 8086 Architecture and Programming Model Topics/Reading SYSC3601 2 Microprocessor Systems 1. Registers and internal architecture (Ch 2) 2. Address generation

More information

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU)

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU) Part 2 Computer Processors Processors The Brains of the Box Computer Processors Components of a Processor The Central Processing Unit (CPU) is the most complex part of a computer In fact, it is the computer

More information

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture. Chapter Overview.

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture. Chapter Overview. Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 2: IA-32 Processor Architecture Slides prepared by Kip R. Irvine Revision date: 09/25/2002 Chapter corrections (Web) Printing

More information

IA32 Intel 32-bit Architecture

IA32 Intel 32-bit Architecture 1 2 IA32 Intel 32-bit Architecture Intel 32-bit Architecture (IA32) 32-bit machine CISC: 32-bit internal and external data bus 32-bit external address bus 8086 general registers extended to 32 bit width

More information

Chapter 2. lw $s1,100($s2) $s1 = Memory[$s2+100] sw $s1,100($s2) Memory[$s2+100] = $s1

Chapter 2. lw $s1,100($s2) $s1 = Memory[$s2+100] sw $s1,100($s2) Memory[$s2+100] = $s1 Chapter 2 1 MIPS Instructions Instruction Meaning add $s1,$s2,$s3 $s1 = $s2 + $s3 sub $s1,$s2,$s3 $s1 = $s2 $s3 addi $s1,$s2,4 $s1 = $s2 + 4 ori $s1,$s2,4 $s2 = $s2 4 lw $s1,100($s2) $s1 = Memory[$s2+100]

More information

Chapter 2 Instruction Set Architecture

Chapter 2 Instruction Set Architecture Chapter 2 Instruction Set Architecture Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering

More information

Assembly Language for Intel-Based Computers, 4 th Edition. Kip R. Irvine. Chapter 2: IA-32 Processor Architecture

Assembly Language for Intel-Based Computers, 4 th Edition. Kip R. Irvine. Chapter 2: IA-32 Processor Architecture Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 2: IA-32 Processor Architecture Chapter Overview General Concepts IA-32 Processor Architecture IA-32 Memory Management Components

More information

UMBC. A register, an immediate or a memory address holding the values on. Stores a symbolic name for the memory location that it represents.

UMBC. A register, an immediate or a memory address holding the values on. Stores a symbolic name for the memory location that it represents. Intel Assembly Format of an assembly instruction: LABEL OPCODE OPERANDS COMMENT DATA1 db 00001000b ;Define DATA1 as decimal 8 START: mov eax, ebx ;Copy ebx to eax LABEL: Stores a symbolic name for the

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College February 9, 2016 Reading Quiz Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College September 25, 2018 Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between programmer

More information

Internal architecture of 8086

Internal architecture of 8086 Case Study: Intel Processors Internal architecture of 8086 Slide 1 Case Study: Intel Processors FEATURES OF 8086 It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 220 memory locations (1

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-11: 80x86 Architecture

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-11: 80x86 Architecture ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-11: 80x86 Architecture 1 The 80x86 architecture processors popular since its application in IBM PC (personal computer). 2 First Four generations

More information

Advanced Microprocessors

Advanced Microprocessors Advanced Microprocessors Notes #2 Software Architecture & Instruction Set Architecture Part 1 EE 467/567 Winter 2012 by Avinash Kodi SWA.1 Background Materials Textbook: 2.1, 2.2, 3.1 Other: IA-32 Intel

More information

History of the Intel 80x86

History of the Intel 80x86 Intel s IA-32 Architecture Cptr280 Dr Curtis Nelson History of the Intel 80x86 1971 - Intel invents the microprocessor, the 4004 1975-8080 introduced 8-bit microprocessor 1978-8086 introduced 16 bit microprocessor

More information

x86 architecture et similia

x86 architecture et similia x86 architecture et similia 1 FREELY INSPIRED FROM CLASS 6.828, MIT A full PC has: PC architecture 2 an x86 CPU with registers, execution unit, and memory management CPU chip pins include address and data

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

icroprocessor istory of Microprocessor ntel 8086:

icroprocessor istory of Microprocessor ntel 8086: Microprocessor A microprocessor is an electronic device which computes on the given input similar to CPU of a computer. It is made by fabricating millions (or billions) of transistors on a single chip.

More information

An Introduction to x86 ASM

An Introduction to x86 ASM An Introduction to x86 ASM Malware Analysis Seminar Meeting 1 Cody Cutler, Anton Burtsev Registers General purpose EAX, EBX, ECX, EDX ESI, EDI (index registers, but used as general in 32-bit protected

More information

Assembly Language Each statement in an assembly language program consists of four parts or fields.

Assembly Language Each statement in an assembly language program consists of four parts or fields. Chapter 3: Addressing Modes Assembly Language Each statement in an assembly language program consists of four parts or fields. The leftmost field is called the label. - used to identify the name of a memory

More information

CSC 2400: Computer Systems. Towards the Hardware: Machine-Level Representation of Programs

CSC 2400: Computer Systems. Towards the Hardware: Machine-Level Representation of Programs CSC 2400: Computer Systems Towards the Hardware: Machine-Level Representation of Programs Towards the Hardware High-level language (Java) High-level language (C) assembly language machine language (IA-32)

More information

Chapter Three Addressing Mode MOV AX, BX

Chapter Three Addressing Mode MOV AX, BX Chapter Three The 8086 The 8086 When the 8086 executes an instruction, it performs the specified function on data. The data are called its operands and may be part of the instruction reside in one of the

More information

CMSC Lecture 03. UMBC, CMSC313, Richard Chang

CMSC Lecture 03. UMBC, CMSC313, Richard Chang CMSC Lecture 03 Moore s Law Evolution of the Pentium Chip IA-32 Basic Execution Environment IA-32 General Purpose Registers Hello World in Linux Assembly Language Addressing Modes UMBC, CMSC313, Richard

More information

Scott M. Lewandowski CS295-2: Advanced Topics in Debugging September 21, 1998

Scott M. Lewandowski CS295-2: Advanced Topics in Debugging September 21, 1998 Scott M. Lewandowski CS295-2: Advanced Topics in Debugging September 21, 1998 Assembler Syntax Everything looks like this: label: instruction dest,src instruction label Comments: comment $ This is a comment

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 3 The Microprocessor and its Architecture Dr Hashim Ali Fall - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides

More information

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers.

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers. Lecture 5: Computer Organization Instruction Execution Computer Organization Addressing Buses Fetch-Execute Cycle Computer Organization CPU Control Unit U Input Output Memory Components Control Unit fetches

More information

INTRODUCTION TO MICROPROCESSORS

INTRODUCTION TO MICROPROCESSORS INTRODUCTION TO MICROPROCESSORS Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu January 7, 2016 Richa Upadhyay Prabhu (MPSTME) INTRODUCTION January 7, 2016 1 / 63 Course Design Prerequisite:

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - Von Neumann Architecture 2 Two lessons Summary of the traditional computer architecture Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

UMBC. contain new IP while 4th and 5th bytes contain CS. CALL BX and CALL [BX] versions also exist. contain displacement added to IP.

UMBC. contain new IP while 4th and 5th bytes contain CS. CALL BX and CALL [BX] versions also exist. contain displacement added to IP. Procedures: CALL: Pushes the address of the instruction following the CALL instruction onto the stack. RET: Pops the address. SUM PROC NEAR USES BX CX DX ADD AX, BX ADD AX, CX MOV AX, DX RET SUM ENDP NEAR

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

Processes and Tasks What comprises the state of a running program (a process or task)?

Processes and Tasks What comprises the state of a running program (a process or task)? Processes and Tasks What comprises the state of a running program (a process or task)? Microprocessor Address bus Control DRAM OS code and data special caches code/data cache EAXEBP EIP DS EBXESP EFlags

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information

MODE (mod) FIELD CODES. mod MEMORY MODE: 8-BIT DISPLACEMENT MEMORY MODE: 16- OR 32- BIT DISPLACEMENT REGISTER MODE

MODE (mod) FIELD CODES. mod MEMORY MODE: 8-BIT DISPLACEMENT MEMORY MODE: 16- OR 32- BIT DISPLACEMENT REGISTER MODE EXERCISE 9. Determine the mod bits from Figure 7-24 and write them in Table 7-7. MODE (mod) FIELD CODES mod 00 01 10 DESCRIPTION MEMORY MODE: NO DISPLACEMENT FOLLOWS MEMORY MODE: 8-BIT DISPLACEMENT MEMORY

More information

Real instruction set architectures. Part 2: a representative sample

Real instruction set architectures. Part 2: a representative sample Real instruction set architectures Part 2: a representative sample Some historical architectures VAX: Digital s line of midsize computers, dominant in academia in the 70s and 80s Characteristics: Variable-length

More information

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit 1 1. introduction The internal function of 8086 processor are partitioned logically into processing units,bus Interface Unit(BIU)

More information

CNIT 127: Exploit Development. Ch 1: Before you begin. Updated

CNIT 127: Exploit Development. Ch 1: Before you begin. Updated CNIT 127: Exploit Development Ch 1: Before you begin Updated 1-14-16 Basic Concepts Vulnerability A flaw in a system that allows an attacker to do something the designer did not intend, such as Denial

More information

Instruction Set Principles. (Appendix B)

Instruction Set Principles. (Appendix B) Instruction Set Principles (Appendix B) Outline Introduction Classification of Instruction Set Architectures Addressing Modes Instruction Set Operations Type & Size of Operands Instruction Set Encoding

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 03, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 03, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 03, SPRING 2013 TOPICS TODAY Moore s Law Evolution of Intel CPUs IA-32 Basic Execution Environment IA-32 General Purpose Registers

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

x86 Assembly Tutorial COS 318: Fall 2017

x86 Assembly Tutorial COS 318: Fall 2017 x86 Assembly Tutorial COS 318: Fall 2017 Project 1 Schedule Design Review: Monday 9/25 Sign up for 10-min slot from 3:00pm to 7:00pm Complete set up and answer posted questions (Official) Precept: Monday

More information

EECE416 :Microcomputer Fundamentals and Design. X86 Assembly Programming Part 1. Dr. Charles Kim

EECE416 :Microcomputer Fundamentals and Design. X86 Assembly Programming Part 1. Dr. Charles Kim EECE416 :Microcomputer Fundamentals and Design X86 Assembly Programming Part 1 Dr. Charles Kim Department of Electrical and Computer Engineering Howard University www.mwftr.com 1 Multiple Address Access

More information

iapx Systems Electronic Computers M

iapx Systems Electronic Computers M iapx Systems Electronic Computers M 1 iapx History We analyze 32 bit systems: generalization to 64 bits is straigtforward Segment Registers (16 bits) Code Segment Stack Segment Data Segment Extra Ssegment

More information

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature CSE2421 FINAL EXAM SPRING 2013 Name KEY Instructions: This is a closed-book, closed-notes, closed-neighbor exam. Only a writing utensil is needed for this exam. No calculators allowed. If you need to go

More information

UNIT- 5. Chapter 12 Processor Structure and Function

UNIT- 5. Chapter 12 Processor Structure and Function UNIT- 5 Chapter 12 Processor Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data CPU With Systems Bus CPU Internal Structure Registers

More information