General purpose registers These are memory units within the CPU designed to hold temporary data.

Size: px
Start display at page:

Download "General purpose registers These are memory units within the CPU designed to hold temporary data."

Transcription

1 Von Neumann Architecture Single processor is used Each instruction in a program follows a linear sequence of fetch decode execute cycle Program and data are held in same main memory Stored program Concept Both the instructions (program) and the data on which the instructions were to be carried out are held in a single storage (main memory). Registers Registers are storage unit that operate at very high speed. General purpose Vs Special purpose registers Special Purpose Registers These registers have specific control and data handling task to carry out. They are designed to carry out a specific role and each of them are given a name. General purpose registers These are memory units within the CPU designed to hold temporary data. Few special purposes registers are Program Counter It stores address of next instruction to be fetched. It is normal for the value in PC to be incremented every time an instruction is accessed. Memory Data Register It stores contents fetched from memory and data needs to be loaded in memory. Memory Address Register It stores address of the data in memory to be fetched/stored. CIR(Current Instruction Register) It holds the instruction that is about to be executed. Index Register: It is used for modifying operand addresses during the run of a program. Status Register: It is processor circuit, without address, that contains information about the state of the processor. A status register can be set, equal to the number 1, or cleared, equal to the number 0. ALU (arithmetic Logic Unit) It is circuit that performs arithmetic calculations & logical operations. Control unit (CU): It fetches instructions from memory, decodes them and synchronizes the operations before sending signals to other ports of the computer using control bus.

2 System Clock: A clock tick is the smallest unit of time in which processing happens, and is sometimes called a cycle. It is measured in MHz or millions of cycles per second. BUS A bus is a group of wires in parallel that acts as an electrical pathway along which data can travel. Different types of bus are: Data bus: It is used to carry data. It is bi directional. It ahs MDR at one end can travel data to from processor. Address bus: It sends address values in only one direction (from processor to memory) Control Bus: It send control signal from control unit to other components. Separate wire is dedicated to particular control signal. E.g: Read/write operation Reset button pressed Bus width & clock speed as factors of the computer system: Bus Width: The size of bus( number of wires making up a bus), known as its width is important because it determines how much data can be transmitted at one time. For e.g:, a 16 bit bus can transmit 16 bit sof data, whereas a 32 bit bus can transmit 32 bits of data. Suppose our processor can understand 32 bit word at a time bus the bus sending words from memory to processor is only 8 bits wide. Then it would involve 4 chunks of data to be sent along the data bus before a processor will have complete word for execution. Clock Speed: It refers to thenumber of ycles that are performed by the CPU per second. With a faster clock speed the processor would be forced to perform more instructions per second. e.g: A clock speed of 800MHz is twice as fast as a clock speed of 400MHz. Port A port serves as an interface between the computer and other computers or peripheral devices. On physical layer computer port is specialized outlet on a piece of equipment to which a plug or cable connect. Electrically, it provides a method to transfer signals between devices. e.g: to connect monitor, webcam, speakers, etc The fetch execute cycle The following is an algorithm that shows the steps in the cycle. At the end, the cycle is reset and the algorithm repeated. 1. Load the address that is in the program counter (PC) into the memory address register (MAR). 2. Increment the PC by Load the instruction that is in the memory address given by the MAR into the memory data register (MDR). 4. Load the instruction that is now in the MDR into the current instruction register (CIR).

3 5. Decode the instruction that is in the CIR. 6. If the instruction is a jump instruction then a. Load the address part of the instruction into the PC b. Reset by going to step Execute the instruction. 8. Reset by going to step 1. Steps 1 to 4 are the fetch part of the cycle. Steps 5 are decode part of the cycle. Steps 6(a) and 7 are the execute part of the cycle and steps 6b and 8 are the reset part. Fetch cycle: Step 1 simply places the address of the next instruction into the memory address register so that the control unit can fetch the instruction from the right part of the memory. The program counter is then incremented by 1 so that it contains the address of the next instruction, assuming that the instructions are in consecutive locations. Now the content of address in MAR is copied from memory into the MDR and is then copied into the current instruction register. Decode Cycle: Now that the instruction has been fetched the control unit can decode it and decide what has to be done on the basis of opcode and operand part. Execute Cycle: This is the execute part of the cycle. If it is an arithmetic instruction, this can be executed and the cycle restarted as the PC contains the address of the next instruction in order. However, if the instruction involves jumping to an instruction that is not the next one in order, the PC has to be loaded with the address of the instruction that is to be executed next. This address is in the address part of the current instruction, hence the address part is loaded into the PC before the cycle is reset and starts all over again. Register Transfer notation It is formal means of describing machine structure & function. It Can be used to describe what a machine does without describing how the machine does it. The operations executed on data stored in registers are called microoperations. A microoperation is an elementary operation performed on the information stored in one or more registers The symbolic notation used to represent microoperation is called a register transfer Notation Few basic and simple conventions for Register Transfer Notation are as follows: Register names (ACC, PC, MAR, MDR) or R1,R2..Rn are used to represent the registers. [ ] represents contents of. Memory is represented as the array M. M[100] represents memory location 100. The assignment operator moves a value from the location on the right hand side to the location on the left hand side. e.g: R2 R1 Information transfer from one register to another P:R2 R1 where P is a control function that can be either 0 or 1 Register transfer Notation for fetch decode execute cycle

4 1. MAR [PC] load contents of PC in MAR 2. PC [PC] + 1 increment value of PC 3. MBR [[MAR]] or MBR M[MAR] load contents of address in MAR in MBR 4. CIR [MBR] load contents of MBR in CIR 5. DECODE 6. EXECUTE 7. RESET Goto Step 1 Describe how interrupts are handled Definition: Interrupts are signals generated by hardware or software to get the processor s attention. The processor processes program instructions stored in the memory. It fetches instructions one after the other and executes them. If a problem occurs (anywhere in the system) while the processor is busy processing, the processor must respond to the problem as soon as possible in order to avoid damage to data and/or hardware. This requires the processor to stop whatever it is doing and give its attention to the problem. The device (hardware) or software, where the problem has occurred generates a signal, called an interrupt to get processor s attention. There are several methods of servicing Interrupts. One method is to store an interrupt in a queue as it is generated. The queue is then processed in FIFO (First In, First Out) order. Priority is not important in this method. Another method is to have queues of different priorities and store each interrupt according to its priority in the related queue. The interrupts in the high priority queue are given more importance and are serviced first. The processor services or attends to the interrupts in the following manner: The processor stops the execution of the program and attends to the interrupt in the following manner: The processor finishes executing the current instruction. The processor saves the contents of the special registers that hold vital information about the program being executed. The processor then checks the Interrupt Queue to see which interrupt is there and attempts to service the interrupt. If there are more than one interrupts in the queue, they are serviced in order of their priority. After the interrupt queue is empty, the processor reloads the saved contents of the special registers and continues the execution of the program from where it was interrupted.

5 1.4.3 The processor s instruction set show understanding that the set of instructions are grouped into instructions for: 200 IN 201 ADD CMP JAE JB OUT IN is input instruction that stores input character into accumulator ADD 206 This instruction performs arithmetic operation. It adds data in address 206 with data in accumulator. While execution, since operand part is address, it is copied in MAR. Contents of address 206, i.e. 25, is copied to MBR and finally added with contents of accumulator. CMP #50 This instruction is compare instruction. It compares contents of accumulator with number 50 JAE 210 It is conditional jump instruction. Its meaning is to goto address 210 if above condition is above or equals to 50

6 JB 220 It is conditional jump instruction. Its meaning is to goto address 220 if above condition is below 50. modes of addressing: immediate, direct, indirect, indexed, relative Immediate addressing There is no address as such involved. The operand is an actual number. Consider the assembly language instruction: LDM #35 This instruction means to load actual value 35 to accumulator. Hash symbol is used to clarify that this is an immediate value although this is already clear from the LDM mnemonic. Direct addressing Operand part of instruction is not immediate value, but it is address. e.g: LDD 158 This instruction means copy contents of memory address 158 to the accumulator. Indirect Addressing With this type of addressing, the address of the data in memory is held in another memory location, and the operand of the instruction holds the address of this memory location. It means that the address to be used is at the given address. E.g: LDI 158 This instruction means goto address 158, the contents of address 155 is forwarding address, now finally goto this forwarding address and load contents of it in accumulator. Indexed addressing: This assumes that the processor has a special purpose register called the Index Register (IR). Here address to be accessed in memory is calculated by adding operand address of instruction with address held in index register. Relative addressing This type of addressing is often used in branch instructions to specify where the next instruction is located relative to the instruction whose address is held in the PC. e.g: LDR +95 This instruction means copy contents of the memory address 95 locations further on from the location containing this instruction. Workout value of accumulator from the following diagram as per the instructions in the questions followed. a) LDD 101 b) LDI 101 c) LDX 101, where IR is

7 d) LDR +5, if previous instruction was as in c).

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system.

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. CPU ARCHITECTURE QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. ANSWER 1 Data Bus Width the width of the data bus determines the number

More information

AS/A Level Computing Syllabus 2011

AS/A Level Computing Syllabus 2011 AS/A Level Computing Syllabus 2011 Section 3 - System Software Mechanisms - - Machine Architecture - - Database Theory - - Programming Paradigms - Chapter 3.3 Computer Architectures & Fetch-Execute Cycle

More information

Outcomes. Lecture 13 - Introduction to the Central Processing Unit (CPU) Central Processing UNIT (CPU) or Processor

Outcomes. Lecture 13 - Introduction to the Central Processing Unit (CPU) Central Processing UNIT (CPU) or Processor Lecture 13 - Introduction to the Central Processing Unit (CPU) Outcomes What is a CPU? How are instructions prepared by the CPU before execution? What registers and operations are involved in this preparation

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atananasoff in 1939?) Hard-wired program

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 16 Control Unit Operations Rev. 3.2 (2009-10) by Enrico Nardelli 16-1 Execution of the Instruction Cycle It has many elementary phases,

More information

Introduction to Computer Engineering. CS/ECE 252 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin Madison Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - Von Neumann Architecture 2 Two lessons Summary of the traditional computer architecture Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

Computer Architecture 2/26/01 Lecture #

Computer Architecture 2/26/01 Lecture # Computer Architecture 2/26/01 Lecture #9 16.070 On a previous lecture, we discussed the software development process and in particular, the development of a software architecture Recall the output of the

More information

Chapter 4. MARIE: An Introduction to a Simple Computer. Chapter 4 Objectives. 4.1 Introduction. 4.2 CPU Basics

Chapter 4. MARIE: An Introduction to a Simple Computer. Chapter 4 Objectives. 4.1 Introduction. 4.2 CPU Basics Chapter 4 Objectives Learn the components common to every modern computer system. Chapter 4 MARIE: An Introduction to a Simple Computer Be able to explain how each component contributes to program execution.

More information

COMARCH. COMPUTER ARCHITECTURE TERM 3 SY COMPUTER ENGINEERING DE LA SALLE UNIVERSITY Quiz 1

COMARCH. COMPUTER ARCHITECTURE TERM 3 SY COMPUTER ENGINEERING DE LA SALLE UNIVERSITY Quiz 1 COMARCH. COMPUTER ARCHITECTURE TERM 3 SY 2015 2016 COMPUTER ENGINEERING DE LA SALLE UNIVERSITY Quiz 1 1. Draw the logic symbol of the component whose operations are specified by the following microoperations:

More information

Micro-Operations. execution of a sequence of steps, i.e., cycles

Micro-Operations. execution of a sequence of steps, i.e., cycles Micro-Operations Instruction execution execution of a sequence of steps, i.e., cycles Fetch, Indirect, Execute & Interrupt cycles Cycle - a sequence of micro-operations Micro-operations data transfer between

More information

Memory General R0 Registers R1 R2. Input Register 1. Input Register 2. Program Counter. Instruction Register

Memory General R0 Registers R1 R2. Input Register 1. Input Register 2. Program Counter. Instruction Register CPU Organisation Central Processing Unit (CPU) Memory General R0 Registers R1 R2 ALU R3 Output Register Input Register 1 Input Register 2 Internal Bus Address Bus Data Bus Addr. $ 000 001 002 Program Counter

More information

FACTFILE: GCE DIGITAL TECHNOLOGY

FACTFILE: GCE DIGITAL TECHNOLOGY FACTFILE: GCE DIGITAL TECHNOLOGY AS2: FUNDAMENTALS OF DIGITAL TECHNOLOGY Hardware and Software Architecture 1 Learning Outcomes Students should be able to: describe the internal components of a computer

More information

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit Lecture1: introduction Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit 1 1. History overview Computer systems have conventionally

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers Chapter 4 The Von Neumann Model Original slides from Gregory Byrd, North Carolina State University Modified slides by C. Wilcox, S. Rajopadhye, Colorado State University Computing Layers Problems Algorithms

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 11 CPU Structure and Function Rev. 3.2.1 (2005-06) by Enrico Nardelli 11-1 CPU Functions CPU must: Fetch instructions Decode instructions

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atanasoff in 1939?) Hard-wired program --

More information

CPU Structure and Function

CPU Structure and Function CPU Structure and Function Chapter 12 Lesson 17 Slide 1/36 Processor Organization CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data Lesson 17 Slide 2/36 CPU With Systems

More information

Computer Architecture and Organization (CS-507)

Computer Architecture and Organization (CS-507) Computer Architecture and Organization (CS-507) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 4 Basic Computer Function, Instruction

More information

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS UNIT I INTRODUCTION TO 8085 8085 Microprocessor - Architecture and its operation, Concept of instruction execution and timing diagrams, fundamentals of

More information

Computer Organization II CMSC 3833 Lecture 33

Computer Organization II CMSC 3833 Lecture 33 Term MARIE Definition Machine Architecture that is Really Intuitive and Easy 4.8.1 The Architecture Figure s Architecture Characteristics: Binary, two s complement Stored program, fixed word length Word

More information

Blog -

Blog - . Instruction Codes Every different processor type has its own design (different registers, buses, microoperations, machine instructions, etc) Modern processor is a very complex device It contains Many

More information

ECE 375 Computer Organization and Assembly Language Programming Winter 2018 Solution Set #2

ECE 375 Computer Organization and Assembly Language Programming Winter 2018 Solution Set #2 ECE 375 Computer Organization and Assembly Language Programming Winter 2018 Set #2 1- Consider the internal structure of the pseudo-cpu discussed in class augmented with a single-port register file (i.e.,

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atanasoff in 1939?) Hard-wired program --

More information

CPU Structure and Function. Chapter 12, William Stallings Computer Organization and Architecture 7 th Edition

CPU Structure and Function. Chapter 12, William Stallings Computer Organization and Architecture 7 th Edition CPU Structure and Function Chapter 12, William Stallings Computer Organization and Architecture 7 th Edition CPU must: CPU Function Fetch instructions Interpret/decode instructions Fetch data Process data

More information

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR.

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR. CS 320 Ch. 20 The Control Unit Instructions are broken down into fetch, indirect, execute, and interrupt cycles. Each of these cycles, in turn, can be broken down into microoperations where a microoperation

More information

Department of Computer and Mathematical Sciences. Lab 4: Introduction to MARIE

Department of Computer and Mathematical Sciences. Lab 4: Introduction to MARIE Department of Computer and Mathematical Sciences CS 3401 Assembly Language 4 Lab 4: Introduction to MARIE Objectives: The main objective of this lab is to get you familiarized with MARIE a simple computer

More information

THE MICROPROCESSOR Von Neumann s Architecture Model

THE MICROPROCESSOR Von Neumann s Architecture Model THE ICROPROCESSOR Von Neumann s Architecture odel Input/Output unit Provides instructions and data emory unit Stores both instructions and data Arithmetic and logic unit Processes everything Control unit

More information

Register Are Two Names For The Same Place

Register Are Two Names For The Same Place The Program Counter And The Instruction Register Are Two Names For The Same Place Hi I am wondering where the program counter goes when the program The interrupt will take place after the current iteration

More information

1. Fundamental Concepts

1. Fundamental Concepts 1. Fundamental Concepts 1.1 What is a computer? A computer is a data processing machine which is operated automatically under the control of a list of instructions (called a program) stored in its main

More information

CPU Structure and Function

CPU Structure and Function Computer Architecture Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com http://www.yildiz.edu.tr/~naydin CPU Structure and Function 1 2 CPU Structure Registers

More information

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2 Class Notes CS400 Part VI Dr.C.N.Zhang Department of Computer Science University of Regina Regina, SK, Canada, S4S 0A2 C. N. Zhang, CS400 83 VI. CENTRAL PROCESSING UNIT 1 Set 1.1 Addressing Modes and Formats

More information

Systems Architecture

Systems Architecture Systems Architecture Friday, 27 April 2018 Systems Architecture Today s Objectives: 1. To be able to explain the purposes and uses of embedded systems. 2. To be able to describe how the CPU executes instructions

More information

William Stallings Computer Organization and Architecture. Chapter 11 CPU Structure and Function

William Stallings Computer Organization and Architecture. Chapter 11 CPU Structure and Function William Stallings Computer Organization and Architecture Chapter 11 CPU Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data Registers

More information

Module 5 - CPU Design

Module 5 - CPU Design Module 5 - CPU Design Lecture 1 - Introduction to CPU The operation or task that must perform by CPU is: Fetch Instruction: The CPU reads an instruction from memory. Interpret Instruction: The instruction

More information

The MARIE Architecture

The MARIE Architecture The MARIE Machine Architecture that is Really Intuitive and Easy. We now define the ISA (Instruction Set Architecture) of the MARIE. This forms the functional specifications for the CPU. Basic specifications

More information

SCRAM Introduction. Philipp Koehn. 19 February 2018

SCRAM Introduction. Philipp Koehn. 19 February 2018 SCRAM Introduction Philipp Koehn 19 February 2018 This eek 1 Fully work through a computer circuit assembly code Simple but Complete Random Access Machine (SCRAM) every instruction is 8 bit 4 bit for op-code:

More information

Programming Level A.R. Hurson Department of Computer Science Missouri University of Science & Technology Rolla, Missouri

Programming Level A.R. Hurson Department of Computer Science Missouri University of Science & Technology Rolla, Missouri Programming Level A.R. Hurson Department of Computer Science Missouri University of Science & Technology Rolla, Missouri 65409 hurson@mst.edu A.R. Hurson 1 Programming Level Computer: A computer with a

More information

What Are The Main Differences Between Program Counter Pc And Instruction Register Ir

What Are The Main Differences Between Program Counter Pc And Instruction Register Ir What Are The Main Differences Between Program Counter Pc And Instruction Register Ir and register-based instructions - Anatomy on a CPU - Program Counter (PC): holds memory address of next instruction

More information

Register Transfer and Micro-operations

Register Transfer and Micro-operations Register Transfer Language Register Transfer Bus Memory Transfer Micro-operations Some Application of Logic Micro Operations Register Transfer and Micro-operations Learning Objectives After reading this

More information

Computers and Microprocessors. Lecture 34 PHYS3360/AEP3630

Computers and Microprocessors. Lecture 34 PHYS3360/AEP3630 Computers and Microprocessors Lecture 34 PHYS3360/AEP3630 1 Contents Computer architecture / experiment control Microprocessor organization Basic computer components Memory modes for x86 series of microprocessors

More information

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital hardware modules that accomplish a specific information-processing task. Digital systems vary in

More information

Chapter 5. Computer Architecture Organization and Design. Computer System Architecture Database Lab, SANGJI University

Chapter 5. Computer Architecture Organization and Design. Computer System Architecture Database Lab, SANGJI University Chapter 5. Computer Architecture Organization and Design Computer System Architecture Database Lab, SANGJI University Computer Architecture Organization and Design Instruction Codes Computer Registers

More information

STRUCTURE OF DESKTOP COMPUTERS

STRUCTURE OF DESKTOP COMPUTERS Page no: 1 UNIT 1 STRUCTURE OF DESKTOP COMPUTERS The desktop computers are the computers which are usually found on a home or office desk. They consist of processing unit, storage unit, visual display

More information

session 7. Datapath Design

session 7. Datapath Design General Objective: Determine the hardware requirement of a digital computer based on its instruction set. Specific Objectives: Describe the general concepts in designing the data path of a digital computer

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information

ASSIGNMENT ECE514 (COMPUTER ORGANIZATION) ASSIGNMENT NO. 3

ASSIGNMENT ECE514 (COMPUTER ORGANIZATION) ASSIGNMENT NO. 3 ASSIGNMENT ECE514 (COMPUTER ORGANIZATION) ASSIGNMENT NO. 3 This is an individual assignment for ECE514. It carries a mark of 10%. The rubric of marks is given in Appendix 3. This assignment is about designing

More information

Chapter 16. Control Unit Operation. Yonsei University

Chapter 16. Control Unit Operation. Yonsei University Chapter 16 Control Unit Operation Contents Micro-Operation Control of the Processor Hardwired Implementation 16-2 Micro-Operations Micro-Operations Micro refers to the fact that each step is very simple

More information

The Stored Program Computer

The Stored Program Computer The Stored Program Computer 1 1945: John von Neumann Wrote a report on the stored program concept, known as the First Draft of a Report on EDVAC also Alan Turing Konrad Zuse Eckert & Mauchly The basic

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *1424651924* COMPUTER SCIENCE 9608/13 Paper 1 Theory Fundamentals May/June 2015 1 hour 30 minutes Candidates

More information

CC312: Computer Organization

CC312: Computer Organization CC312: Computer Organization Dr. Ahmed Abou EL-Farag Dr. Marwa El-Shenawy 1 Chapter 4 MARIE: An Introduction to a Simple Computer Chapter 4 Objectives Learn the components common to every modern computer

More information

A3 Computer Architecture

A3 Computer Architecture A3 Computer Architecture Engineering Science 3rd year A3 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/3co Michaelmas 2000 1 / 1 2: Introduction to the CPU 3A3 Michaelmas

More information

Introduction to CPU architecture using the M6800 microprocessor

Introduction to CPU architecture using the M6800 microprocessor Introduction to CPU architecture using the M6800 microprocessor Basics Programs are written in binary object codes which could be understood (after the decoding process) by the designated target CPU. The

More information

Top-Level View of Computer Organization

Top-Level View of Computer Organization Top-Level View of Computer Organization Bởi: Hoang Lan Nguyen Computer Component Contemporary computer designs are based on concepts developed by John von Neumann at the Institute for Advanced Studies

More information

The von Neumann Architecture. IT 3123 Hardware and Software Concepts. The Instruction Cycle. Registers. LMC Executes a Store.

The von Neumann Architecture. IT 3123 Hardware and Software Concepts. The Instruction Cycle. Registers. LMC Executes a Store. IT 3123 Hardware and Software Concepts February 11 and Memory II Copyright 2005 by Bob Brown The von Neumann Architecture 00 01 02 03 PC IR Control Unit Command Memory ALU 96 97 98 99 Notice: This session

More information

N.B. These pastpapers may rely on the knowledge gained from the previous chapters.

N.B. These pastpapers may rely on the knowledge gained from the previous chapters. N.B. These pastpapers may rely on the knowledge gained from the previous chapters. 1 SEC 94-PAPER 1-Q3B Briefly explain the purpose of the PROGRAM COUNTER 2 SEC 94-PAPER 2A-Q4 (a) Why is a 16-bit 60 MHz

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

CHAPTER SIX BASIC COMPUTER ORGANIZATION AND DESIGN

CHAPTER SIX BASIC COMPUTER ORGANIZATION AND DESIGN CHAPTER SIX BASIC COMPUTER ORGANIZATION AND DESIGN 6.1. Instruction Codes The organization of a digital computer defined by: 1. The set of registers it contains and their function. 2. The set of instructions

More information

LC-3 Architecture. (Ch4 ish material)

LC-3 Architecture. (Ch4 ish material) LC-3 Architecture (Ch4 ish material) 1 CISC vs. RISC CISC : Complex Instruction Set Computer Lots of instructions of variable size, very memory optimal, typically less registers. RISC : Reduced Instruction

More information

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions Chapter 05: Basic Processing Units Control Unit Design Lesson 15: Microinstructions 1 Objective Understand that an instruction implement by sequences of control signals generated by microinstructions in

More information

Basics of Microprocessor

Basics of Microprocessor Unit 1 Basics of Microprocessor 1. Microprocessor Microprocessor is a multipurpose programmable integrated device that has computing and decision making capability. This semiconductor IC is manufactured

More information

For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to

For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to access them. Contents at a Glance About the Author...xi

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

Part A Questions 1. What is an ISP? ISP stands for Instruction Set Processor. This unit is simply called as processor which executes machine instruction and coordinates the activities of other units..

More information

Computer Organization (Autonomous)

Computer Organization (Autonomous) Computer Organization (Autonomous) UNIT II Sections - A & D Prepared by Anil Kumar Prathipati, Asst. Prof., Dept. of CSE. SYLLABUS Basic Computer Organization and Design: Instruction codes Stored Program

More information

Running Applications

Running Applications Running Applications Computer Hardware Central Processing Unit (CPU) CPU PC IR MAR MBR I/O AR I/O BR To exchange data with memory Brain of Computer, controls everything Few registers PC (Program Counter):

More information

Introduction to Computers - Chapter 4

Introduction to Computers - Chapter 4 Introduction to Computers - Chapter 4 Since the invention of the transistor and the first digital computer of the 1940s, computers have been increasing in complexity and performance; however, their overall

More information

UNIT:2 BASIC COMPUTER ORGANIZATION AND DESIGN

UNIT:2 BASIC COMPUTER ORGANIZATION AND DESIGN 1 UNIT:2 BASIC COMPUTER ORGANIZATION AND DESIGN BASIC COMPUTER ORGANIZATION AND DESIGN 2.1 Instruction Codes 2.2 Computer Registers AC or Accumulator, Data Register or DR, the AR or Address Register, program

More information

Microcontroller Systems

Microcontroller Systems µcontroller systems 1 / 43 Microcontroller Systems Engineering Science 2nd year A2 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/2co Michaelmas 2014 µcontroller

More information

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved.

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved. + William Stallings Computer Organization and Architecture 10 th Edition 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 2 + Chapter 3 A Top-Level View of Computer Function and Interconnection

More information

Chapter 5: Computer Systems Organization

Chapter 5: Computer Systems Organization Objectives Chapter 5: Computer Systems Organization Invitation to Computer Science, C++ Version, Third Edition In this chapter, you will learn about: The components of a computer system Putting all the

More information

Chapter 5: Computer Systems Organization. Invitation to Computer Science, C++ Version, Third Edition

Chapter 5: Computer Systems Organization. Invitation to Computer Science, C++ Version, Third Edition Chapter 5: Computer Systems Organization Invitation to Computer Science, C++ Version, Third Edition Objectives In this chapter, you will learn about: The components of a computer system Putting all the

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 177 4.2 CPU Basics and Organization 177 4.2.1 The Registers 178 4.2.2 The ALU 179 4.2.3 The Control Unit 179 4.3 The Bus 179 4.4 Clocks

More information

Computer Architecture

Computer Architecture Computer Architecture Topics: Machine Organization Machine Cycle Program Execution Machine Language Types of Memory & Access Von Neumann Design 1) Two key ideas 1) The stored program concept 1) instructions

More information

Problem Set 1 Solutions

Problem Set 1 Solutions CSE 260 Digital Computers: Organization and Logical Design Jon Turner Problem Set 1 Solutions 1. Give a brief definition of each of the following parts of a computer system: CPU, main memory, floating

More information

UNIT- 5. Chapter 12 Processor Structure and Function

UNIT- 5. Chapter 12 Processor Structure and Function UNIT- 5 Chapter 12 Processor Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data CPU With Systems Bus CPU Internal Structure Registers

More information

Information Science 1

Information Science 1 Information Science 1 -Basic Concepts of Computers: Opera4on, Architecture, Memory- Week 02 College of Information Science and Engineering Ritsumeikan University Today s lecture outline l Recall the previous

More information

Hardware Revision. AQA Computing AS-Level COMP2. 63 minutes. 60 marks. Page 1 of 24

Hardware Revision. AQA Computing AS-Level COMP2. 63 minutes. 60 marks. Page 1 of 24 Hardware Revision AQA Computing AS-Level COMP2 204 63 minutes 60 marks Page of 24 Q. The diagram below shows some of the components of a computer system. (a) Suggest names for the components numbered to

More information

Cambridge International Examinations Cambridge International Advanced Level

Cambridge International Examinations Cambridge International Advanced Level Cambridge International Examinations Cambridge International Advanced Level *6629823919* COMPUTING 9691/32 Paper 3 October/November 2014 2 hours Candidates answer on the Question Paper. No additional materials

More information

3.3.3 Computer Architecture

3.3.3 Computer Architecture 3.3.3 Computer Architecture VON NEUMANN ARCHITECTURE (SISD) 1 FLYNN S TAXONOMY 1 THE COMPONENTS OF THE CPU 2 CONTROL UNIT - CU 3 ARITHMETIC AND LOGIC UNIT - ALU 3 INCREMENTER 3 THE REGISTERS OF THE CPU

More information

CS 101, Mock Computer Architecture

CS 101, Mock Computer Architecture CS 101, Mock Computer Architecture Computer organization and architecture refers to the actual hardware used to construct the computer, and the way that the hardware operates both physically and logically

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

Fundamentals of Computer Architecture. 8. Bringing It All Together The Hardware Engineer s Perspective

Fundamentals of Computer Architecture. 8. Bringing It All Together The Hardware Engineer s Perspective Fundamentals of Computer Architecture 8. Bringing It All Together The Hardware Engineer s Perspective 1 CHAPTER OVERVIEW This chapter includes: Assigning tasks to individual processor components; Micro-instructions;

More information

Segment 1A. Introduction to Microcomputer and Microprocessor

Segment 1A. Introduction to Microcomputer and Microprocessor Segment 1A Introduction to Microcomputer and Microprocessor 1.1 General Architecture of a Microcomputer System: The term microcomputer is generally synonymous with personal computer, or a computer that

More information

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University Chapter 3 Top Level View of Computer Function and Interconnection Contents Computer Components Computer Function Interconnection Structures Bus Interconnection PCI 3-2 Program Concept Computer components

More information

Chapter 4. MARIE: An Introduction to a Simple Computer

Chapter 4. MARIE: An Introduction to a Simple Computer Chapter 4 MARIE: An Introduction to a Simple Computer Chapter 4 Objectives Learn the components common to every modern computer system. Be able to explain how each component contributes to program execution.

More information

Hardware Level Organization

Hardware Level Organization Hardware Level Organization Intro MIPS 1 Major components: - memory - central processing unit - registers - the fetch/execute cycle CPU PC IR Ex Unit MAR MBR I/O AR I/O BR System Bus Main Memory 0 (the

More information

address ALU the operation opcode ACC Acc memory address

address ALU the operation opcode ACC Acc memory address In this lecture, we will look at how storage (or memory) works with processor in a computer system. This is in preparation for the next lecture, in which we will examine how a microprocessor actually works

More information

Chapter 2 Instruction Set Architecture

Chapter 2 Instruction Set Architecture Chapter 2 Instruction Set Architecture Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering

More information

COSC121: Computer Systems: Review

COSC121: Computer Systems: Review COSC121: Computer Systems: Review Jeremy Bolton, PhD Assistant Teaching Professor Constructed using materials: - Patt and Patel Introduction to Computing Systems (2nd) - Patterson and Hennessy Computer

More information

Unit II Basic Computer Organization

Unit II Basic Computer Organization 1. Define the term. Internal Organization-The internal organization of a digital system is defined by the sequence of microoperations it performs on data stored in its registers. Program- A program is

More information

COMPUTER STRUCTURE AND ORGANIZATION

COMPUTER STRUCTURE AND ORGANIZATION COMPUTER STRUCTURE AND ORGANIZATION Course titular: DUMITRAŞCU Eugen Chapter 4 COMPUTER ORGANIZATION FUNDAMENTAL CONCEPTS CONTENT The scheme of 5 units von Neumann principles Functioning of a von Neumann

More information

BASIC COMPUTER ORGANIZATION AND DESIGN

BASIC COMPUTER ORGANIZATION AND DESIGN 1 BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Complete

More information

Chapter 14 Design of the Central Processing Unit

Chapter 14 Design of the Central Processing Unit Chapter 14 Design of the Central Processing Unit We now focus on the detailed design of the CPU (Central Processing Unit) of the Boz 7. The CPU has two major components: the Control Unit and the ALU (Arithmetic

More information

The Central Processing Unit

The Central Processing Unit The Central Processing Unit All computers derive from the same basic design, usually referred to as the von Neumann architecture. This concept involves solving a problem by defining a sequence of commands

More information

Chapter 3 - Top Level View of Computer Function

Chapter 3 - Top Level View of Computer Function Chapter 3 - Top Level View of Computer Function Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 3 - Top Level View 1 / 127 Table of Contents I 1 Introduction 2 Computer Components

More information