DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design

Size: px
Start display at page:

Download "DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design"

Transcription

1 Year: IV DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 Microcontroller based system design Semester : VII UNIT I Introduction to PIC Microcontroller PART A 1. What is Microcontroller? A device which contains the microprocessor with integrated peripherals like memory, serial ports, parallel ports, timer/counter, interrupt controller, data acquisition interfaces like ADC, DAC is called microcontroller. 2. What are the differences between a Microcontroller and Microprocessor? Microprocessor Microcontroller It is termed as general purpose digital computer. It contains the CPU, memory, addressing circuits and interrupt handling circuit. It is termed as special purpose digital controller. It possesses all features of microprocessor and additionally it includes timers, parallel and serial I/O and the internal RAM and ROM. It has one or two types of bit handling instructions. It has many bit handling instructions. 3. What is PIC Microcontroller? PIC stands for Peripheral Interface Controller given by Microchip Technology to identify its single-chip microcontrollers. These devices have been very successful in 8-bit microcontrollers. The main reason is that Microchip Technology has continuously upgraded the device architecture and added needed peripherals to the microcontroller to suit customers' requirements. 4. Draw the CPU architecture of PIC Microcontroller. The CPU uses Harvard architecture with separate Program and Variable (data) memory interface. This facilitates instruction fetch and the operation on data/accessing of variables simultaneously. CPU Architecture of PIC microcontroller 5. What is Special Purpose register file? The special purpose register file contains input and output ports as well as the control registers used to establish each bit of a port as either an input or an output. It contains registers that provide the data input and data output to the variety of resources on the chip, such as the timers, the serial ports and the ADC. It has registers that contain control bits for selecting the mode of operation of a chip resource as well as enabling or disabling its operation. It has registers containing status bits, which denote the state of one of these chip resources. 6.Give the register file structure of PIC Microcontroller.

2 6. Draw the architecture of PIC 16C74A 7. What is W register in PIC Microcontroller? W, the working register, is used by many instructions as the source of an operand. This is similar to accumulator in It may also serve as the destination for the result of the instruction execution. It is an 8 - bit register. 8. Give the status register of PIC Microcontroller..(Nov/Dec 2016) The STATUS register is an 8-bit register that stores the status of the processor. This also stores carry, zero and digit carry bits. STATUS - address 03H, 83H 9. What is program counter stack?

3 Program Counter Stack An independent 8-level stack is used for the program counter. As the program counter is 13bit, the stack is organized as 8x13bit registers. When an interrupt occurs, the program counter is pushed onto the stack. When the interrupt is being serviced, other interrupts remain disabled. Hence, other 7 registers of the stack can be used for subroutine calls within an interrupt service routine or within the mainline program. 10. Draw the general block diagram of Harvard architecture. 11. What are the types of instruction set used in PIC microcontroller? There are three types of instruction set used in PIC microcontroller. 1. Bit oriented instruction 2. Byte oriented instruction 3. Literal instructions. 12. What is bit and byte oriented instruction? The byte oriented instructions that require two parameters (For example, movf f, F(W)) expect the f to be replaced by the name of a special purpose register (e.g., PORTA) or the name of a RAM variable (e.g., NUM1), which serves as the source of the operand. 'f' stands for file register. The F(W) parameter is the destination of the result of the operation. It should be replaced by:f, if the destination is to be the source register. W, if the destination is to be the working register (i.e., Accumulator or W register). The bit oriented instructions also expect parameters (e.g., btfsc f, b). Here 'f' is to be replaced by the name of a special purpose register or the name of a RAM variable. The 'b' parameter is to be replaced by a bit number ranging from 0 to 7. For example: Z equ 2 btfsc STATUS, Z Z has been equated to 2. Here, the instruction will test the Z bit of the STATUS register and will instruction if Z bit is clear. skip the next 13. What are the addressing modes of PIC?.(Nov/Dec 2016) Addressing is defined as how the operands are specified in the instruction. Direct addressing and indirect addressing mode. Indirectly addressing the memory used in FSR and INDF instruction. Here the operand is specified indirectly in the instruction. 14.What do you mean by direct addressing mode and indirect addressing mode? It uses 7 bits of the instruction and the 8 th bit from RP. It directly give the address where the data is present.ie, the address of the operand is given in the instruction. 15.What is instruction pipelining? It allows the CPU to fetch and execute at the same time while executing one instruction, CPU will fetch next instruction to be executed. PART-B 1. Explain with neat diagram the architecture of PIC16C6x and PIC16C7x microcontroller. (Nov/Dec 2016) ARCHITECTURAL OVERVIEW

4 The high performance of the PIC16CXX family can be attributed to a number of architectural features com-monly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where pro-gram and data may be fetched from the same memory using the same bus. Separating program and data bus-ses further allows instructions to be sized differently than 8-bit wide data words. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instruc-tions (Example 3-1). Consequently, all instructions exe-cute in a single cycle ( MHz) except for program branches. The PIC16C61 addresses 1K x 14 of program memory. The PIC16C62/62A/R62/64/64A/R64 address 2K x 14 of program memory, and the PIC16C63/R63/65/65A/R65 devices address 4K x 14 of program memory. The PIC16C66/67 address 8K x 14 program memory. All program memory is internal. The PIC16CXX can directly or indirectly address its register files or data memory. All special function reg-isters including the program counter are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of special optimal situations makes programming with the PIC16CXX simple yet efficient, thus significantly reducing the learning curve. The PIC16CXX device contains an 8-bit ALU and work-ing register (W). The ALU is a general purpose arithme-tic unit. It performs arithmetic and Boolean functions between data in the working register and any register file. The ALU is 8-bits wide and capable of addition, sub-traction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's comple-ment in nature. In two-operand instructions, typically one operand is the working register (W register), the other operand is a file register or an immediate con-stant. In single operand instructions, the operand is either the W register or a file register. The W register is an 8-bit working register used for ALU operations. It is not an addressable register. Depending upon the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. Bits C and DC operate as a borrow and digit borrow out bit, respec-tively, in subtraction. See the SUBLW and SUBWF instructions for examples.

5 2. Explain with neat diagram the block diagram of PIC16C6x and PIC16C7x microcontroller

6 3. With a neat diagram discuss in detail about memory organization of a PIC microcontroller.

7 4. Explain in detail the register file structure and addressing modes of PIC microcontroller. REGISTER FILE STRUCTURE In PIC Microcontrollers the Register File consists of two parts namely a) General Purpose Register File b) Special Purpose Register File a) General Purpose Register File: The general purpose register file is another name for the microcontroller s RAM. Data can be written to each 8-bit location updated and retrieved any number of times. b) Special Purpose Register File: The special function register file consists of input, output ports and control registers used to configure each 8-bit port either as input or output. It contains registers that provide the data input and data output to a chip resources like Timers, Serial Ports and Analog to Digital converter and also the registers that contains control bits for selecting the mode of operation and also enabling or disabling its operation. ADDRESSING MODES. The PIC microcontrollers support only TWO addressing modes.they are (i) Direct Addressing Mode (ii) Indirect Addressing mode Direct Addressing Mode : In direct addressing mode 7 bits (0-6) of the instruction identify the register file address and the 8 th bit of the register file address register bank select bit(rp0).

8 The above diagram explains the method of accessing register file address 13H by direct addressing method. Indirect Addressing Mode In the indirect addressing mode the 8-bit register file address is first written into a Special Function Register(SFR) which acts as a pointer to any address location in the register file.a subsequent direct access of INDF will actually access the register file using the content of FSR as a pointer to the desired location of the operand. 5. Explain the instruction set of PIC microcontroller. (Nov/Dec 2016) Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary lists byte-oriented, bit-ori-ented, and literal and control operations. Table 14-1 shows the opcode field descriptions. For byte-oriented instructions, 'f' represents a file reg-ister designator and 'd' represents a destination desig-nator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction. For bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located. For literal and control operations, 'k' represents an eight or eleven bit constant or literal value. The instruction set is highly orthogonal and is grouped into three basic categories: Byte-oriented operations Bit-oriented operations Literal and control operations All instructions are executed within one single instruction cycle, unless a conditional test is true or the pro-gram counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruc-tion cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μs. If a conditional test is true or the program counter is changed as a result of an instruc-tion, the instruction execution time is 2 μs. : GENERAL FORMAT FOR INSTRUCTIONS Byte-oriented file register operations OPCO DE d f (FILE #) d = 0 for destination W d = 1 for destination f = 7-bit file register f address Bit-oriented file register operations OPCO DE b (BIT #) f (FILE #)

9 b = 3-bit bit address = 7bit file register f Address Literal and control operations General OPCO DE k (literal) = 8-bit immediate k value CALL and GOTO instructions only OPCOD E k (literal) k = 11-bit immediate value PIC16CXX INSTRUCTION SET Mnemon ic, Description Operand s Cycle s MS b 14-Bit Opcode LSb Status Affecte d Note s BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF f, d Add W and f dfff ffff C,DC,Z 1,2 ANDWF f, d AND W with f dfff ffff Z 1,2 CLRF f Clear f lfff ffff Z 2 CLRW - Clear W xxx xxxx Z COMF f, d Complement f dfff ffff Z 1,2 DECF f, d Decrement f dfff ffff Z 1,2 1,2, DECFSZ f, d Decrement f, Skip if 0 1(2) dfff ffff 3 INCF f, d Increment f dfff ffff Z 1,2 1,2, INCFSZ f, d Increment f, Skip if 0 1(2) dfff ffff 3 IORWF f, d Inclusive OR W with f dfff ffff Z 1,2 MOVF f, d Move f dfff ffff Z 1,2 MOVWF f Move W to f lfff ffff NOP - No Operation xx

10 RLF f, d Rotate Left f through Carry dfff ffff C 1,2 RRF f, d Rotate Right f through Carry dfff ffff C 1,2 SUBWF f, d Subtract W from f dfff ffff C,DC,Z 1,2 SWAPF f, d Swap nibbles in f dfff ffff 1,2 XORWF f, d Exclusive OR W with f dfff ffff Z 1,2 BIT-ORIENTED FILE REGISTER OPERATIONS BCF f, b Bit Clear f bb bfff ffff 1,2 BSF f, b Bit Set f bb bfff ffff 1,2 BTFSC f, b Bit Test f, Skip if Clear 1 (2) 01 10bb bfff ffff 3 BTFSS f, b Bit Test f, Skip if Set 1 (2) 01 11bb bfff ffff 3 LITERAL AND CONTROL OPERATIONS ADDLW k Add literal and W 1 11 C,DC, 111x kkkk kkkk Z ANDLW k AND literal with W kkkk kkkk Z CALL k Call subroutine kkk kkkk kkkk CLRWD 010 T P T - Clear Watchdog Timer O, D GOTO k Go to address kkk kkkk kkkk IORLW k Inclusive OR literal with W kkkk kkkk Z MOVLW k Move literal to W xx kkkk kkkk RETFIE - Return from interrupt RETLW k Return with literal in W xx kkkk kkkk RETUR 100 N - Return from Subroutine T P SLEEP - Go into standby mode O, D C,DC, SUBLW k Subtract W from literal x kkkk kkkk Z XORLW k Exclusive OR literal with W kkkk kkkk Z Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'. 2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module. 3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. 6. Explain in detail the concept of pipelining of instructions in PIC microcontroller. Instruction Flow/Pipelining An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to

11 the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1). A fetch cycle begins with the program counter (PC) incrementing in Q1. In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write). CLOCK/INSTRUCTION CYCLE Instruction Flow/Pipelining An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1). A fetch cycle begins with the program counter (PC) incrementing in Q1. In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write). CLOCK/INSTRUCTION CYCLE OSC1 Q1 Q 1 Q 2 Q3 Q4 Q 1 Q2 Q3 Q4 Q1 Q 2 Q3 Q4 Q2 Q3 Internal Phase Clock Q4 PC (Program counter) OSC2/CLKOU T P C PC+1 PC+2 (RC mode) Fetch INST (PC) Execute INST (PC-1) Fetch INST (PC+1) Execute INST (PC) Fetch INST (PC+2)

12 Execute INST (PC+1) INSTRUCTION PIPELINE FLOW MOV 1. LW 55h Fetch 1 Execute 1 Tcy0 Tcy1 Tcy2 Tcy3 Tcy4 Tcy5 MOV POR 2. WF TB Fetch 2 Execute 2 CAL 3. L SUB _1 Fetch 3 Execute 3 PORTA, BIT3 (Forced 4. BSF NOP) Fetch 4 Flush 5. address SUB_1 Fetch SUB_1 Execute SUB_1 All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is flushed from the pipeline while the new instruction is being fetched and then executed.

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS PIC6F87X 3.0 INSTRUCTION SET SUMMARY Each PIC6F87X instruction is a 4bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of

More information

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Starting to Program Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Outline Introduction Program Development Process The PIC 16F84A Instruction Set Examples The PIC 16F84A Instruction Encoding Assembler Details

More information

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006 CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT Spring 2006 Recitation 01 21.02.2006 CEng336 1 OUTLINE LAB & Recitation Program PIC Architecture Overview PIC Instruction Set PIC Assembly Code Structure 21.02.2006

More information

Assembly Language Instructions

Assembly Language Instructions Assembly Language Instructions Content: Assembly language instructions of PIC16F887. Programming by assembly language. Prepared By- Mohammed Abdul kader Assistant Professor, EEE, IIUC Assembly Language

More information

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27)

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Lesson 14 Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Name and affiliation of the author: N W K Jayatissa Department of Physics,

More information

Instuction set

Instuction set Instuction set http://www.piclist.com/images/www/hobby_elec/e_pic3_1.htm#1 In PIC16 series, RISC(Reduced Instruction Set Computer) is adopted and the number of the instructions to use is 35 kinds. When

More information

PIC16F84A 7.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS

PIC16F84A 7.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS PI6F84A 7.0 INSTRUTION SET SUMMARY Each PI6XX instruction is a 4bit word, divided into an OPODE which specifies the instruction type and one or more operands which further specify the operation of the

More information

SOLUTIONS!! DO NOT DISTRIBUTE!!

SOLUTIONS!! DO NOT DISTRIBUTE!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF FEBRUARY MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: Date and Time: Duration: One Hour INSTRUCTIONS TO CANDIDATES:

More information

Lecture (04) PIC16F84A (3)

Lecture (04) PIC16F84A (3) Lecture (04) PIC16F84A (3) By: Dr. Ahmed ElShafee ١ Central Processing Unit Central processing unit (CPU) is the brain of a microcontroller responsible for finding and fetching the right instruction which

More information

Chapter 13. PIC Family Microcontroller

Chapter 13. PIC Family Microcontroller Chapter 13 PIC Family Microcontroller Lesson 15 Instruction Set Most instructions execution Time One instruction cycle If XTAL frequency = 20 MHz, then instruction cycle time is 0.2 s or 200 ns (= 4/20

More information

PIC 16F84A programming (II)

PIC 16F84A programming (II) Lecture (05) PIC 16F84A programming (II) Dr. Ahmed M. ElShafee ١ Introduction to 16F84 ٣ PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Program memory (FLASH) EEPROM RAM PORTA

More information

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 E4160 Microprocessor & Microcontroller System Learning Outcomes 2 At the end of this topic, students should

More information

EEE111A/B Microprocessors

EEE111A/B Microprocessors EEE111A/B Microprocessors Revision Notes Lecture 1: What s it all About? Covers the basic principles of digital signals. The intelligence of virtually all communications, control and electronic devices

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 Semester 2 Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J2 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J1 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

Section 4. Architecture

Section 4. Architecture M Section 4. Architecture HIGHLIGHTS This section of the manual contains the following major topics: 4. Introduction...4-2 4.2 Clocking Scheme/Instruction Cycle...4-5 4.3 Instruction Flow/Pipelining...4-6

More information

16.317: Microprocessor-Based Systems I Spring 2012

16.317: Microprocessor-Based Systems I Spring 2012 16.317: Microprocessor-Based Systems I Spring 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

DERTS Design Requirements (1): Microcontroller Architecture & Programming

DERTS Design Requirements (1): Microcontroller Architecture & Programming Lecture (5) DERTS Design Requirements (1): Microcontroller Architecture & Programming Prof. Kasim M. Al-Aubidy Philadelphia University 1 Lecture Outline: Features of microcomputers and microcontrollers.

More information

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work LAB WORK 1 We are studying with PIC16F84A Microcontroller. We are responsible for writing assembly codes for the microcontroller. For the code, we are using MPLAB IDE software. After opening the software,

More information

PIC16C63A/65B/73B/74B

PIC16C63A/65B/73B/74B PI663A/65B/73B/74B 4.0 MEMORY ORGANIATION 4. Program Memory Organization The PI663A/65B/73B/74B has a 3bit program counter capable of addressing an 8K x 4 program memory space. All devices covered by this

More information

Section 31. Instruction Set

Section 31. Instruction Set 31 HIGHLIGHTS Section 31. Instruction Set Instruction Set This section of the manual contains the following major topics: 31.1 Introduction... 31-2 31.2 Data Memory Map... 31-3 31.3 Instruction Formats...

More information

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

16.317: Microprocessor-Based Systems I Summer 2012

16.317: Microprocessor-Based Systems I Summer 2012 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

ECE Test #1: Name

ECE Test #1: Name ECE 376 - Test #1: Name Closed Book, Closed Notes. Calculators Permitted. September 23, 2016 20 15 10 5 0

More information

Week1. EEE305 Microcontroller Key Points

Week1. EEE305 Microcontroller Key Points Week1 Harvard Architecture Fig. 3.2 Separate Program store and Data (File) stores with separate Data and Address buses. Program store Has a 14-bit Data bus and 13-bit Address bus. Thus up to 2 13 (8K)

More information

Fortune. Semiconductor Corporation 富晶半導體股份有限公司. 8-bit MCU with 1k program ROM, 64-byte RAM, 1 R2F module and 3 13 LCD driver. TD Rev. 1.

Fortune. Semiconductor Corporation 富晶半導體股份有限公司. 8-bit MCU with 1k program ROM, 64-byte RAM, 1 R2F module and 3 13 LCD driver. TD Rev. 1. Fortune 1 R2F module and 3 13 LCD driver. Data Sheet TD-0410001 Rev. 1.2 This manual contains new product information. Fortune reserves the rights to modify the product specification without further notice.

More information

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features:

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features: 8-bit CMOS EEPROM Microcontroller High Performance RISC CPU Features: Only 35 single word instructions to learn All instructions single cycle (400 ns @ 10 MHz) except for program branches which are two-cycle

More information

Chapter 5 Sections 1 6 Dr. Iyad Jafar

Chapter 5 Sections 1 6 Dr. Iyad Jafar Building Assembler Programs Chapter 5 Sections 1 6 Dr. Iyad Jafar Outline Building Structured Programs Conditional Branching Subroutines Generating Time Delays Dealing with Data Example Programs 2 Building

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name : Embedded System Class/Sem : BE (ECE) / VII Subject Code

More information

ME 515 Mechatronics. A microprocessor

ME 515 Mechatronics. A microprocessor ME 515 Mechatronics Microcontroller Based Control of Mechanical Systems Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 081239 (3627) Email: asangar@pdn.ac.lk A microprocessor

More information

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware:

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: HCMIU - DEE Subject: ERTS RISC MCU Architecture PIC16F877 Hardware 1 Outline Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: Program Memory Data memory organization: banks,

More information

Micro II and Embedded Systems

Micro II and Embedded Systems 16.480/552 Micro II and Embedded Systems Introduction to PIC Microcontroller Revised based on slides from WPI ECE2801 Moving Towards Embedded Hardware Typical components of a PC: x86 family microprocessor

More information

PTK8756B 8 Bit Micro-controller Data Sheet

PTK8756B 8 Bit Micro-controller Data Sheet PTK8756B 8 Bit Micro-controller DEC 15, 2008 Ver1.1 普泰半導體股份有限公司 PORTEK Technology Corporation 公司地址 : 臺北縣新店市寶橋路 235 巷 120 號 4 樓 聯絡電話 : 886-2-89121055 傳真號碼 : 886-2-89121473 公司網址 : www.portek.com.tw Page1

More information

PIC Discussion. By Eng. Tamar Jomaa

PIC Discussion. By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa Chapter#2 Programming Microcontroller Using Assembly Language Quiz#1 : Time: 10 minutes Marks: 10 Fill in spaces: 1) PIC is abbreviation for 2) Microcontroller with..architecture

More information

PIC16F8X. 8-Bit CMOS Flash/EEPROM Microcontrollers PIC16F8X PIC16CR8X. Pin Diagram. Devices Included in this Data Sheet:

PIC16F8X. 8-Bit CMOS Flash/EEPROM Microcontrollers PIC16F8X PIC16CR8X. Pin Diagram. Devices Included in this Data Sheet: This document was created with FrameMaker 404 PIC16F8X 8-Bit CMOS Flash/EEPROM Microcontrollers Devices Included in this Data Sheet: PIC16F83 PIC16CR83 PIC16F84 PIC16CR84 Extended voltage range devices

More information

PIC16C52. EPROM-Based 8-Bit CMOS Microcontroller PIC16C52. Pin Diagrams. Feature Highlights. High-Performance RISC CPU. Peripheral Features

PIC16C52. EPROM-Based 8-Bit CMOS Microcontroller PIC16C52. Pin Diagrams. Feature Highlights. High-Performance RISC CPU. Peripheral Features This document was created with FrameMaker 404 PIC16C52 EPROM-Based 8-Bit CMOS Microcontroller Feature Highlights Pin Diagrams Program Memory Data Memory I/O PDIP, SOIC 384 25 12 High-Performance RISC CPU

More information

PIC16F8X 18-pin Flash/EEPROM 8-Bit Microcontrollers

PIC16F8X 18-pin Flash/EEPROM 8-Bit Microcontrollers 18-pin Flash/EEPROM 8-Bit Microcontrollers Devices Included in this Data Sheet: PIC16F83 PIC16F84 PIC16CR83 PIC16CR84 Extended voltage range devices available (PIC16LF8X, PIC16LCR8X) High Performance RISC

More information

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Sample Programs Eng. Anis Nazer First Semester 2017-2018 Development cycle (1) Write code (2) Assemble / compile (3) Simulate (4) Download to MCU (5) Test Inputs / Outputs PIC16F84A

More information

Mod-5: PIC 18 Introduction 1. Module 5

Mod-5: PIC 18 Introduction 1. Module 5 Mod-5: PIC 18 Introduction 1 Module 5 Contents: Overview of PIC 18, memory organisation, CPU, registers, pipelining, instruction format, addressing modes, instruction set, interrupts, interrupt operation,

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution For each of the following complex operations, write a sequence of PIC 16F1829 instructions that performs an equivalent operation. Assume that X, Y, and Z are 16-bit values split into individual bytes as

More information

PIC10F200/202/204/206 Data Sheet

PIC10F200/202/204/206 Data Sheet Data Sheet 6-Pin, 8-Bit Flash Microcontrollers DS4239A 6-Pin, 8-Bit Flash Microcontrollers Devices Included In ThisData Sheet: PIC0F200 PIC0F202 PIC0F204 PIC0F206 High-Performance RISC CPU: Only 33 single-word

More information

PIC12C5XX. 8-Pin, 8-Bit CMOS Microcontroller. CMOS Technology: Devices included in this Data Sheet: High-Performance RISC CPU: Pin Diagram

PIC12C5XX. 8-Pin, 8-Bit CMOS Microcontroller. CMOS Technology: Devices included in this Data Sheet: High-Performance RISC CPU: Pin Diagram This document was created with FrameMaker 404 8-Pin, 8-Bit CMOS Microcontroller PIC12C5XX Devices included in this Data Sheet: PIC12C508 and PIC12C509 are 8-bit microcontrollers packaged in 8-lead packages.

More information

PIC10F200/202/204/206

PIC10F200/202/204/206 6-Pin, 8-Bit Flash Microcontrollers Devices Included In This Data Sheet: PIC0F200 PIC0F202 PIC0F204 PIC0F206 High-Performance RISC CPU: Only 33 Single-Word Instructions to Learn All Single-Cycle Instructions

More information

Midrange 8b PIC Microcontrollers. ECE Senior Design 14 February 2017

Midrange 8b PIC Microcontrollers. ECE Senior Design 14 February 2017 Midrange 8b PIC Microcontrollers ECE Senior Design 14 February 2017 Harvard vs. Von Neumann Harvard Architecture Program Memory 14-bit Bus CPU 8-bit Bus Data Memory Harvard architecture Separate busses

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Microcontroller 1. Introduction to PIC microcontroller 2. PIC16F84 3. PIC16F877

More information

PIN DESCRIPTION Name I/O Description VDD P VSS P 5V Power from USB cable Ground RC6M O X1 I Test/OTP mode clock in Internal clock output (6MHz) VPP I

PIN DESCRIPTION Name I/O Description VDD P VSS P 5V Power from USB cable Ground RC6M O X1 I Test/OTP mode clock in Internal clock output (6MHz) VPP I GENERAL DESCRIPTION The IN6005 is an 8-bit microprocessor embedded device tailored to the USB genernal purpose application. It includes an 8-bit RISC CPU core, 192-byte SRAM, Low Speed USB Interface and

More information

TM57PA20/ TM57PA40. 8 Bit Microcontroller. User Manual. Tenx reserves the right to change or discontinue this product without notice.

TM57PA20/ TM57PA40. 8 Bit Microcontroller. User Manual. Tenx reserves the right to change or discontinue this product without notice. Advance Information TM57PA20/ TM57PA40 User Manual Tenx reserves the right to change or discontinue this product without notice. tenx technology inc. tenx technology, inc. CONTENTS FEATURES... 3 BLOCK

More information

EE6008-Microcontroller Based System Design Department Of EEE/ DCE

EE6008-Microcontroller Based System Design Department Of EEE/ DCE UNIT- II INTERRUPTS AND TIMERS PART A 1. What are the interrupts available in PIC? (Jan 14) Interrupt Source Enabled by Completion Status External interrupt from INT INTE = 1 INTF = 1 TMR0 interrupt T0IE

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 - Microcontroller Based System Design UNIT III PERIPHERALS AND INTERFACING PART A 1. What is an

More information

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 August 13, 2012 Name: ID #: Section: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic

More information

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU:

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU: 14-Pin, 8-Bit CMOS Microcontroller Device included in this Data Sheet: PIC16C505 High-Performance RISC CPU: Only 33 instructions to learn Operating speed: - DC - 20 MHz clock input - DC - 200 ns instruction

More information

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics:

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics: M 11 Section 11. HIGHLIGHTS This section of the manual contains the following major topics: 11.1 Introduction...11-2 11.2 Control Register...11-3 11.3 Operation...11-4 11.4 TMR0 Interrupt...11-5 11.5 Using

More information

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Philadelphia University Faculty of Engineering Course Title: Embedded Systems (630414) Instructor: Eng. Anis Nazer Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Student Name: Student

More information

Arithmetic,logic Instruction and Programs

Arithmetic,logic Instruction and Programs Arithmetic,logic Instruction and Programs 1 Define the range of numbers possible in PIC unsigned data Code addition and subtraction instructions for unsigned data Perform addition of BCD Code PIC unsigned

More information

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU:

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU: 14-Pin, 8-Bit CMOS Microcontroller Device included in this Data Sheet: PIC16C505 High-Performance RISC CPU: Only 33 instructions to learn Operating speed: - DC - 20 MHz clock input - DC - 200 ns instruction

More information

CONNECT TO THE PIC. A Simple Development Board

CONNECT TO THE PIC. A Simple Development Board CONNECT TO THE PIC A Simple Development Board Ok, so you have now got your programmer, and you have a PIC or two. It is all very well knowing how to program the PIC in theory, but the real learning comes

More information

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013)

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) BHARATHIDASAN ENGINEERING COLLEGE III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) FREQUENTLY ASKED QUESTIONS IN UNIVERSITY EXAMINATION PART A UNIT 1-8085 PROCESSOR 1. Draw the

More information

PIC Architecture & Assembly Language Programming. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

PIC Architecture & Assembly Language Programming. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan PIC Architecture & Assembly Language Programming Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw ALU with working register (WREG) and literal value 2 MOVLW

More information

ME 475 Lab2 Introduction of PIC and Programming. Instructor: Zhen Wang

ME 475 Lab2 Introduction of PIC and Programming. Instructor: Zhen Wang ME 475 Lab2 Introduction of PIC and Programming Instructor: Zhen Wang 2013.1.25 Outline Lecture Introduction of PIC microcontroller Programming cycle Read CH5 Programming guidelines Read CH6 Sample program

More information

AVR Microcontrollers Architecture

AVR Microcontrollers Architecture ก ก There are two fundamental architectures to access memory 1. Von Neumann Architecture 2. Harvard Architecture 2 1 Harvard Architecture The term originated from the Harvard Mark 1 relay-based computer,

More information

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Internal Architecture Eng. Anis Nazer First Semester 2017-2018 Review Computer system basic components? CPU? Memory? I/O? buses? Instruction? Program? Instruction set? CISC,

More information

PIC12CE5XX. 8-Pin, 8-Bit CMOS Microcontroller with EEPROM Data Memory. Devices Included in this Data Sheet: Pin Diagram: High-Performance RISC CPU:

PIC12CE5XX. 8-Pin, 8-Bit CMOS Microcontroller with EEPROM Data Memory. Devices Included in this Data Sheet: Pin Diagram: High-Performance RISC CPU: Devices Included in this Data Sheet: PIC12CE518 PIC12CE519 High-Performance RISC CPU: Only 33 single word instructions to learn All instructions are single cycle (1 µs) except for program branches which

More information

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada A Better Mouse Trap Author: APPLICATION OPERATION: My application uses a PIC12C508 to produce realistic sounding mouse-like coos that all mice are sure to find seductive. The entire circuit should be imbedded

More information

Chapter 2 Sections 1 8 Dr. Iyad Jafar

Chapter 2 Sections 1 8 Dr. Iyad Jafar Introducing the PIC 16 Series and the 16F84A Chapter 2 Sections 1 8 Dr. Iyad Jafar Outline Overview of the PIC 16 Series An Architecture Overview of the 16F84A The 16F84A Memory Organization Memory Addressing

More information

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver OTP 8-Bit CMOS MCU with LIN bus Transceiver Devices included in this Data Sheet: High Performance RISC CPU: Only 35 instructions to learn All single cycle instructions (200 ns), except for program branches

More information

ECE 354 Introduction to Lab 2. February 23 rd, 2003

ECE 354 Introduction to Lab 2. February 23 rd, 2003 ECE 354 Introduction to Lab 2 February 23 rd, 2003 Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system supervisors

More information

RISC8 Core Page 1. RISC8 Core. Version 1.0. Written by Tom Coonan

RISC8 Core Page 1. RISC8 Core. Version 1.0. Written by Tom Coonan RISC8 Core Page 1 RISC8 Core Version 1.0 Written by Tom Coonan tcoonan@mindspring.com 1 Introduction... 2 2 Quick Start... 2 3 System Architecture... 3 4 Compatibility with Microchip 16C57 Devices... 6

More information

DRPIC166X IP Core. High Performance 8-bit RISC Microcontroller v. 2.17

DRPIC166X IP Core. High Performance 8-bit RISC Microcontroller v. 2.17 2017 DRPIC166X IP Core High Performance 8-bit RISC Microcontroller v. 2.17 C O M P A N Y O V E R V I E W Digital Core Design is a leading IP Core provider and a System-on-Chip design house. The company

More information

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Lecture (4) Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 1 Lecture Outline:

More information

ALU and Arithmetic Operations

ALU and Arithmetic Operations EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 6th February 2002 CLR Part IV ALU and Arithmetic Operations There are several issues connected with the use of arithmetic

More information

16.317: Microprocessor Systems Design I Spring 2015

16.317: Microprocessor Systems Design I Spring 2015 16.317: Microprocessor Systems Design I Spring 2015 Exam 2 Solution 1. (16 points, 4 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by

More information

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 6 Experiment 6:Timers Objectives To become familiar with hardware timing

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

Microcontroller systems Lec 2 PIC18LF8722 Microcontroller s s core

Microcontroller systems Lec 2 PIC18LF8722 Microcontroller s s core TKT-3500 Microcontroller systems Lec 2 PIC18LF8722 Microcontroller s s core Erno Salminen Copyright notice Some figures by Robert Reese, from supplementary CD of the course book from PIC18F8722 Family

More information

16.317: Microprocessor Systems Design I Fall 2015

16.317: Microprocessor Systems Design I Fall 2015 16.317: Microprocessor Systems Design I Fall 2015 Exam 2 Solution 1. (16 points, 4 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Introduction to Microcontrollers Embedded Controller Simply an embedded controller is a controller that is embedded in a greater system. One can define an embedded controller as a controller (or computer)

More information

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses ECE 354 Computer Systems Lab II Interrupts, Strings, and Busses Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system

More information

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling Interfacing PIC Microcontrollers ADC8BIT2 Schematic This application demonstrates analogue input sampling A manually adjusted test voltage 0-5V is provided at AN0 input A reference voltage of 2.56V is

More information

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics:

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics: Section 13. Timer0 HIGHLIGHTS This section of the manual contains the following major topics: 13.1 Introduction... 13-2 13.2 Control Register... 13-3 13.3 Operation... 13-4 13.4 Timer0 Interrupt... 13-5

More information

Chapter 3: Further Microcontrollers

Chapter 3: Further Microcontrollers Chapter 3: Further Microcontrollers Learning Objectives: At the end of this topic you will be able to: recall and describe the structure of microcontrollers as programmable assemblies of: memory; input

More information

Learning Objectives:

Learning Objectives: Topic 5.2.1 PIC microcontrollers Learning Objectives: At the end of this topic you will be able to; Recall the architecture of a PIC microcontroller, consisting of CPU, clock, data memory, program memory

More information

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 2. PIC and Programming

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 2. PIC and Programming Laboratory: Introduction to Mechatronics Instructor TA: Edgar Martinez Soberanes (eem370@mail.usask.ca) 2015-01-12 Lab 2. PIC and Programming Lab Sessions Lab 1. Introduction Read manual and become familiar

More information

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5.

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5. DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6502- MICROPROCESSORS AND MICROCONTROLLERS UNIT I: 8085 PROCESSOR PART A 1. What is the need for ALE signal in

More information

To Our Valued Customers

To Our Valued Customers Devices Included in this Data Sheet: PIC12C671 PIC12C672 PIC12CE673 PIC12CE674 Note: Throughout this data sheet PIC12C67X refers to the PIC12C671, PIC12C672, PIC12CE673 and PIC12CE674. PIC12CE67X refers

More information

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS Interfacing to an LCD Module AN587 INTRODUCTION TABLE 1: CONTROL SIGNAL FUNCTIONS This application note interfaces a PIC16CXX device to the Hitachi LM02L LCD character display module. This module is a

More information

Microcontrollers. Microcontroller

Microcontrollers. Microcontroller Microcontrollers Microcontroller A microprocessor on a single integrated circuit intended to operate as an embedded system. As well as a CPU, a microcontroller typically includes small amounts of RAM and

More information

8051 microcontrollers

8051 microcontrollers 8051 microcontrollers Presented by: Deepak Kumar Rout Synergy Institute of Engineering and Technology, Dhenkanal Chapter 2 Introduction Intel MCS-51 family of microcontrollers consists of various devices

More information

/ 28 HLL assembly Q4: Conditional instructions / 40 TOTAL SCORE / 100 EXTRA CREDIT / 10

/ 28 HLL assembly Q4: Conditional instructions / 40 TOTAL SCORE / 100 EXTRA CREDIT / 10 16.317: Microprocessor Systems Design I Fall 2014 Exam 2 November 5, 2014 Name: ID #: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic devices (e.g.,

More information

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features:

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features: M PIC6F84A 8-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller High Performance RISC CPU Features: Pin Diagrams Only 35 single word instructions to learn All instructions single-cycle except for program branches

More information

PROGRAMMING PIC MICROCONTROLLERS WITH MICRO C

PROGRAMMING PIC MICROCONTROLLERS WITH MICRO C PROGRAMMING PIC MICROCONTROLLERS WITH MICRO C Chapter 1: World of Microcontrollers Chapter 2: Programming Microcontrollers Chapter 3: PIC16F887 Microcontroller Chapter 4: Examples Appendix A: It is Time

More information

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller 1 von 8 24.02.2010 21:53 More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller As with the FPGA board previously, the connections are made by soldering standard IDC

More information

PIC16F8X PIC16F8X. 18-pin Flash/EEPROM 8-Bit Microcontrollers

PIC16F8X PIC16F8X. 18-pin Flash/EEPROM 8-Bit Microcontrollers Devices Included in this Data Sheet: PIC6F83 PIC6F84 PIC6CR83 PIC6CR84 Extended voltage range devices available (PIC6LF8X, PIC6LCR8X) High Performance RISC CPU Features: Only 35 single word instrucs to

More information

THE UNIVERSITY OF THE WEST INDIES

THE UNIVERSITY OF THE WEST INDIES THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF MOCK 2004 Code and Name of Course: EE25M Introduction to Microprocessors Paper: Date and Time: Duration: Three Hours INSTRUCTIONS TO CANDIDATES: This paper

More information

movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt

movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt movlw 0x20 #endif call scan movlw 0xfd tris PORTB ; select colb (RB1) #ifdef MODE_CH8 movlw 0x04 #endif #ifdef MODE_CH4 movlw 0x30 #endif call scan movf cod, W bz loop2 ; if no buton is pressed, skip subwf

More information

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 18th February 2002 CLR Part V Hardware Interfacing There are several features of computers/microcontrollers which have not

More information

APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with a PIC Microcontroller

APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with a PIC Microcontroller Maxim/Dallas > App Notes > REAL-TIME CLOCKS Keywords: DS1305, SPI, PIC, real time clock, RTC, spi interface, pic microcontroller Aug 20, 2003 APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with

More information

Chapter 3 BRANCH, CALL, AND TIME DELAY LOOP

Chapter 3 BRANCH, CALL, AND TIME DELAY LOOP Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 3022: Embedded Systems Discussion Chapter 3 BRANCH, CALL, AND TIME DELAY LOOP Eng. Eman R. Habib February, 2014 2 Embedded

More information

Computer Engineering Capstone Design Summer A : Handheld Video Games

Computer Engineering Capstone Design Summer A : Handheld Video Games Computer Engineering Capstone Design Summer A 99 0: Handheld Video Games J. S. McDonald Odd-Wednesday Talks May, 0 http://www.kettering.edu/~mcdonald/ece0/ PIC-Pong By Rickard Gunée; uses a -MHz PICF and

More information

BASIC INTERFACING CONCEPTS

BASIC INTERFACING CONCEPTS Contents i SYLLABUS UNIT - I 8085 ARCHITECTURE Introduction to Microprocessors and Microcontrollers, 8085 Processor Architecture, Internal Operations, Instructions and Timings, Programming the 8085-Introduction

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications EE 3170 Microcontroller Applications Lecture 4 : Processors, Computers, and Controllers - 1.2 (reading assignment), 1.3-1.5 Based on slides for ECE3170 by Profs. Kieckhafer, Davis, Tan, and Cischke Outline

More information