CS100: DISCRETE STRUCTURES

Size: px
Start display at page:

Download "CS100: DISCRETE STRUCTURES"

Transcription

1 CS: DISCRETE STRUCTURES Computer Science Department Lecture : Set and Sets Operations (Ch2)

2 Lecture Contents 2 Sets Definition. Some Important Sets. Notation used to describe membership in sets. How to describe a set? Sets. Venn diagrams. Subset. Finite and Infinite Sets. Cardinality.

3 Lecture Contents 3 Sets Definition. Sets. The power of a set. Cartesian Products. Sets Operations. Exercises.

4 4 Sets and sets operations Sets Reading: Ch:2./ Pages: -9

5 Sets Definition: 5 Set is the fundamental discrete structure on which all other discrete structures are built. Sets are used to group objects together. Often, the objects in a set have similar properties. A set is an unordered collection of objects. The objects in a set are called the elements or members of the set

6 Some Important Sets: 6 The set of natural numbers: N = {,, 2, 3,...} The set of integers: Z = {..., 2,,,, 2,...} The set of positive integers: Z + = {, 2, 3,...} The set of fractions: Q = {,½, ½, 5, 78/3, } Q ={p/q pє Z, qєz, and q } The set of Real: R = { 3/2,,e,π2,sqrt(5), }

7 Notation used to describe membership in sets 7 o a set A is a collection of elements. o If x is an element of A, we write xîa; If not: xïa. o xîa Say: x is a member of A or x is in A. o Note: Lowercase letters are used for elements, capitals for sets. o Two sets are equal if and only if they have the same elements A= B : "x( x ÎA «x ÎB) also o Two sets A and B are equal if A Í B and B Í A. o So to show equality of sets A and B, show: A Í B B Í A

8 Notation used to describe membership in sets 8 The sets {,3,5} and {3,5,} are equal, because they have the same elements.

9 How to describe a set? 9. List all the members of a set, when this is possible. We use a notation where all members of the set are listed between braces. { } Example : {dog, cat, horse} The set O of odd positive integers less than can be expressed by O={,3,5,7,9}

10 How to describe a set? 2. Sometimes the brace notation is used to describe a set without listing all its members. Some members of the set are listed, and then ellipses (...) are used when the general pattern of the elements is obvious. Example: The set A of positive integers less than can be denoted by A={, 2, 3,..., 99}

11 How to describe a set? 3. Another way to describe a set is to use set builder notation. We characterize all those elements in the set by stating the property or properties they must have to be members. Example: the set O of all odd positive integers less than can be written as: n O = {x x is an odd positive integer <} or, specifying the universe as the set of positive integers, as n O = {x Î Z+ x is odd and x<}.

12 Sets: 2 The Empty Set (Null Set) We use Æ to denote the empty set and can also be denoted { }, i.e. the set with no elements. Example: the set of all positive integers that are greater than their squares is the null set. Singleton set A set with one element is called a singleton set.

13 Sets: 3 Computer Science Note that the concept of a data type, or type, in computer science is built upon the concept of a set. In particular, a data type is the name of a set, together with a set of operations that can be performed on objects from that set. Example: Boolean is the name of the set {, } together with operators on one or more elements of this set, such as AND, OR, and NOT.

14 Venn diagrams: 4 Sets can be represented graphically using Venn diagrams. In Venn diagrams the universal set U, which contains all the objects under consideration, is represented by a rectangle. Inside this rectangle, circles or other geometrical figures are used to represent sets. Sometimes points are used to represent the particular elements of the set.

15 Venn diagrams: 5 Example: A Venn diagram that represents V = {a, e, i, o, u} the set of vowels in the English alphabet

16 Subset: 6 The set A is said to be a subset of B if and only if every element of A is also an element of B. We use the notation A Í B to indicate that A is a subset of the set B. We see that A Í B if and only if the quantification "x (x Î A x Î B) is true. Examples: The set of all odd positive integers less than is subset of the set of all positive integers. The set of rational numbers is subset of the set of real numbers.

17 Subsets: 7 For every set S, Æ Í S S Í S Proper subset: When a set A is a subset of a set B but A B, A Í B, and A ¹ B We write A Ì B and say that A is a proper subset of B For A Ì B to be true, it must be the case that "x ((x Î A) (x Î B)) Ù $x ((x Î B) Ù (x Ï A))

18 Subsets: 8 Quick Examples: {,2,3} Í {,2,3,4,5} {,2,3} Ì {,2,3,4,5} Is Æ Í {,2,3}? Is Æ Î {,2,3}? Is Æ Í {Æ,,2,3}? Is Æ Î {Æ,,2,3}? Yes! No! Yes! Yes!

19 Subsets: 9 Quiz Time: Is {x} Î {x,{x}}? Is {x} Í {x,{x}}? Is {x} Í {x}? Is {x} Î {x}?

20 Finite and Infinite Sets: 2 Finite set Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by S. A È B = A + B - A Ç B Infinite set A set is said to be infinite if it is not finite. For example, the set of positive integers is infinite. N.B. We only count unrepeated elements

21 Cardinality: 2 Find S = {,2,3}, S = {3,3,3,3,3}, S = Æ, S = 3. S = S =. S = { Æ, {Æ}, {Æ,{Æ}} }, S = 3. S = {,,2,3, }, S is infinite

22 Sets: 22 Ways to Define Sets: Explicitly: {John, Paul, George, Ringo} Implicitly: {,2,3, }, or {2,3,5,7,,3,7, } Set builder: { x : x is prime }, { x x is odd }. In general { x : P(x) is true }, where P(x) is some description of the set.

23 The power of a set: 23 Many problems involve testing all combinations of elements of a set to see if they satisfy some property. To consider all such combinations of elements of a set S, we build a new set that has as its members all the subsets of S. Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by P(S). if a set has n elements, then the power has 2 n elements.

24 The power of a set: 24 Example: What is the power set of the set {,, 2}? P({,,2}) is the set of all subsets of {,, 2} P({,,2})= {Æ, {},{},{2},{,},{,2},{,2},{,,2}} What is the power set of the empty set? What is the power set of the set {Æ}? P(Æ)= {Æ} P({Æ})= {Æ,{Æ}} N.B. the power set of any subset has at least two elements The null set and the set itself

25 The Power Set: 25 Quick Quiz: Find the power set of the following: S = {a}, S = {a,b}, S = Æ, S = {Æ,{Æ}},

26 Cartesian Products: 26 The order of elements in a collection is often important. Because sets are unordered, a different structure is needed to represent ordered collections. This is provided by ordered n-tuples. The ordered n-tuple (a, a2,..., a n ) is the ordered collection that has a as its first element, a 2 as its second element,..., and a n as its n th element.

27 Cartesian Products: 27 Let A and B be sets. The Cartesian product of A and B, denoted by A B, is the set of all ordered pairs (a, b), where aîa and bîb. A B = {(a, b) a Î A Ù b Î B}. A A 2 A n= {(a, a 2,, a n ) a i ÎA i for i=,2,,n}. A B not equal to B A Example : A={,2}, B={3,4} A B={(,3),(,4),(2,3),(2,4)} B A={(3,),(3,2),(4,),(4,2)}

28 Cartesian Products: 28 Example: What is the Cartesian product A B C, where A = {, }, B = {, 2}, and C = {,, 2}? AxBxC = {(,,), (,,), (,,2), (,2,), (,2,), (,2,2), (,,), (,,), (,,2), (,2,), (,2,), (,2,2)}

29 29 Sets and sets operations Sets Operations Reading: Ch:2.2/ Pages: 2-3

30 UNION: 3 The union of two sets A and B is: A È B = { x : x Î A v x Î B} If A = {, 2, 3}, and B = {2, 4}, then A È B = {,2,3,4} B A

31 Intersection: 3 The intersection of two sets A and B is: A Ç B = { x : x Î A Ù x Î B} If A = {Charlie, Lucy, Linus}, and B = {Lucy, Desi}, then B A Ç B = {Lucy} A

32 Intersection: 32 If A = {x : x is a US president}, and B = {x : x is deceased}, then A Ç B = {x : x is a deceased US president} B A

33 Disjoint: 33 If A = {x : x is a US president}, and B = {x : x is in this room}, then A Ç B = {x : x is a US president in this room} = B A Sets whose intersection is empty are called disjoint sets

34 Complement: 34 The complement of a set A is: A" = A = { x : x Ï A} If A = {x : x is bored}, then A" = {x : x is not bored} = Æ A Í B = B Í A U A Æ = U and U = Æ

35 Difference: 35 The set difference, A - B, is: U B A A - B = { x : x Î A Ù x Ï B } A - B = A Ç B"

36 Symmetric Difference: 36 The symmetric difference, A Å B, is: A Å B = { x : (x Î A Ù x Ï B) v (x Î B Ù x Ï A)} = (A - B) È (B - A) U B A Like exclusive or

37 Symmetric Difference: 37 Example: Let A = {,2,3,4,5,6,7} B = {3,4,p,q,r,s} Then we have A È B = {,2,3,4,5,6,7,p,q,r,s} A Ç B = {3,4} We get A Å B = {,2,5,6,7,p,q,r,s}

38 38 TABLE : Set Identities Identity A U Æ = A A Ç U = A A U U = U A Ç Æ = Æ A È A = A A Ç A = A (A) = A A È B = B È A A Ç B = B Ç A A È (B È C) = (A È B) È C A Ç (B Ç C) = (A Ç B) Ç C A Ç (B U C) = (A Ç B) È (A Ç C) A È (B Ç C) = (A U B) Ç (A U C) A U B = A Ç B A Ç B = A U B A È (A Ç B) = A A Ç (A È B) = A A È A = U A Ç A = Æ Name Identity laws Domination laws Idempotent laws Complementation laws Commutative laws Associative laws Distributive laws De Morgan s laws Absorption laws Complement laws

39 39 Let s proof one of the Identities Using a Membership Table A Ç (B È C) = (A Ç B) È (A Ç C) TABLE 2: A Membership Table for the Distributive Property (A Ç B) È (A Ç C) A Ç C A Ç B A Ç (B È C) B È C C B A

40 Exercise : 4 List the members of these sets: a) {x x is a real number such that x² = } b) {x x is a positive integer less than 2} c) {x x is the square of an integer and x < } d) {x x is an integer such that x² = 2}

41 Exercise 2: 4 Determine whether each of these pairs of sets are equal: a) {4, 3, 3, 7, 4, 7, 7, 3}, {4, 3, 7} b) {{}}, {, {2}} c) Æ, {Æ}

42 Exercise 3: 42 Determine whether these statements are true or false. a) b) {} c) {} d) {} e) {} {} f) {} {} g) { } { }

43 Exercise 4: 43 Use a Venn diagram to illustrate the relationships A B and B C.

44 Exercise 5: 44 What is the cardinality of each of these sets? a) {a} b) {{a}} c) {, { }} d) {a, {a}, {a, {a}}}

45 Exercise 6: 45 Let A = {, 2, 3, 4, 5} and B = {, 3, 6}. Find : a) A B b) A B c) A B d) B A

46 Exercise 7: 46 For U = {, 2,3, 4,5,6,7,8,9,} let A = {, 2,3,4,5}, B = {,2, 4,8}, C = {, 2,3,5,7}, and D = {2, 4,6,8}. Determine each of the following: a) (A B) C = b) A (B C)= c) C D = d) (A B) C = e) A (B C)= f) (B C) D = g) B (C D)= h) (A B) (C D)= i) A B =

47 Exercise 8: 47 Draw the VENN DIAGRAM of these sets and find (A B) C and Bʹ

48 Exercise 9: 48 Given the Universal set U={positive integers not larger than 2}, and the sets : A={positive integers not more than 6} B={3,4,6,7}, C={5,6,7,8,9,}, Find : i) A U B = ii) A B = iii) P(A-B)=Power set of (A-B)=

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

SET DEFINITION 1 elements members

SET DEFINITION 1 elements members SETS SET DEFINITION 1 Unordered collection of objects, called elements or members of the set. Said to contain its elements. We write a A to denote that a is an element of the set A. The notation a A denotes

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

Set and Set Operations

Set and Set Operations Set and Set Operations Introduction A set is a collection of objects. The objects in a set are called elements of the set. A well defined set is a set in which we know for sure if an element belongs to

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee Sets Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Sets Sets A set is an unordered collection of objects, called elements, without duplication. We write a A to denote that a is an element

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecture 2: Basic Structures: Set Theory MING GAO DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 18, 2017 Outline 1 Set Concepts 2 Set Operations 3 Application

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example Sets Slides by Christopher M. ourke Instructor: erthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31 Sets MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Sets Fall 2014 1 / 31 Outline 1 Sets Introduction Cartesian Products Subsets Power Sets Union, Intersection, Difference

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

Today s Topics. What is a set?

Today s Topics. What is a set? Today s Topics Introduction to set theory What is a set? Set notation Basic set operations What is a set? Definition: A set is an unordered collection of objects Examples: Sets can contain items of mixed

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

c) the set of students at your school who either are sophomores or are taking discrete mathematics

c) the set of students at your school who either are sophomores or are taking discrete mathematics Exercises Exercises Page 136 1. Let A be the set of students who live within one mile of school and let B be the set of students who walk to classes. Describe the students in each of these sets. a) A B

More information

Introduction. Sets and the Real Number System

Introduction. Sets and the Real Number System Sets: Basic Terms and Operations Introduction Sets and the Real Number System Definition (Set) A set is a well-defined collection of objects. The objects which form a set are called its members or Elements.

More information

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets.

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets. SETS A set is a file of objects which have at least one property in common. The objects of the set are called elements. Sets are notated with capital letters K, Z, N, etc., the elements are a, b, c, d,

More information

2/18/14. Uses for Discrete Math in Computer Science. What is discrete? Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2.

2/18/14. Uses for Discrete Math in Computer Science. What is discrete? Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2. Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2.3) TOPICS Discrete math Set Definition Set Operations Tuples Digital computers are based on discrete units of data (bits). Therefore,

More information

1 of 7 7/15/2009 3:40 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 1. Sets Poincaré's quote, on the title page of this chapter could not be more wrong (what was he thinking?). Set theory

More information

2.1 Symbols and Terminology

2.1 Symbols and Terminology 2.1 Symbols and Terminology A is a collection of objects or things. The objects belonging to the are called the, or. - : there is a way of determining for sure whether a particular item is an element of

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

SEVENTH EDITION and EXPANDED SEVENTH EDITION

SEVENTH EDITION and EXPANDED SEVENTH EDITION SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 2-1 Chapter 2 Sets 2.1 Set Concepts Set A collection of objects, which are called elements or members of the set. Listing the elements of a set inside

More information

Sets and set operations

Sets and set operations CS 44 Discrete Mathematics for CS Lecture Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Course administration Homework 3: Due today Homework 4: Due next week on Friday,

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

CS 1200 Discrete Math Math Preliminaries. A.R. Hurson 323 CS Building, Missouri S&T

CS 1200 Discrete Math Math Preliminaries. A.R. Hurson 323 CS Building, Missouri S&T CS 1200 Discrete Math A.R. Hurson 323 CS Building, Missouri S&T hurson@mst.edu 1 Course Objective: Mathematical way of thinking in order to solve problems 2 Variable: holder. A variable is simply a place

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

Chapter 2: Sets. Diana Pell. In the roster method: elements are listed between braces, with commas between the elements

Chapter 2: Sets. Diana Pell. In the roster method: elements are listed between braces, with commas between the elements Chapter 2: Sets Diana Pell 2.1: The Nature of Sets Set: any collection of elements. Elements: objects of the set. In the roster method: elements are listed between braces, with commas between the elements

More information

The Language of Sets and Functions

The Language of Sets and Functions MAT067 University of California, Davis Winter 2007 The Language of Sets and Functions Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (January 7, 2007) 1 The Language of Sets 1.1 Definition and Notation

More information

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets.

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets. Sets A B C This Lecture We will first introduce some basic set theory before we do counting. Basic Definitions Operations on Sets Set Identities Defining Sets Definition: A set is an unordered collection

More information

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say Sets 1 Where does mathematics start? What are the ideas which come first, in a logical sense, and form the foundation for everything else? Can we get a very small number of basic ideas? Can we reduce it

More information

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set Outline CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets rthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright rthur G. Werschulz, 2017.

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Math Week in Review #5

Math Week in Review #5 Math 141 Spring 2006 c Heather Ramsey Page 1 Math 141 - Week in Review #5 Section 4.1 - Simplex Method for Standard Maximization Problems A standard maximization problem is a linear programming problem

More information

Definition. A set is a collection of objects. The objects in a set are elements.

Definition. A set is a collection of objects. The objects in a set are elements. Section 1.1: Sets Definition A set is a collection of objects. The objects in a set are elements. Definition A set is a collection of objects. The objects in a set are elements. Examples: {1, cat, ψ} (Sets

More information

COLLEGE ALGEBRA. Intro, Sets of Real Numbers, & Set Theory

COLLEGE ALGEBRA. Intro, Sets of Real Numbers, & Set Theory COLLEGE LGER y: Sister Mary Rebekah www.survivormath.weebly.com Cornell-Style Fill in the lank Notes and Teacher s Key Intro, Sets of Real Numbers, & Set Theory 1 Vocabulary Workshop SIMPLIFY Expressions

More information

Math Week in Review #5. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Math Week in Review #5. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both. Math 166 Fall 2006 c Heather Ramsey Page 1 Math 166 - Week in Review #5 Sections A.1 and A.2 - Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that can

More information

11 Sets II Operations

11 Sets II Operations 11 Sets II Operations Tom Lewis Fall Term 2010 Tom Lewis () 11 Sets II Operations Fall Term 2010 1 / 12 Outline 1 Union and intersection 2 Set operations 3 The size of a union 4 Difference and symmetric

More information

Figure 1: From Left to Right, General Venn Diagrams for One, Two, and Three Sets

Figure 1: From Left to Right, General Venn Diagrams for One, Two, and Three Sets 2.3. VENN DIAGRAMS & SET OPERATIONS In this section we introduce Venn diagrams and define four basic operations on sets. We also present some important properties related to these operations. Venn Diagrams

More information

1.2 Venn Diagrams and Partitions

1.2 Venn Diagrams and Partitions 1.2 Venn Diagrams and Partitions Mark R. Woodard Furman U 2010 Mark R. Woodard (Furman U) 1.2 Venn Diagrams and Partitions 2010 1 / 9 Outline 1 Venn Diagrams 2 Partitions 3 Fundamentals of Counting Mark

More information

In this section we take an aside from the normal discussion in algebra.

In this section we take an aside from the normal discussion in algebra. 1.5 Set Notation In this section we take an aside from the normal discussion in algebra. We want to take a look at the topic of sets and set notation. The reason we want to do this is so that as we encounter

More information

What is a Set? Set Theory. Set Notation. Standard Sets. Standard Sets. Part 1.1. Organizing Information

What is a Set? Set Theory. Set Notation. Standard Sets. Standard Sets. Part 1.1. Organizing Information Set Theory What is a Set? Part 1.1 Organizing Information What is a Set? Set Notation A set is an unordered collection of objects The collection objects are also called members or "elements" One of the

More information

Sets and set operations. Lecture 5 ICOM 4075

Sets and set operations. Lecture 5 ICOM 4075 Sets and set operations Lecture 5 ICOM 4075 Reviewing sets s defined in a previous lecture, a setis a collection of objects that constitute the elementsof the set We say that a set containsits elements,

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

Question7.How many proper subsets in all are there if a set contains (a) 7 elements (b) 4 elements

Question7.How many proper subsets in all are there if a set contains (a) 7 elements (b) 4 elements Question1. Write the following sets in roster form: 1. A={z: z=3x-8, x W and x0 and x is a multiple of 3 less than 100} Question2. Write the following

More information

Sets. X. Zhang Dept. of Computer & Information Sciences Fordham University

Sets. X. Zhang Dept. of Computer & Information Sciences Fordham University Sets! X. Zhang Dept. of Computer & Information Sciences Fordham University 1 Outline on sets! Basics!! Specify a set by enumerating all elements!! Notations!! Cardinality!! Venn Diagram!! Relations on

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS 2-1Numeration Systems Hindu-Arabic Numeration System Tally Numeration System Egyptian Numeration System Babylonian Numeration System Mayan Numeration System Roman Numeration System Other Number Base Systems

More information

Section Sets and Set Operations

Section Sets and Set Operations Section 6.1 - Sets and Set Operations Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

More information

1 Sets, Fields, and Events

1 Sets, Fields, and Events CHAPTER 1 Sets, Fields, and Events B 1.1 SET DEFINITIONS The concept of sets play an important role in probability. We will define a set in the following paragraph. Definition of Set A set is a collection

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 14: Set Theory: Definitions and Properties 1. Let C = {n Z n = 6r 5 for

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

CS402 - Theory of Automata Glossary By

CS402 - Theory of Automata Glossary By CS402 - Theory of Automata Glossary By Acyclic Graph : A directed graph is said to be acyclic if it contains no cycles. Algorithm : A detailed and unambiguous sequence of instructions that describes how

More information

Relational terminology. Databases - Sets & Relations. Sets. Membership

Relational terminology. Databases - Sets & Relations. Sets. Membership Relational terminology Databases - & Much of the power of relational databases comes from the fact that they can be described analysed mathematically. In particular, queries can be expressed with absolute

More information

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning What You Will Learn Inductive and deductive reasoning processes 1.1-2 Natural Numbers The set of natural numbers is also called the set of counting numbers. N = {1, 2, 3,

More information

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth Computer Science and Mathematics Part I: Fundamental Mathematical Concepts Winfried Kurth http://www.uni-forst.gwdg.de/~wkurth/csm17_home.htm 1. Mathematical Logic Propositions - can be either true or

More information

LECTURE 8: SETS. Software Engineering Mike Wooldridge

LECTURE 8: SETS. Software Engineering Mike Wooldridge LECTURE 8: SETS Mike Wooldridge 1 What is a Set? The concept of a set is used throughout mathematics; its formal definition matches closely our intuitive understanding of the word. Definition: A set is

More information

Set theory is a branch of mathematics that studies sets. Sets are a collection of objects.

Set theory is a branch of mathematics that studies sets. Sets are a collection of objects. Set Theory Set theory is a branch of mathematics that studies sets. Sets are a collection of objects. Often, all members of a set have similar properties, such as odd numbers less than 10 or students in

More information

Lecture 6,

Lecture 6, Lecture 6, 4.16.2009 Today: Review: Basic Set Operation: Recall the basic set operator,!. From this operator come other set quantifiers and operations:!,!,!,! \ Set difference (sometimes denoted, a minus

More information

CS Bootcamp Boolean Logic Autumn 2015 A B A B T T T T F F F T F F F F T T T T F T F T T F F F

CS Bootcamp Boolean Logic Autumn 2015 A B A B T T T T F F F T F F F F T T T T F T F T T F F F 1 Logical Operations 1.1 And The and operator is a binary operator, denoted as, &,, or sometimes by just concatenating symbols, is true only if both parameters are true. A B A B F T F F F F The expression

More information

Lectures on Order and Topology

Lectures on Order and Topology Lectures on Order and Topology Antonino Salibra 17 November 2014 1 Topology: main definitions and notation Definition 1.1 A topological space X is a pair X = ( X, OX) where X is a nonempty set and OX is

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

1. The collection of the vowels in the word probability. 2. The collection of real numbers that satisfy the equation x 9 = 0.

1. The collection of the vowels in the word probability. 2. The collection of real numbers that satisfy the equation x 9 = 0. C HPTER 1 SETS I. DEFINITION OF SET We begin our study of probability with the disussion of the basi onept of set. We assume that there is a ommon understanding of what is meant by the notion of a olletion

More information

Problem One: A Quick Algebra Review

Problem One: A Quick Algebra Review CS103A Winter 2019 Solutions for Week One Handout 01S Problem One: A Quick Algebra Review In the first week of CS103, we'll be doing a few proofs that will require some algebraic manipulations and reasoning

More information

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning What You Will Learn Inductive and deductive reasoning processes 1.1-2 Natural Numbers The set of natural numbers is also called the set of counting numbers. N = {1, 2, 3,

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Summary of Course Coverage

Summary of Course Coverage CS-227, Discrete Structures I Spring 2006 Semester Summary of Course Coverage 1) Propositional Calculus a) Negation (logical NOT) b) Conjunction (logical AND) c) Disjunction (logical inclusive-or) d) Inequalities

More information

COMS 1003 Fall Introduction to Computer Programming in C. Bits, Boolean Logic & Discrete Math. September 13 th

COMS 1003 Fall Introduction to Computer Programming in C. Bits, Boolean Logic & Discrete Math. September 13 th COMS 1003 Fall 2005 Introduction to Computer Programming in C Bits, Boolean Logic & Discrete Math September 13 th Hello World! Logistics See the website: http://www.cs.columbia.edu/~locasto/ Course Web

More information

Calculating Cardinalities

Calculating Cardinalities Math Circle Monday March 20, 2017 Calculating Cardinalities Martin Zeman To say that a set A has 5 elements means that we can write the elements of A as a list a 1, a 2, a 3, a 4, a 5 in a way that (a)

More information

IB Sets and Venn Diagram Questions- Package #1

IB Sets and Venn Diagram Questions- Package #1 I Sets and Venn Diagram Questions- Package #1 1. is the set of all the positive integers less than or equal to 12., and C are subsets of. = {1, 2, 3, 4, 6,12} = {odd integers} C = {5, 6, 8} (a) Write down

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012 CMPSCI 250: Introduction to Computation Lecture #7: Quantifiers and Languages 6 February 2012 Quantifiers and Languages Quantifier Definitions Translating Quantifiers Types and the Universe of Discourse

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

COUNTING AND PROBABILITY

COUNTING AND PROBABILITY CHAPTER 9 COUNTING AND PROBABILITY Copyright Cengage Learning. All rights reserved. SECTION 9.3 Counting Elements of Disjoint Sets: The Addition Rule Copyright Cengage Learning. All rights reserved. Counting

More information

Let A(x) be x is an element of A, and B(x) be x is an element of B.

Let A(x) be x is an element of A, and B(x) be x is an element of B. Homework 6. CSE 240, Fall, 2014 Due, Tuesday October 28. Can turn in at the beginning of class, or earlier in the mailbox labelled Pless in Bryan Hall, room 509c. Practice Problems: 1. Given two arbitrary

More information

Fault Tree Analysis (Minimal Cutset)

Fault Tree Analysis (Minimal Cutset) Fault Tree Analysis (Minimal Cutset) Arshad Ahmad arshad@utm.my asic Set Theory 2 Sets Definition. A Set is any well defined collection of objects. Definition. The elements of a set are the objects in

More information

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation CS 441 Discrete Mathematics for CS Lecture 24 Relations IV Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Equivalence relation Definition: A relation R on a set A is called an equivalence relation

More information

LECTURE NOTES ON SETS

LECTURE NOTES ON SETS LECTURE NOTES ON SETS PETE L. CLARK Contents 1. Introducing Sets 1 2. Subsets 5 3. Power Sets 5 4. Operations on Sets 6 5. Families of Sets 8 6. Partitions 10 7. Cartesian Products 11 1. Introducing Sets

More information

The Size of the Cantor Set

The Size of the Cantor Set The Size of the Cantor Set Washington University Math Circle November 6, 2016 In mathematics, a set is a collection of things called elements. For example, {1, 2, 3, 4}, {a,b,c,...,z}, and {cat, dog, chicken}

More information

CHAPTER 3 FUZZY RELATION and COMPOSITION

CHAPTER 3 FUZZY RELATION and COMPOSITION CHAPTER 3 FUZZY RELATION and COMPOSITION Crisp relation! Definition (Product set) Let A and B be two non-empty sets, the prod uct set or Cartesian product A B is defined as follows, A B = {(a, b) a A,

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

CS314: FORMAL LANGUAGES AND AUTOMATA THEORY L. NADA ALZABEN. Lecture 1: Introduction

CS314: FORMAL LANGUAGES AND AUTOMATA THEORY L. NADA ALZABEN. Lecture 1: Introduction CS314: FORMAL LANGUAGES AND AUTOMATA THEORY L. NADA ALZABEN Lecture 1: Introduction Introduction to the course 2 Required Text Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, BY MICHAEL

More information

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or elements of the set. a) Use capital letters to stand for sets

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

2 Sets. 2.1 Notation. last edited January 26, 2016

2 Sets. 2.1 Notation. last edited January 26, 2016 2 Sets Sets show up in virtually every topic in mathematics, and so understanding their basics is a necessity for understanding advanced mathematics. As far as we re concerned, the word set means what

More information

The Intersection of Two Sets

The Intersection of Two Sets Venn Diagrams There are times when it proves useful or desirable for us to represent sets and the relationships among them in a visual manner. This can be beneficial for a variety of reasons, among which

More information

Section 6.3: Further Rules for Counting Sets

Section 6.3: Further Rules for Counting Sets Section 6.3: Further Rules for Counting Sets Often when we are considering the probability of an event, that event is itself a union of other events. For example, suppose there is a horse race with three

More information

Sets. {1, 2, 3, Calvin}.

Sets. {1, 2, 3, Calvin}. ets 2-24-2007 Roughly speaking, a set is a collection of objects. he objects are called the members or the elements of the set. et theory is the basis for mathematics, and there are a number of axiom systems

More information

Figure 1.1: This is an illustration of a generic set and its elements.

Figure 1.1: This is an illustration of a generic set and its elements. Chapter 1 Mathematical Review et theory is now generally accepted as the foundation of modern mathematics, and it plays an instrumental role in the treatment of probability. Unfortunately, a simple description

More information

Binary Relations McGraw-Hill Education

Binary Relations McGraw-Hill Education Binary Relations A binary relation R from a set A to a set B is a subset of A X B Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B. We can also represent

More information

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan MATH 22 Lecture M: 10/14/2003 MORE ABOUT FUNCTIONS Form follows function. Louis Henri Sullivan This frightful word, function, was born under other skies than those I have loved. Le Corbusier D ora innanzi

More information

10/11/2018. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings

10/11/2018. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings Sometimes, relations define an order on the elements in a set. Definition: A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set

More information

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula Homework 1 MTH 4590 Spring 2018 1. Chapter 1, # 1: Prove that for all sets,, C, the formula ( C) = ( ) ( C) is true. Proof : It suffices to show that ( C) ( ) ( C) and ( ) ( C) ( C). ssume that x ( C),

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

CS February 17

CS February 17 Discrete Mathematics CS 26 February 7 Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x n,..x n ) B, F (x,..x n ) = G (x,..x n ) Example: F(x,y,z) = x(y+z), G(x,y,z)

More information