Lecture 14 Notes. Brent Edmunds

Size: px
Start display at page:

Download "Lecture 14 Notes. Brent Edmunds"

Transcription

1 Lecture 14 Notes Brent Edmunds October 5, 2012

2 Table of Contents 1 Sins of Coding Accessing Undeclared Variables and Pointers Playing With What Isn t Yours The Heap: The Stack: Freeing Memory The Heap: The Stack: Valgrind Types of Leaks Definitely Lost Still Reachable and Indirect Loss Possibly lost Cache Grind and Call Grind

3 1. Sins of Coding Programming in C leaves you very vulnerable. Below, in no particular order, are commons mistakes that will cause unknown or possibly malicious behavior in your code. 1.1 Accessing Undeclared Variables and Pointers # include < stdio.h> # include < stdlib.h> int main () int i; int *c; int a [2]; int *b=( int *) malloc ( sizeof ( int ) *2) ; for (i =0;i <2; i ++) printf ("%d\n",a[i]); printf ("%d\n",b[i]); printf ("%d\n",*c); When a variable is first initialized, it can contain anything[3]. It might be nothing, it might be utter junk. When a pointer is initialized, there is no telling where it is pointing. Is it pointing to junk? Is it pointing to NULL? Can you even access it? Who knows. 1.2 Playing With What Isn t Yours void foo () int a [2]; int *b=( int *) malloc ( sizeof ( int ) *2) ; int i; /* Accessing */ for (i =0;i <3; i ++) printf ("%d\n",a[-i]); printf ("%d\n",b[i]); /* Corrupting */ for (i =0;i <3; i ++) a[-i]=i; b[i]=i; free (b); 3

4 Memory can either be allocated from the stack or the heap. This gives us a couple distinct flavors of error The Heap: Accessing: Always remember, you are not the only one using the heap. When the variable i in the above code hits three, the program will attempt to access memory in the heap it doesn t own. That memory could belong to veryimportantprogram.exe, or could be unused. In the former case, you will receive a segmentation fault[2], and in the latter, you will get junk. Corrupting: Always remember, you are not the only one using the heap. When the variable i in the above code hits three, the program will attempt to access memory in the heap it doesn t own. That memory could belong to wow.exe, or could be unused. In the former case, you will receive a segmentation fault. In the latter, you will have overwritten data to something that you may never be able to access again, as it could be allocated to another program. Worse, you have overwritten something another program will not overwrite, but use. Look up heap overflow for more information on this The Stack: Accessing: Junk, but from the stack. Corrupting: The stack has a very specific structure. Buffer overflows in the stack invariably mean overwriting pertinent data, possibly not in the current stack frame. Refer to past notes for more information about the stack. It is possible to destroy the structure of the stack frame by overwriting the stack pointer. Now, if you feel creative, you can try and guess the stack size and tamper with other variables, or change where pointers point. This can be used maliciously. If you break the stack hard enough, you will core dump. 1.3 Freeing Memory The Heap: If you attempt to free memory from the heap you already freed, you have no idea if it is free or if it has been allocated. Have a core dump for your trouble. Any and all memory you allocated from the heap[3], should be freed when you are done using it. Having code that continually allocates memory without deallocating results in longer runtimes, and program crashes. There is a very good argument for not using pointer arithmetic when it comes to memory from the heap. See the below code. void bar () int * a= malloc ( sizeof ( int ) *2) ; int i; for (i =0;i <2; i ++) *a=i; a ++; 4

5 free (a); It looks like you are freeing the memory you allocated, but it is in fact freeing a block of memory 4 bytes past the memory allocated. Note, you cannot use the free command from inside of a block of memory. void bar () int * a= malloc ( sizeof ( int ) *2) ; a=a +1; /* doesn t fly */ free (&a [1]) ; The Stack: You cannot free the stack. You cannot free the stack. You cannot free the stack. 5

6 2. Valgrind Valgrind[1] is a free program. To download, open the terminal and type sudo apt-get install valgrind. To run it on a piece of code hand it the executable. For instance, if I wanted to run valgrind on a piece of code foo.c: gcc foo.c -g -o foo valgrind./ foo Remember, always compile with -g when running valgrind. The -g flag will allow valgrind to be far more specific about where errors are occuring. So what does valgrind do? 1. It will intercept all writes that are illegal 2. It tracks all memory allocates 3. It suppresses errors of the same type 4. It provides a summary of leaks valgrind will not fix your problems for you. It will give you a list of problems and, possibly the general area in which they occur. The variety of error returns and cases are too numerous to be covered here. When in doubt, use intuition, guided by google, and informed by the user manual. What it will tell you, is how much memory you are leaking[1], and how. 2.1 Types of Leaks Definitely Lost The most common memory leak is a definite loss, allocated memory that is no longer pointed to. void foo () /* I have no way of freeing this memory */ int *a=( int *) malloc ( sizeof ( int )); Every time I call foo, I eat up 4 bytes of memory, as I have no way to free the memory allocated. But what about the other types of leak? Still Reachable and Indirect Loss Below is a horrible piece of code to demonstrate two of the types of leak that can occur, and how valgrind will report them. # include < stdlib.h> int *** foo () int *** array_matrix = malloc ( sizeof ( int ***) ); int ** matrix = malloc ( sizeof ( int **) ); int * row = malloc ( sizeof ( int *)); 6

7 array_matrix [0]= matrix ; array_matrix [0][0]= row ; array_matrix [0][0][0]=5; return array_ matrix ; main () int *** bar = foo (); This generates a pointer chain bar- matrix row- 5. Running the current code through valgrind will give you: ==4246== LEAK SUMMARY : ==4246== definitely lost : 0 bytes in 0 blocks ==4246== indirectly lost : 0 bytes in 0 blocks ==4246== possibly lost : 0 bytes in 0 blocks ==4246== still reachable : 12 bytes in 3 blocks ==4246== suppressed : 0 bytes in 0 blocks Still reachable means that you haven t lost any memory yet, as all of the memory allocated is accessable. In the above code, our pointer chain is unbroken, so it is still feasible to free all of the memory. There are 12 bytes, as a pointer is 4 bytes, and I have constructed 3 pointers. If you receive a still reachable leak, a couple frees will shore up your memory leaks. But, it pays to be very careful in how you free your memory. Currently, We know all of our allocated memory is reachable, and associated with the variable bar What happens if we free(bar)? ==4258== LEAK SUMMARY : ==4258== definitely lost : 4 bytes in 1 blocks ==4258== indirectly lost : 4 bytes in 1 blocks ==4258== possibly lost : 0 bytes in 0 blocks ==4258== still reachable : 0 bytes in 0 blocks ==4258== suppressed : 0 bytes in 0 blocks By freeing bar, we no longer have access to array, but array still points to row. We have lost row, as we cannot get to what points to it. This is called an Indirect Loss. Most often, indirect memory loss occurs a chain of pointers is broken[1]. Personally, I find them most often when structs have poorly defined deconstructors, and data structures have poorly written deletion functions. Of course, array is definitely lost, as nothing points to it Possibly lost See valgrind user manual, as an example will eat up a fair amount of space. Loosely, you need pointer chains, with a pointer to the inside of an allocated block of memory. 2.2 Cache Grind and Call Grind Valgrind comes with a couple of useful tools, Two of which are cache code profilers[1]. These profilers judge your codes interaction with the cache, a section of the cpu. So why do we care about code profiling? It guides code optimization. There is no reason to write an incredibly tight 7

8 Figure 2.1: example output from kcachegrind[4] piece of code, if there is no computational benefit. The output from cachegrind and callgrind allow the user to identify computational bottlenecks and inefficient code. As such, Callgrind and Cachegrind are things to use for optimizing, when disseminating code to the outside world. Cachgrind returns a flat profile of code, a profile that shows interaction with the cache at each function, on a function to function basis. Callgrind, being an extension of cachegrind, gives more information. Callgrind produces structured data that will identify not only the cost of a function, but takes into account all function calls within said function. To run callgrind/cachegrind: valgrind -- tool = callgrind [ callgrind options ] your - program [ program options ] valgrind -- tool = callgrind [ callgrind options ] your - program [ program options ] This generates an output file called callgrind.out. pid or cachegrind.out. pid. Frankly, reading this output file alone is horrible. Luckily, there is a program called kcachegrind[4] that provides a nice graphic interface to view what is going on in you code. It is available online for free. To run kcachegrind: kcachegrind callgrind. out.<pid > 8

9 Bibliography [1] Valgrind Developers. Valgrind [2] Greg Ippolito. C/c++ memory corruption and memory leaks [3] Manish Virmani. Pointers and memory leaks in c [4] Josef Weidendorfer. Kcachegrind

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community http://csc.cs.rit.edu History and Evolution of Programming Languages 1. Explain the relationship between machine

More information

TI2725-C, C programming lab, course

TI2725-C, C programming lab, course Valgrind tutorial Valgrind is a tool which can find memory leaks in your programs, such as buffer overflows and bad memory management. This document will show per example how Valgrind responds to buggy

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

6.S096: Introduction to C/C++

6.S096: Introduction to C/C++ 6.S096: Introduction to C/C++ Frank Li, Tom Lieber, Kyle Murray Lecture 4: Data Structures and Debugging! January 17, 2012 Today Memory Leaks and Valgrind Tool Structs and Unions Opaque Types Enum and

More information

Use Dynamic Analysis Tools on Linux

Use Dynamic Analysis Tools on Linux Use Dynamic Analysis Tools on Linux FTF-SDS-F0407 Gene Fortanely Freescale Software Engineer Catalin Udma A P R. 2 0 1 4 Software Engineer, Digital Networking TM External Use Session Introduction This

More information

EE355 Lab 5 - The Files Are *In* the Computer

EE355 Lab 5 - The Files Are *In* the Computer 1 Introduction In this lab you will modify a working word scramble game that selects a word from a predefined word bank to support a user-defined word bank that is read in from a file. This is a peer evaluated

More information

CS 11 C track: lecture 5

CS 11 C track: lecture 5 CS 11 C track: lecture 5 Last week: pointers This week: Pointer arithmetic Arrays and pointers Dynamic memory allocation The stack and the heap Pointers (from last week) Address: location where data stored

More information

Arrays and Memory Management

Arrays and Memory Management Arrays and Memory Management 1 Pointing to Different Size Objects Modern machines are byte-addressable Hardware s memory composed of 8-bit storage cells, each has a unique address A C pointer is just abstracted

More information

A heap, a stack, a bottle and a rack. Johan Montelius HT2017

A heap, a stack, a bottle and a rack. Johan Montelius HT2017 Introduction A heap, a stack, a bottle and a rack. Johan Montelius HT2017 In this assignment you re going to investigate the layout of a process; where are the different areas located and which data structures

More information

Week 9 Part 1. Kyle Dewey. Tuesday, August 28, 12

Week 9 Part 1. Kyle Dewey. Tuesday, August 28, 12 Week 9 Part 1 Kyle Dewey Overview Dynamic allocation continued Heap versus stack Memory-related bugs Exam #2 Dynamic Allocation Recall... Dynamic memory allocation allows us to request memory on the fly

More information

Kurt Schmidt. October 30, 2018

Kurt Schmidt. October 30, 2018 to Structs Dept. of Computer Science, Drexel University October 30, 2018 Array Objectives to Structs Intended audience: Student who has working knowledge of Python To gain some experience with a statically-typed

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

CS 31: Intro to Systems Pointers and Memory. Kevin Webb Swarthmore College October 2, 2018

CS 31: Intro to Systems Pointers and Memory. Kevin Webb Swarthmore College October 2, 2018 CS 31: Intro to Systems Pointers and Memory Kevin Webb Swarthmore College October 2, 2018 Overview How to reference the location of a variable in memory Where variables are placed in memory How to make

More information

Memory Allocation in C C Programming and Software Tools. N.C. State Department of Computer Science

Memory Allocation in C C Programming and Software Tools. N.C. State Department of Computer Science Memory Allocation in C C Programming and Software Tools N.C. State Department of Computer Science The Easy Way Java (JVM) automatically allocates and reclaims memory for you, e.g... Removed object is implicitly

More information

Scientific Programming in C IX. Debugging

Scientific Programming in C IX. Debugging Scientific Programming in C IX. Debugging Susi Lehtola 13 November 2012 Debugging Quite often you spend an hour to write a code, and then two hours debugging why it doesn t work properly. Scientific Programming

More information

Project 0: Implementing a Hash Table

Project 0: Implementing a Hash Table Project : Implementing a Hash Table CS, Big Data Systems, Spring Goal and Motivation. The goal of Project is to help you refresh basic skills at designing and implementing data structures and algorithms.

More information

ICHEC. Using Valgrind. Using Valgrind :: detecting memory errors. Introduction. Program Compilation TECHNICAL REPORT

ICHEC. Using Valgrind. Using Valgrind :: detecting memory errors. Introduction. Program Compilation TECHNICAL REPORT ICHEC TECHNICAL REPORT Mr. Ivan Girotto ICHEC Computational Scientist Stoney Compute Node Bull Novascale R422-E2 Using Valgrind :: detecting memory errors Valgrind is a suite of command line tools both

More information

ch = argv[i][++j]; /* why does ++j but j++ does not? */

ch = argv[i][++j]; /* why does ++j but j++ does not? */ CMPS 12M Introduction to Data Structures Lab Lab Assignment 4 The purpose of this lab assignment is to get more practice programming in C, including the character functions in the library ctype.h, and

More information

Project 0: Implementing a Hash Table

Project 0: Implementing a Hash Table CS: DATA SYSTEMS Project : Implementing a Hash Table CS, Data Systems, Fall Goal and Motivation. The goal of Project is to help you develop (or refresh) basic skills at designing and implementing data

More information

Praktische Aspekte der Informatik

Praktische Aspekte der Informatik Praktische Aspekte der Informatik Moritz Mühlhausen Prof. Marcus Magnor Optimization valgrind, gprof, and callgrind Further Reading Warning! The following slides are meant to give you a very superficial

More information

CMSC 341 Lecture 2 Dynamic Memory and Pointers

CMSC 341 Lecture 2 Dynamic Memory and Pointers CMSC 341 Lecture 2 Dynamic Memory and Pointers Park Sects. 01 & 02 Based on earlier course slides at UMBC Today s Topics Stack vs Heap Allocating and freeing memory new and delete Memory Leaks Valgrind

More information

Linked data structures. EECS 211 Winter 2019

Linked data structures. EECS 211 Winter 2019 Linked data structures EECS 211 Winter 2019 2 Initial code setup $ cd eecs211 $ curl $URL211/lec/07linked.tgz tar zx $ cd 07linked Preliminaries 3 4 Two views on malloc and free The client/c view: malloc(n)

More information

unsigned char memory[] STACK ¼ 0x xC of address space globals function KERNEL code local variables

unsigned char memory[] STACK ¼ 0x xC of address space globals function KERNEL code local variables Graded assignment 0 will be handed out in section Assignment 1 Not that bad Check your work (run it through the compiler) Factorial Program Prints out ENTERING, LEAVING, and other pointers unsigned char

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 4 Introduction to C (pt 2) 2014-09-08!!!Senior Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia! C most popular! TIOBE programming

More information

Interlude: Memory API

Interlude: Memory API 13 Interlude: Memory API In this interlude, we discuss the memory allocation interfaces in UNIX systems. The interfaces provided are quite simple, and hence the chapter is short and to the point 1. 13.1

More information

CSci 4061 Introduction to Operating Systems. Programs in C/Unix

CSci 4061 Introduction to Operating Systems. Programs in C/Unix CSci 4061 Introduction to Operating Systems Programs in C/Unix Today Basic C programming Follow on to recitation Structure of a C program A C program consists of a collection of C functions, structs, arrays,

More information

Pointers and Memory Management

Pointers and Memory Management Pointers and Memory Management Timo Karvi 2013 Timo Karvi () Pointers and Memory Management 2013 1 / 58 Memory and C I In most modern computers, main memory is divided into bytes, with each byte capable

More information

CS2141 Software Development using C/C++ Debugging

CS2141 Software Development using C/C++ Debugging CS2141 Software Development using C/C++ Debugging Debugging Tips Examine the most recent change Error likely in, or exposed by, code most recently added Developing code incrementally and testing along

More information

Lecture 4 September Required reading materials for this class

Lecture 4 September Required reading materials for this class EECS 261: Computer Security Fall 2007 Lecture 4 September 6 Lecturer: David Wagner Scribe: DK Moon 4.1 Required reading materials for this class Beyond Stack Smashing: Recent Advances in Exploiting Buffer

More information

High Performance Computing and Programming, Lecture 3

High Performance Computing and Programming, Lecture 3 High Performance Computing and Programming, Lecture 3 Memory usage and some other things Ali Dorostkar Division of Scientific Computing, Department of Information Technology, Uppsala University, Sweden

More information

Key C Topics: Tutorial Pointers, Dynamic Memory allocation, Valgrind and Makefile CS370

Key C Topics: Tutorial Pointers, Dynamic Memory allocation, Valgrind and Makefile CS370 Key C Topics: Tutorial Pointers, Dynamic Memory allocation, Valgrind and Makefile CS370 Outline Pointers in C & and * operators Pointers with Arrays and Strings Dynamic memory allocation malloc() and free()

More information

Data and File Structures Laboratory

Data and File Structures Laboratory Tools: GDB, Valgrind Assistant Professor Machine Intelligence Unit Indian Statistical Institute, Kolkata August, 2018 1 GDB 2 Valgrind A programmer s experience Case I int x = 10, y = 25; x = x++ + y++;

More information

CSE 333 Midterm Exam Sample Solution 7/28/14

CSE 333 Midterm Exam Sample Solution 7/28/14 Question 1. (20 points) C programming. For this question implement a C function contains that returns 1 (true) if a given C string appears as a substring of another C string starting at a given position.

More information

Dynamic memory allocation (malloc)

Dynamic memory allocation (malloc) 1 Plan for today Quick review of previous lecture Array of pointers Command line arguments Dynamic memory allocation (malloc) Structures (Ch 6) Input and Output (Ch 7) 1 Pointers K&R Ch 5 Basics: Declaration

More information

Stack Vulnerabilities. CS4379/5375 System Security Assurance Dr. Jaime C. Acosta

Stack Vulnerabilities. CS4379/5375 System Security Assurance Dr. Jaime C. Acosta 1 Stack Vulnerabilities CS4379/5375 System Security Assurance Dr. Jaime C. Acosta Part 1 2 3 An Old, yet Still Valid Vulnerability Buffer/Stack Overflow ESP Unknown Data (unused) Unknown Data (unused)

More information

Lecture 8 Dynamic Memory Allocation

Lecture 8 Dynamic Memory Allocation Lecture 8 Dynamic Memory Allocation CS240 1 Memory Computer programs manipulate an abstraction of the computer s memory subsystem Memory: on the hardware side 3 @ http://computer.howstuffworks.com/computer-memory.htm/printable

More information

CSCI-1200 Data Structures Spring 2016 Lecture 6 Pointers & Dynamic Memory

CSCI-1200 Data Structures Spring 2016 Lecture 6 Pointers & Dynamic Memory Announcements CSCI-1200 Data Structures Spring 2016 Lecture 6 Pointers & Dynamic Memory There will be no lecture on Tuesday, Feb. 16. Prof. Thompson s office hours are canceled for Monday, Feb. 15. Prof.

More information

High-performance computing and programming Intro to C on Unix/Linux. Uppsala universitet

High-performance computing and programming Intro to C on Unix/Linux. Uppsala universitet High-performance computing and programming Intro to C on Unix/Linux IT Uppsala universitet What is C? An old imperative language that remains rooted close to the hardware C is relatively small and easy

More information

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS Pages 792 to 800 Anna Rakitianskaia, University of Pretoria INITIALISING POINTER VARIABLES Pointer variables are declared by putting

More information

Section 7: Wait/Exit, Address Translation

Section 7: Wait/Exit, Address Translation William Liu October 15, 2014 Contents 1 Wait and Exit 2 1.1 Thinking about what you need to do.............................. 2 1.2 Code................................................ 2 2 Vocabulary 4

More information

CS 241 Data Organization Binary Trees

CS 241 Data Organization Binary Trees CS 241 Data Organization Binary Trees Brooke Chenoweth University of New Mexico Fall 2017 Binary Tree: Kernighan and Ritchie 6.5 Read a file and count the occurrences of each word. now is the time for

More information

DAY 3. CS3600, Northeastern University. Alan Mislove

DAY 3. CS3600, Northeastern University. Alan Mislove C BOOTCAMP DAY 3 CS3600, Northeastern University Slides adapted from Anandha Gopalan s CS132 course at Univ. of Pittsburgh and Pascal Meunier s course at Purdue Memory management 2 Memory management Two

More information

Processes. Johan Montelius KTH

Processes. Johan Montelius KTH Processes Johan Montelius KTH 2017 1 / 47 A process What is a process?... a computation a program i.e. a sequence of operations a set of data structures a set of registers means to interact with other

More information

CptS 360 (System Programming) Unit 4: Debugging

CptS 360 (System Programming) Unit 4: Debugging CptS 360 (System Programming) Unit 4: Debugging Bob Lewis School of Engineering and Applied Sciences Washington State University Spring, 2018 Motivation You re probably going to spend most of your code

More information

CSE351 Winter 2016, Final Examination March 16, 2016

CSE351 Winter 2016, Final Examination March 16, 2016 CSE351 Winter 2016, Final Examination March 16, 2016 Please do not turn the page until 2:30. Rules: The exam is closed-book, closed-note, etc. Please stop promptly at 4:20. There are 125 (not 100) points,

More information

CSC 1600 Memory Layout for Unix Processes"

CSC 1600 Memory Layout for Unix Processes CSC 16 Memory Layout for Unix Processes" 1 Lecture Goals" Behind the scenes of running a program" Code, executable, and process" Memory layout for UNIX processes, and relationship to C" : code and constant

More information

Memory Analysis tools

Memory Analysis tools Memory Analysis tools PURIFY The Necessity TOOL Application behaviour: Crashes intermittently Uses too much memory Runs too slowly Isn t well tested Is about to ship You need something See what your code

More information

However, in C we can group related variables together into something called a struct.

However, in C we can group related variables together into something called a struct. CIT 593: Intro to Computer Systems Lecture #21 (11/27/12) Structs Unlike Java, C++, and to some extent Python, C is not traditionally considered an objectoriented language. That is, there is no concept

More information

CS 137 Part 5. Pointers, Arrays, Malloc, Variable Sized Arrays, Vectors. October 25th, 2017

CS 137 Part 5. Pointers, Arrays, Malloc, Variable Sized Arrays, Vectors. October 25th, 2017 CS 137 Part 5 Pointers, Arrays, Malloc, Variable Sized Arrays, Vectors October 25th, 2017 Exam Wrapper Silently answer the following questions on paper (for yourself) Do you think that the problems on

More information

A process. the stack

A process. the stack A process Processes Johan Montelius What is a process?... a computation KTH 2017 a program i.e. a sequence of operations a set of data structures a set of registers means to interact with other processes

More information

Object-Oriented Programming for Scientific Computing

Object-Oriented Programming for Scientific Computing Object-Oriented Programming for Scientific Computing Dynamic Memory Management Ole Klein Interdisciplinary Center for Scientific Computing Heidelberg University ole.klein@iwr.uni-heidelberg.de 2. Mai 2017

More information

CS 103 Lab The Files are *In* the Computer

CS 103 Lab The Files are *In* the Computer CS 103 Lab The Files are *In* the Computer 1 Introduction In this lab you will modify a word scramble game so that instead of using a hardcoded word list, it selects a word from a file. You will learn

More information

6. Pointers, Structs, and Arrays. 1. Juli 2011

6. Pointers, Structs, and Arrays. 1. Juli 2011 1. Juli 2011 Einführung in die Programmierung Introduction to C/C++, Tobias Weinzierl page 1 of 50 Outline Recapitulation Pointers Dynamic Memory Allocation Structs Arrays Bubble Sort Strings Einführung

More information

Dynamic memory. EECS 211 Winter 2019

Dynamic memory. EECS 211 Winter 2019 Dynamic memory EECS 211 Winter 2019 2 Initial code setup $ cd eecs211 $ curl $URL211/lec/06dynamic.tgz tar zx $ cd 06dynamic 3 Oops! I made a mistake. In C, the declaration struct circle read_circle();

More information

Last week. Data on the stack is allocated automatically when we do a function call, and removed when we return

Last week. Data on the stack is allocated automatically when we do a function call, and removed when we return Last week Data can be allocated on the stack or on the heap (aka dynamic memory) Data on the stack is allocated automatically when we do a function call, and removed when we return f() {... int table[len];...

More information

6. Pointers, Structs, and Arrays. March 14 & 15, 2011

6. Pointers, Structs, and Arrays. March 14 & 15, 2011 March 14 & 15, 2011 Einführung in die Programmierung Introduction to C/C++, Tobias Weinzierl page 1 of 47 Outline Recapitulation Pointers Dynamic Memory Allocation Structs Arrays Bubble Sort Strings Einführung

More information

Manual Allocation. CS 1622: Garbage Collection. Example 1. Memory Leaks. Example 3. Example 2 11/26/2012. Jonathan Misurda

Manual Allocation. CS 1622: Garbage Collection. Example 1. Memory Leaks. Example 3. Example 2 11/26/2012. Jonathan Misurda Manual llocation Dynamic memory allocation is an obvious necessity in a programming environment. S 1622: Garbage ollection Many programming languages expose some functions or keywords to manage runtime

More information

Secure Programming Lecture 3: Memory Corruption I (Stack Overflows)

Secure Programming Lecture 3: Memory Corruption I (Stack Overflows) Secure Programming Lecture 3: Memory Corruption I (Stack Overflows) David Aspinall, Informatics @ Edinburgh 24th January 2017 Outline Roadmap Memory corruption vulnerabilities Instant Languages and Runtimes

More information

My malloc: mylloc and mhysa. Johan Montelius HT2016

My malloc: mylloc and mhysa. Johan Montelius HT2016 1 Introduction My malloc: mylloc and mhysa Johan Montelius HT2016 So this is an experiment where we will implement our own malloc. We will not implement the world s fastest allocator, but it will work

More information

Garbage Collection (1)

Garbage Collection (1) Garbage Collection (1) Advanced Operating Systems Lecture 7 This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/

More information

Object-Oriented Programming

Object-Oriented Programming iuliana@cs.ubbcluj.ro Babes-Bolyai University 2018 1 / 37 Overview 1 2 3 4 5 2 / 37 Questions we will answer today What is the difference between the stack and the heap? How can we allocate and free memory

More information

Computer Systems and Networks

Computer Systems and Networks LECTURE 7: PERFORMANCE MEASUREMENT Computer Systems and Networks Dr. Pallipuram (vpallipuramkrishnamani@pacific.edu) University of the Pacific Lab Schedule Today Lab 5 Performance Measurement is open Work

More information

Pointers and References

Pointers and References Steven Zeil October 2, 2013 Contents 1 References 2 2 Pointers 8 21 Working with Pointers 8 211 Memory and C++ Programs 11 212 Allocating Data 15 22 Pointers Can Be Dangerous 17 3 The Secret World of Pointers

More information

Valgrind. Philip Blakely. Laboratory for Scientific Computing, University of Cambridge. Philip Blakely (LSC) Valgrind 1 / 21

Valgrind. Philip Blakely. Laboratory for Scientific Computing, University of Cambridge. Philip Blakely (LSC) Valgrind 1 / 21 Valgrind Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) Valgrind 1 / 21 Part I Valgrind Philip Blakely (LSC) Valgrind 2 / 21 Valgrind http://valgrind.org/

More information

Memory Corruption 101 From Primitives to Exploit

Memory Corruption 101 From Primitives to Exploit Memory Corruption 101 From Primitives to Exploit Created by Nick Walker @ MWR Infosecurity / @tel0seh What is it? A result of Undefined Behaviour Undefined Behaviour A result of executing computer code

More information

Lecture 16 CSE July 1992

Lecture 16 CSE July 1992 Lecture 16 CSE 110 28 July 1992 1 Dynamic Memory Allocation We are finally going to learn how to allocate memory on the fly, getting more when we need it, a subject not usually covered in introductory

More information

Arrays and Pointers in C. Alan L. Cox

Arrays and Pointers in C. Alan L. Cox Arrays and Pointers in C Alan L. Cox alc@rice.edu Objectives Be able to use arrays, pointers, and strings in C programs Be able to explain the representation of these data types at the machine level, including

More information

CIS 190: C/C++ Programming. Lecture 3 Memory Management in C

CIS 190: C/C++ Programming. Lecture 3 Memory Management in C CIS 190: C/C++ Programming Lecture 3 Memory Management in C Outline Memory allocation Memory errors Debugging Makefiles Memory each process gets its own memory chunk, or address space 0x000000 Stack Function

More information

In Java we have the keyword null, which is the value of an uninitialized reference type

In Java we have the keyword null, which is the value of an uninitialized reference type + More on Pointers + Null pointers In Java we have the keyword null, which is the value of an uninitialized reference type In C we sometimes use NULL, but its just a macro for the integer 0 Pointers are

More information

Chapter IV Introduction to C for Java programmers

Chapter IV Introduction to C for Java programmers Chapter IV Introduction to C for Java programmers Now that we have seen the native instructions that a processor can execute, we will temporarily take a step up on the abstraction ladder and learn the

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 2

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 2 CIS 551 / TCOM 401 Computer and Network Security Spring 2007 Lecture 2 Announcements First project is on the web Due: Feb. 1st at midnight Form groups of 2 or 3 people If you need help finding a group,

More information

C Tutorial. Pointers, Dynamic Memory allocation, Valgrind, Makefile - Abhishek Yeluri and Yashwant Reddy Virupaksha

C Tutorial. Pointers, Dynamic Memory allocation, Valgrind, Makefile - Abhishek Yeluri and Yashwant Reddy Virupaksha C Tutorial Pointers, Dynamic Memory allocation, Valgrind, Makefile - Abhishek Yeluri and Yashwant Reddy Virupaksha CS 370 - Operating Systems - Spring 2019 1 Outline What is a pointer? & and * operators

More information

Outline. Computer programming. Debugging. What is it. Debugging. Hints. Debugging

Outline. Computer programming. Debugging. What is it. Debugging. Hints. Debugging Outline Computer programming Debugging Hints Gathering evidence Common C errors "Education is a progressive discovery of our own ignorance." Will Durant T.U. Cluj-Napoca - Computer Programming - lecture

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Structures and Memory (yaseminb@kth.se) Overview Overview Lecture 11: Structures and Memory Structures Continued Memory Allocation Lecture 11: Structures and Memory Structures Continued Memory

More information

CS61C Machine Structures. Lecture 5 C Structs & Memory Mangement. 1/27/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

CS61C Machine Structures. Lecture 5 C Structs & Memory Mangement. 1/27/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/ CS61C Machine Structures Lecture 5 C Structs & Memory Mangement 1/27/2006 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L05 C Structs (1) C String Standard Functions

More information

Roadmap: Security in the software lifecycle. Memory corruption vulnerabilities

Roadmap: Security in the software lifecycle. Memory corruption vulnerabilities Secure Programming Lecture 3: Memory Corruption I (introduction) David Aspinall, Informatics @ Edinburgh 24th January 2019 Roadmap: Security in the software lifecycle Security is considered at different

More information

Changelog. Corrections made in this version not in first posting: 1 April 2017: slide 13: a few more %c s would be needed to skip format string part

Changelog. Corrections made in this version not in first posting: 1 April 2017: slide 13: a few more %c s would be needed to skip format string part 1 Changelog 1 Corrections made in this version not in first posting: 1 April 2017: slide 13: a few more %c s would be needed to skip format string part OVER questions? 2 last time 3 memory management problems

More information

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions?

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Lecture 14 No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Friday, February 11 CS 215 Fundamentals of Programming II - Lecture 14 1 Outline Static

More information

Heap Arrays. Steven R. Bagley

Heap Arrays. Steven R. Bagley Heap Arrays Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index a[42] = 35; Variables and arrays have a type int, char, double,

More information

Scientific Programming in C IV. Pointers

Scientific Programming in C IV. Pointers Scientific Programming in C IV. Pointers Susi Lehtola 1 November 2012 Pointers The feature at the heart of C are pointers, which are simply pointers to memory addresses. Scientific Programming in C, fall

More information

ENEE 457: Computer Systems Security. Lecture 16 Buffer Overflow Attacks

ENEE 457: Computer Systems Security. Lecture 16 Buffer Overflow Attacks ENEE 457: Computer Systems Security Lecture 16 Buffer Overflow Attacks Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland, College Park Buffer overflow

More information

6.S096 Lecture 2 Subtleties of C

6.S096 Lecture 2 Subtleties of C 6.S096 Lecture 2 Subtleties of C Data structures and Floating-point arithmetic Andre Kessler January 10, 2014 Andre Kessler 6.S096 Lecture 2 Subtleties of C January 10, 2014 1 / 17 Outline 1 Memory Model

More information

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control.

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control. C Flow Control David Chisnall February 1, 2011 Outline What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope Disclaimer! These slides contain a lot of

More information

CS 31: Intro to Systems Pointers and Memory. Martin Gagne Swarthmore College February 16, 2016

CS 31: Intro to Systems Pointers and Memory. Martin Gagne Swarthmore College February 16, 2016 CS 31: Intro to Systems Pointers and Memory Martin Gagne Swarthmore College February 16, 2016 So we declared a pointer How do we make it point to something? 1. Assign it the address of an existing variable

More information

COSC Software Engineering. Lecture 16: Managing Memory Managers

COSC Software Engineering. Lecture 16: Managing Memory Managers COSC345 2013 Software Engineering Lecture 16: Managing Memory Managers Outline Typical problems (from previous lectures) Memory leaks aren t just for (Objective) C Tracking malloc() calls Catching calls

More information

C: Pointers. C: Pointers. Department of Computer Science College of Engineering Boise State University. September 11, /21

C: Pointers. C: Pointers. Department of Computer Science College of Engineering Boise State University. September 11, /21 Department of Computer Science College of Engineering Boise State University September 11, 2017 1/21 Pointers A pointer is a variable that stores the address of another variable. Pointers are similar to

More information

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples:

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples: 1 Programming in C Pointer Variable A variable that stores a memory address Allows C programs to simulate call-by-reference Allows a programmer to create and manipulate dynamic data structures Must be

More information

CSE 303: Concepts and Tools for Software Development

CSE 303: Concepts and Tools for Software Development CSE 303: Concepts and Tools for Software Development Hal Perkins Winter 2009 Lecture 7 Introduction to C: The C-Level of Abstraction CSE 303 Winter 2009, Lecture 7 1 Welcome to C Compared to Java, in rough

More information

Understanding Pointers

Understanding Pointers Division of Mathematics and Computer Science Maryville College Pointers and Addresses Memory is organized into a big array. Every data item occupies one or more cells. A pointer stores an address. A pointer

More information

Run-time Environments - 3

Run-time Environments - 3 Run-time Environments - 3 Y.N. Srikant Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture n What is run-time

More information

Dynamic Data Structures (II)

Dynamic Data Structures (II) Lecture 23 Dynamic Data Structures (II) CptS 121 Summer 2016 Armen Abnousi Data Structure Data structures are different ways of organizing data in computer We design new data structures to make the programs

More information

o Code, executable, and process o Main memory vs. virtual memory

o Code, executable, and process o Main memory vs. virtual memory Goals for Today s Lecture Memory Allocation Prof. David August COS 217 Behind the scenes of running a program o Code, executable, and process o Main memory vs. virtual memory Memory layout for UNIX processes,

More information

POINTER AND ARRAY SUNU WIBIRAMA

POINTER AND ARRAY SUNU WIBIRAMA POINTER AND ARRAY SUNU WIBIRAMA Presentation Outline Basic Pointer Arrays Dynamic Memory Allocation Basic Pointer 3 Pointers A pointer is a reference to another variable (memory location) in a program

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION Lecture 13 Strings, Lists & Stacks Announcements HW #3 Due next Friday, May 15 at 5:00 PM in HFH Project #2 Due May 29 at 5:00 PM Project #3 Assigned next Thursday, May 19

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

CSE 160 Discussion Section. Winter 2017 Week 3

CSE 160 Discussion Section. Winter 2017 Week 3 CSE 160 Discussion Section Winter 2017 Week 3 Homework 1 - Recap & a few points ComputeMandelbrotPoint func() in smdb.cpp does the job serially. You will have to do the same task in parallel manner in

More information

First of all, it is a variable, just like other variables you studied

First of all, it is a variable, just like other variables you studied Pointers: Basics What is a pointer? First of all, it is a variable, just like other variables you studied So it has type, storage etc. Difference: it can only store the address (rather than the value)

More information

Section Notes - Week 1 (9/17)

Section Notes - Week 1 (9/17) Section Notes - Week 1 (9/17) Why do we need to learn bits and bitwise arithmetic? Since this class is about learning about how computers work. For most of the rest of the semester, you do not have to

More information

valgrind overview: runtime memory checker and a bit more What can we do with it?

valgrind overview: runtime memory checker and a bit more What can we do with it? Valgrind overview: Runtime memory checker and a bit more... What can we do with it? MLUG Mar 30, 2013 The problem When do we start thinking of weird bug in a program? The problem When do we start thinking

More information

A brief introduction to C programming for Java programmers

A brief introduction to C programming for Java programmers A brief introduction to C programming for Java programmers Sven Gestegård Robertz September 2017 There are many similarities between Java and C. The syntax in Java is basically

More information