Parsing Part II (Topdown parsing, leftrecursion removal)


 Barrie Rodgers
 4 years ago
 Views:
Transcription
1 Parsing Part II (Topdown parsing, leftrecursion removal) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.
2 Parsing Techniques Topdown parsers (LL(1), recursive descent) Start at the root of the parse tree and grow toward leaves Pick a production & try to match the input Bad pick may need to backtrack (predictive parsing) Some grammars are backtrackfree Bottomup parsers (LR(1), operator precedence) Start at the leaves and grow toward root As input is consumed, encode possibilities in an internal state Start in a state valid for legal first tokens Bottomup parsers handle a large class of grammars
3 Topdown Parsing A topdown parser starts with the root of the parse tree The root node is labeled with the goal symbol of the grammar Topdown parsing algorithm: Construct the root node of the parse tree Repeat until the fringe of the parse tree matches the input string 1 At a node labeled A, select a production with A on its lhs and, for each symbol on its rhs, construct the appropriate child 2 When a terminal symbol is added to the fringe and it doesn t match the input, backtrack 3 Find the next node to be expanded (label NT) The key is picking the right production in step 1 That choice should be guided by the input string
4 Remember the expression grammar? Version with precedence derived last lecture And the input x 2 * y
5 Example Let s try x 2 * y : Goal Expr Expr + Term Term Fact. <id,x> Leftmost derivation, choose productions in an order that exposes problems
6 Example Let s try x 2 * y : Goal Expr Expr + Term Fact. <id,x> This worked well, except that doesn t match + The parser must backtrack to here Term
7 Example Continuing with x 2 * y : Goal Expr Expr Term Fact. <id,x> Term
8 Example Continuing with x 2 * y : Goal Expr Expr Term Term Fact. <id,x> This time, and matched We can advance past to look at 2 Now, we need to expand Term  the last NT on the fringe
9 Example Trying to match the 2 in x 2 * y : Goal Expr Expr Term Term Fact. Fact. <num,2> <id,x>
10 Example Trying to match the 2 in x 2 * y : Goal Expr Expr  Term Term Fact. Fact. <num,2> Where are we? <id,x> 2 matches 2 We have more input, but no NTs left to expand The expansion terminated too soon Need to backtrack
11 Example Trying again with 2 in x 2 * y : Goal Expr Expr Term Term Term * Fact. Fact. <id,x> <num,2> This time, we matched & consumed all the input Success! Fact. <id,y>
12 Another possible parse Other choices for expansion are possible Rule Sentential Form Input Goal x 2 * y 1 Expr x 2 * y 2 Expr + Term x 2 * y 2 Expr + Term +Term x 2 * y 2 Expr + Term + Term +Term x 2 * y 2 Expr +Term + Term + +Term x 2 * y consuming no input! This doesn t terminate (obviously) Wrong choice of expansion leads to nontermination Nontermination is a bad property for a parser to have Parser must make the right choice
13 Left Recursion Topdown parsers cannot handle leftrecursive grammars Formally, A grammar is left recursive if A NT such that a derivation A + Aα, for some string α (NT T )+ Our expression grammar is left recursive This can lead to nontermination in a topdown parser For a topdown parser, any recursion must be right recursion We would like to convert the left recursion to right recursion Nontermination is a bad property in any part of a compiler
14 Eliminating Left Recursion To remove left recursion, we can transform the grammar Consider a grammar fragment of the form Fee Fee α β where neither α nor β start with Fee We can rewrite this as Fee β Fie Fie α Fie ε where Fie is a new nonterminal This accepts the same language, but uses only right recursion
15 Eliminating Left Recursion The expression grammar contains two cases of left recursion Applying the transformation yields These fragments use only right recursion They retain the original left associativity
16 Eliminating Left Recursion Substituting them back into the grammar yields This grammar is correct, if somewhat nonintuitive. It is left associative, as was the original A topdown parser will terminate using it. A topdown parser may need to backtrack with it.
17 Eliminating Left Recursion The transformation eliminates immediate left recursion What about more general, indirect left recursion? The general algorithm: arrange the NTs into some order A 1, A2,, An Must start with 1 to ensure that A1 for i 1 to n A1 β is transformed for s 1 to i 1 replace each production Ai Asγ with Ai δ1γ δ2γ δkγ, where As δ1 δ2 δk are all the current productions for As eliminate any immediate left recursion on A i using the direct transformation This assumes that the initial grammar has no cycles (Ai + Ai ), and no epsilon productions
18 Lookahead in predictive parsing The Lookahead token (next token in the input) is used to determine which rule should be used next Consider the following example: term num term' term term' + num term  num term' ε num num term
19 Lookahead in predictive parsing The Lookahead token (next token in the input) is used to determine which rule should be used next Consider the following example: term num term' term term' + num term  num term' ε num num 7 term + num term
20 Lookahead in predictive parsing The Lookahead token (next token in the input) is used to determine which rule should be used next Consider the following example: term num term' term term' + num term  num term' ε num 7 term + num num term
21 Lookahead in predictive parsing The Lookahead token (next token in the input) is used to determine which rule should be used next Consider the following example: term num term' term term' + num term  num term' ε num 7 term + num term num num term
22 Lookahead in predictive parsing The Lookahead token (next token in the input) is used to determine which rule should be used next Consider the following example: term num term' term term' + num term  num term' ε num 7 term + num term num num 2 term
23 Lookahead in predictive parsing The Lookahead token (next token in the input) is used to determine which rule should be used next Consider the following example: 7+32_ term num term' term term' + num term  num term' ε num 7 term + num term num num term 2 ε
24 Predictive Parsing Basic idea Given A α β, the parser should be able to choose between α & β FIRST sets For some rhs α G, define FIRST(α) as the set of tokens that appear as the first symbol in some string that derives from α That is, x FIRST(α) iff α * x γ, for some γ The LL(1) Property If A α and A β both appear in the grammar, we would like FIRST(α) FIRST(β) = This would allow the parser to make a correct choice with a lookahead of exactly one symbol! This is almost correct See the next slide
25 Predictive Parsing What about εproductions? They complicate the definition of LL(1) If A α and A β and ε FIRST(α), then we need to ensure that FIRST(β) is disjoint from FOLLOW(α), too Define FIRST+(α) as FIRST(α) FOLLOW(α), if ε FIRST(α) FIRST(α), otherwise Then, a grammar is LL(1) iff A α and A β implies FIRST+(α) FIRST+(β) = FOLLOW(α) is the set of all words in the grammar that can legally appear immediately after an α
26 Determining First Sets If α is a terminal symbol, α T FIRST(α) = {α} If A is a nonterminal symbol, A NT For each production A β, where β is β1 β2 βk FIRST(A) = FIRST(A) = FIRST(A) (FIRST{β1}  ε) i=1 While ε FIRST(βi) and i k1 FIRST(A) = FIRST(A) (FIRST{βi+1}  ε) If i == k and ε FIRST(βk) FIRST (A) = FIRST(A) ε
27 First Sets (Example) S AC C c ε A B Q abcd BQ ε bb d q What is FIRST(C)? FIRST(C)= FIRST(c) FIRST(ε ) = {c, ε } What is FIRST(B)? FIRST(B) = FIRST(b) FIRST(d) = {b, d} What is FIRST(A)? FIRST(A) = FIRST(aBCd) FIRST(BQ) FIRST(ε ) FIRST(A) = {a, b, d, ε } What is FIRST(Q)? FIRST(Q) = {q} What is FIRST(S)? FIRST(S) = FIRST(AC) FIRST(S) =FIRST(A) ε FIRST(C) FIRST(S) = {a, b, c, d, ε }
28 Determining Follow Sets For each A NT FOLLOW(A) = FOLLOW(S) = {$} $ is eof Start Symbol While (Follow sets are still changing) For each production A αbβ, ε FIRST(β) FOLLOW(B) = FOLLOW(B) (FIRST(β) For each production A αbβ, ε FIRST(β) FOLLOW(B) = FOLLOW(B) (FIRST (β) ε) Follow(A)
29 Follow Sets (Example) S AC C c ε A B Q abcd BQ ε bb d q What is FOLLOW(S)? FOLLOW(S) = {$} What is FOLLOW(C)? FOLLOW(C) = {d} FOLLOW(S) = {d, $} What is FOLLOW(B)? FOLLOW(B) = FIRST(Cd) FIRST(Q) FOLLOW(B) FOLLOW(B) = {c, d, q} What is FOLLOW(A)? FOLLOW(A) = FIRST(C) FOLLOW(S) = {c, $} What is FOLLOW(Q)? FOLLOW(Q) = FOLLOW(A) = {c, $}
30 Predictive Parsing Given a grammar that has the LL(1) property Can write a simple routine to recognize each lhs Code is both simple & fast Grammars with the LL(1) Consider A β1 β2 β3, with property are called predictive FIRST+(β1) FIRST+ (β2) FIRST+ (β3) = /* find an A */ if (current_word FIRST(β1)) find a β1 and return true else if (current_word FIRST(β2)) find a β2 and return true else if (current_word FIRST(β3)) find a β3 and return true else report an error and return false grammars because the parser can predict the correct expansion at each point in the parse. Parsers that capitalize on the LL(1) property are called predictive parsers. One kind of predictive parser is the recursive descent parser. Of course, there is more detail to find a βi ( in EAC)
31 Recursive Descent Parsing Recall the expression grammar, after transformation This produces a parser with six mutually recursive routines: Goal Expr EPrime Term TPrime Factor Each recognizes one NT or T The term descent refers to the direction in which the parse tree is built.
32 Recursive Descent Parsing (Procedural) A couple of routines from the expression parser Goal( ) token next_token( ); if (Expr( ) = true & token = EOF) then next compilation step; else report syntax error; return false; Expr( ) if (Term( ) = false) then return false; else return Eprime( ); looking for EOF, found token Factor( ) if (token = Number) then token next_token( ); return true; else if (token = Identifier) then token next_token( ); return true; else report syntax error; return false; looking for Number or Identifier, found token instead
33 Left Factoring What if my grammar does not have the LL(1) property? Sometimes, we can transform the grammar The Algorithm A NT, find the longest prefix α that occurs in two or more righthand sides of A if α ε then replace all of the A productions, A αβ1 αβ2 αβn γ, with A αz γ Z β1 β2 βn where Z is a new element of NT Repeat until no common prefixes remain
34 Left Factoring A graphical explanation for the same idea αβ1 A αβ1 αβ2 αβ3 A becomes A αz Z β1 β2 βn αβ2 αβ3 β1 A αz β2 β3
35 Left Factoring (An example) Consider the following fragment of the expression grammar FIRST(rhs1) = { Identifier } FIRST(rhs2) = { Identifier } FIRST(rhs3) = { Identifier } After left factoring, it becomes FIRST(rhs1) = { Identifier } FIRST(rhs2) = { [ } FIRST(rhs3) = { ( } FIRST(rhs4) = FOLLOW(Factor) It has the LL(1) property This form has the same syntax, with the LL(1) property
36 Left Factoring Graphically Identifier Factor No basis for choice Identifier [ ExprList ] Identifier ( ExprList ) [ ExprList ] ( ExprList ) becomes Factor ε Identifier Word determines correct choice
37 Left Factoring (Generality) Question By eliminating left recursion and left factoring, can we transform an arbitrary CFG to a form where it meets the LL(1) condition? (and can be parsed predictively with a single token lookahead?) Answer Given a CFG that doesn t meet the LL(1) condition, it is undecidable whether or not an equivalent LL(1) grammar exists. Example {an 0 bn n 1} {an 1 b2n n 1} has no LL(1) grammar
38 Language that Cannot Be LL(1) Example {an 0 bn n 1} {an 1 b2n n 1} has no LL(1) grammar G aa b abbb A a Ab 0 B abbb 1 Problem: need an unbounded number of a characters before you can determine whether you are in the A group or the B group.
39 Recursive Descent (Summary) 1. Build FIRST (and FOLLOW) sets 2. Massage grammar to have LL(1) condition Remove left recursion b. Left factor it Define a procedure for each nonterminal a. Implement a case for each righthand side b. Call procedures as needed for nonterminals Add extra code, as needed a. Perform contextsensitive checking b. Build an IR to record the code a Can we automate this process?
Syntactic Analysis. TopDown Parsing
Syntactic Analysis TopDown Parsing Copyright 2017, Pedro C. Diniz, all rights reserved. Students enrolled in Compilers class at University of Southern California (USC) have explicit permission to make
More informationCS 406/534 Compiler Construction Parsing Part I
CS 406/534 Compiler Construction Parsing Part I Prof. Li Xu Dept. of Computer Science UMass Lowell Fall 2004 Part of the course lecture notes are based on Prof. Keith Cooper, Prof. Ken Kennedy and Dr.
More informationSyntax Analysis, III Comp 412
COMP 412 FALL 2017 Syntax Analysis, III Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp
More informationParsing III. (Topdown parsing: recursive descent & LL(1) )
Parsing III (Topdown parsing: recursive descent & LL(1) ) Roadmap (Where are we?) Previously We set out to study parsing Specifying syntax Contextfree grammars Ambiguity Topdown parsers Algorithm &
More informationSyntax Analysis, III Comp 412
Updated algorithm for removal of indirect left recursion to match EaC3e (3/2018) COMP 412 FALL 2018 Midterm Exam: Thursday October 18, 7PM Herzstein Amphitheater Syntax Analysis, III Comp 412 source code
More informationCSCI312 Principles of Programming Languages
Copyright 2006 The McGrawHill Companies, Inc. CSCI312 Principles of Programming Languages! LL Parsing!! Xu Liu Derived from Keith Cooper s COMP 412 at Rice University Recap Copyright 2006 The McGrawHill
More informationParsing. Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice.
Parsing Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice. Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students
More informationParsing III. CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones
Parsing III (Topdown parsing: recursive descent & LL(1) ) (Bottomup parsing) CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones Copyright 2003, Keith D. Cooper,
More informationTypes of parsing. CMSC 430 Lecture 4, Page 1
Types of parsing Topdown parsers start at the root of derivation tree and fill in picks a production and tries to match the input may require backtracking some grammars are backtrackfree (predictive)
More informationComputer Science 160 Translation of Programming Languages
Computer Science 160 Translation of Programming Languages Instructor: Christopher Kruegel TopDown Parsing Parsing Techniques Topdown parsers (LL(1), recursive descent parsers) Start at the root of the
More informationParsing II Topdown parsing. Comp 412
COMP 412 FALL 2018 Parsing II Topdown parsing Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled
More informationParsing Part II. (Ambiguity, Topdown parsing, Leftrecursion Removal)
Parsing Part II (Ambiguity, Topdown parsing, Leftrecursion Removal) Ambiguous Grammars Definitions If a grammar has more than one leftmost derivation for a single sentential form, the grammar is ambiguous
More informationIntroduction to Parsing. Comp 412
COMP 412 FALL 2010 Introduction to Parsing Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make
More informationCompilers. Yannis Smaragdakis, U. Athens (original slides by Sam
Compilers Parsing Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts) Next step text chars Lexical analyzer tokens Parser IR Errors Parsing: Organize tokens into sentences Do tokens conform
More informationSyntactic Analysis. TopDown Parsing. Parsing Techniques. TopDown Parsing. Remember the Expression Grammar? Example. Example
Syntactic Analysis opdown Parsing Parsing echniques opdown Parsers (LL(1), recursive descent) Start at the root of the parse tree and grow toward leaves Pick a production & try to match the input Bad
More informationCS1622. Today. A Recursive Descent Parser. Preliminaries. Lecture 9 Parsing (4)
CS1622 Lecture 9 Parsing (4) CS 1622 Lecture 9 1 Today Example of a recursive descent parser Predictive & LL(1) parsers Building parse tables CS 1622 Lecture 9 2 A Recursive Descent Parser. Preliminaries
More informationParsing. Roadmap. > Contextfree grammars > Derivations and precedence > Topdown parsing > Leftrecursion > Lookahead > Tabledriven parsing
Roadmap > Contextfree grammars > Derivations and precedence > Topdown parsing > Leftrecursion > Lookahead > Tabledriven parsing The role of the parser > performs contextfree syntax analysis > guides
More informationCA Compiler Construction
CA4003  Compiler Construction David Sinclair A topdown parser starts with the root of the parse tree, labelled with the goal symbol of the grammar, and repeats the following steps until the fringe of
More information3. Parsing. Oscar Nierstrasz
3. Parsing Oscar Nierstrasz Thanks to Jens Palsberg and Tony Hosking for their kind permission to reuse and adapt the CS132 and CS502 lecture notes. http://www.cs.ucla.edu/~palsberg/ http://www.cs.purdue.edu/homes/hosking/
More informationPrelude COMP 181 Tufts University Computer Science Last time Grammar issues Key structure meaning Tufts University Computer Science
Prelude COMP Lecture Topdown Parsing September, 00 What is the Tufts mascot? Jumbo the elephant Why? P. T. Barnum was an original trustee of Tufts : donated $0,000 for a natural museum on campus Barnum
More informationCS415 Compilers. Syntax Analysis. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
CS415 Compilers Syntax Analysis These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University Limits of Regular Languages Advantages of Regular Expressions
More informationCOMP 181. Prelude. Next step. Parsing. Study of parsing. Specifying syntax with a grammar
COMP Lecture Parsing September, 00 Prelude What is the common name of the fruit Synsepalum dulcificum? Miracle fruit from West Africa What is special about miracle fruit? Contains a protein called miraculin
More informationParsing II Topdown parsing. Comp 412
COMP 412 FALL 2017 Parsing II Topdown parsing Comp 412 source code IR Front End OpMmizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled
More informationTopDown Parsing and Intro to BottomUp Parsing. Lecture 7
TopDown Parsing and Intro to BottomUp Parsing Lecture 7 1 Predictive Parsers Like recursivedescent but parser can predict which production to use Predictive parsers are never wrong Always able to guess
More informationSyntax Analysis, V Bottomup Parsing & The Magic of Handles Comp 412
Midterm Exam: Thursday October 18, 7PM Herzstein Amphitheater Syntax Analysis, V Bottomup Parsing & The Magic of Handles Comp 412 COMP 412 FALL 2018 source code IR Front End Optimizer Back End IR target
More informationTop down vs. bottom up parsing
Parsing A grammar describes the strings that are syntactically legal A recogniser simply accepts or rejects strings A generator produces sentences in the language described by the grammar A parser constructs
More informationSyntax Analysis. Martin Sulzmann. Martin Sulzmann Syntax Analysis 1 / 38
Syntax Analysis Martin Sulzmann Martin Sulzmann Syntax Analysis 1 / 38 Syntax Analysis Objective Recognize individual tokens as sentences of a language (beyond regular languages). Example 1 (OK) Program
More informationTopDown Parsing and Intro to BottomUp Parsing. Lecture 7
TopDown Parsing and Intro to BottomUp Parsing Lecture 7 1 Predictive Parsers Like recursivedescent but parser can predict which production to use Predictive parsers are never wrong Always able to guess
More informationCS 314 Principles of Programming Languages
CS 314 Principles of Programming Languages Lecture 5: Syntax Analysis (Parsing) Zheng (Eddy) Zhang Rutgers University January 31, 2018 Class Information Homework 1 is being graded now. The sample solution
More informationCS 406/534 Compiler Construction Parsing Part II LL(1) and LR(1) Parsing
CS 406/534 Compiler Construction Parsing Part II LL(1) and LR(1) Parsing Prof. Li Xu Dept. of Computer Science UMass Lowell Fall 2004 Part of the course lecture notes are based on Prof. Keith Cooper, Prof.
More informationCS502: Compilers & Programming Systems
CS502: Compilers & Programming Systems Topdown Parsing Zhiyuan Li Department of Computer Science Purdue University, USA There exist two wellknown schemes to construct deterministic topdown parsers:
More informationMonday, September 13, Parsers
Parsers Agenda Terminology LL(1) Parsers Overview of LR Parsing Terminology Grammar G = (Vt, Vn, S, P) Vt is the set of terminals Vn is the set of nonterminals S is the start symbol P is the set of productions
More informationCS2210: Compiler Construction Syntax Analysis Syntax Analysis
Comparison with Lexical Analysis The second phase of compilation Phase Input Output Lexer string of characters string of tokens Parser string of tokens Parse tree/ast What Parse Tree? CS2210: Compiler
More informationChapter 3. Parsing #1
Chapter 3 Parsing #1 Parser source file get next character scanner get token parser AST token A parser recognizes sequences of tokens according to some grammar and generates Abstract Syntax Trees (ASTs)
More informationCMSC 330: Organization of Programming Languages
CMSC 330: Organization of Programming Languages Parsing CMSC 330  Spring 2017 1 Recall: Front End Scanner and Parser Front End Token Source Scanner Parser Stream AST Scanner / lexer / tokenizer converts
More informationContextfree grammars
Contextfree grammars Section 4.2 Formal way of specifying rules about the structure/syntax of a program terminals  tokens nonterminals  represent higherlevel structures of a program start symbol,
More informationChapter 4: LR Parsing
Chapter 4: LR Parsing 110 Some definitions Recall For a grammar G, with start symbol S, any string α such that S called a sentential form α is If α Vt, then α is called a sentence in L G Otherwise it is
More information8 Parsing. Parsing. Top Down Parsing Methods. Parsing complexity. Top down vs. bottom up parsing. Top down vs. bottom up parsing
8 Parsing Parsing A grammar describes syntactically legal strings in a language A recogniser simply accepts or rejects strings A generator produces strings A parser constructs a parse tree for a string
More informationTopdown parsing with backtracking
Top down parsing Types of parsers: Top down: repeatedly rewrite the start symbol; find a leftmost derivation of the input string; easy to implement; not all contextfree grammars are suitable. Bottom
More informationAbstract Syntax Trees & TopDown Parsing
Review of Parsing Abstract Syntax Trees & TopDown Parsing Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree Issues: How do we recognize that s L(G)? A parse tree
More informationSYNTAX ANALYSIS 1. Define parser. Hierarchical analysis is one in which the tokens are grouped hierarchically into nested collections with collective meaning. Also termed as Parsing. 2. Mention the basic
More informationParser Generation. BottomUp Parsing. Constructing LR Parser. LR Parsing. Construct parse tree bottomup  from leaves to the root
Parser Generation Main Problem: given a grammar G, how to build a topdown parser or a bottomup parser for it? parser : a program that, given a sentence, reconstructs a derivation for that sentence 
More informationParsing #1. Leonidas Fegaras. CSE 5317/4305 L3: Parsing #1 1
Parsing #1 Leonidas Fegaras CSE 5317/4305 L3: Parsing #1 1 Parser source file get next character scanner get token parser AST token A parser recognizes sequences of tokens according to some grammar and
More informationAbstract Syntax Trees & TopDown Parsing
Abstract Syntax Trees & TopDown Parsing Review of Parsing Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree Issues: How do we recognize that s L(G)? A parse tree
More informationAbstract Syntax Trees & TopDown Parsing
Review of Parsing Abstract Syntax Trees & TopDown Parsing Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree Issues: How do we recognize that s L(G)? A parse tree
More informationAdministrativia. WA1 due on Thu PA2 in a week. Building a Parser III. Slides on the web site. CS164 3:305:00 TT 10 Evans.
Administrativia Building a Parser III CS164 3:305:00 10 vans WA1 due on hu PA2 in a week Slides on the web site I do my best to have slides ready and posted by the end of the preceding logical day yesterday,
More informationCompiler Construction: Parsing
Compiler Construction: Parsing Mandar Mitra Indian Statistical Institute M. Mitra (ISI) Parsing 1 / 33 Contextfree grammars. Reference: Section 4.2 Formal way of specifying rules about the structure/syntax
More informationCompilerconstructie. najaar Rudy van Vliet kamer 140 Snellius, tel rvvliet(at)liacs(dot)nl. college 3, vrijdag 22 september 2017
Compilerconstructie najaar 2017 http://www.liacs.leidenuniv.nl/~vlietrvan1/coco/ Rudy van Vliet kamer 140 Snellius, tel. 071527 2876 rvvliet(at)liacs(dot)nl college 3, vrijdag 22 september 2017 + werkcollege
More informationAmbiguity, Precedence, Associativity & TopDown Parsing. Lecture 910
Ambiguity, Precedence, Associativity & TopDown Parsing Lecture 910 (From slides by G. Necula & R. Bodik) 9/18/06 Prof. Hilfinger CS164 Lecture 9 1 Administrivia Please let me know if there are continued
More informationCompilers. Predictive Parsing. Alex Aiken
Compilers Like recursivedescent but parser can predict which production to use By looking at the next fewtokens No backtracking Predictive parsers accept LL(k) grammars L means lefttoright scan of input
More informationCompiler Construction 2016/2017 Syntax Analysis
Compiler Construction 2016/2017 Syntax Analysis Peter Thiemann November 2, 2016 Outline 1 Syntax Analysis Recursive topdown parsing Nonrecursive topdown parsing Bottomup parsing Syntax Analysis tokens
More informationConcepts Introduced in Chapter 4
Concepts Introduced in Chapter 4 Grammars ContextFree Grammars Derivations and Parse Trees Ambiguity, Precedence, and Associativity Top Down Parsing Recursive Descent, LL Bottom Up Parsing SLR, LR, LALR
More informationThe Parsing Problem (cont d) RecursiveDescent Parsing. RecursiveDescent Parsing (cont d) ICOM 4036 Programming Languages. The Complexity of Parsing
ICOM 4036 Programming Languages Lexical and Syntax Analysis Lexical Analysis The Parsing Problem RecursiveDescent Parsing BottomUp Parsing This lecture covers review questions 1427 This lecture covers
More informationBuilding a Parser III. CS164 3:305:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 6 1
Building a Parser III CS164 3:305:00 TT 10 Evans 1 Overview Finish recursive descent parser when it breaks down and how to fix it eliminating left recursion reordering productions Predictive parsers (aka
More information4. Lexical and Syntax Analysis
4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal
More informationCS Parsing 1
CS4142003403 Parsing 1 030: Parsing Once we have broken an input file into a sequence of tokens, the next step is to determine if that sequence of tokens forms a syntactically correct program parsing
More informationSometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
Eliminating Ambiguity Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. Example: consider the following grammar stat if expr then stat if expr then stat else stat other One can
More informationWednesday, August 31, Parsers
Parsers How do we combine tokens? Combine tokens ( words in a language) to form programs ( sentences in a language) Not all combinations of tokens are correct programs (not all sentences are grammatically
More informationChapter 4. Lexical and Syntax Analysis
Chapter 4 Lexical and Syntax Analysis Chapter 4 Topics Introduction Lexical Analysis The Parsing Problem RecursiveDescent Parsing BottomUp Parsing Copyright 2012 AddisonWesley. All rights reserved.
More information4. Lexical and Syntax Analysis
4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal
More informationLexical Analysis  An Introduction. Lecture 4 Spring 2005 Department of Computer Science University of Alabama Joel Jones
Lexical Analysis  An Introduction Lecture 4 Spring 2005 Department of Computer Science University of Alabama Joel Jones Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
More informationIntroduction to Parsing
Introduction to Parsing The Front End Source code Scanner tokens Parser IR Errors Parser Checks the stream of words and their parts of speech (produced by the scanner) for grammatical correctness Determines
More informationWednesday, September 9, 15. Parsers
Parsers What is a parser A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure of a program (think: diagramming a sentence) Agenda
More informationParsers. What is a parser. Languages. Agenda. Terminology. Languages. A parser has two jobs:
What is a parser Parsers A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure of a program (think: diagramming a sentence) Agenda
More informationEECS 6083 Intro to Parsing Context Free Grammars
EECS 6083 Intro to Parsing Context Free Grammars Based on slides from text web site: Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. 1 Parsing sequence of tokens parser
More information1 Introduction. 2 Recursive descent parsing. Predicative parsing. Computer Language Implementation Lecture Note 3 February 4, 2004
CMSC 51086 Winter 2004 Computer Language Implementation Lecture Note 3 February 4, 2004 Predicative parsing 1 Introduction This note continues the discussion of parsing based on context free languages.
More information4 (c) parsing. Parsing. Top down vs. bo5om up parsing
4 (c) parsing Parsing A grammar describes syntac2cally legal strings in a language A recogniser simply accepts or rejects strings A generator produces strings A parser constructs a parse tree for a string
More informationSyntax Analysis, VII One more LR(1) example, plus some more stuff. Comp 412 COMP 412 FALL Chapter 3 in EaC2e. target code.
COMP 412 FALL 2017 Syntax Analysis, VII One more LR(1) example, plus some more stuff Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon,
More informationBottomup parsing. BottomUp Parsing. Recall. Goal: For a grammar G, withstartsymbols, any string α such that S α is called a sentential form
Bottomup parsing Bottomup parsing Recall Goal: For a grammar G, withstartsymbols, any string α such that S α is called a sentential form If α V t,thenα is called a sentence in L(G) Otherwise it is just
More informationParsers. Xiaokang Qiu Purdue University. August 31, 2018 ECE 468
Parsers Xiaokang Qiu Purdue University ECE 468 August 31, 2018 What is a parser A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure
More informationCSE 130 Programming Language Principles & Paradigms Lecture # 5. Chapter 4 Lexical and Syntax Analysis
Chapter 4 Lexical and Syntax Analysis Introduction  Language implementation systems must analyze source code, regardless of the specific implementation approach  Nearly all syntax analysis is based on
More informationBottomup Parser. Jungsik Choi
Formal Languages and Compiler (CSE322) Bottomup Parser Jungsik Choi chjs@khu.ac.kr * Some slides taken from SKKU SWE3010 (Prof. Hwansoo Han) and TAMU CSCE434500 (Prof. Lawrence Rauchwerger) Bottomup
More informationCS 230 Programming Languages
CS 230 Programming Languages 10 / 16 / 2013 Instructor: Michael Eckmann Today s Topics Questions/comments? Top Down / Recursive Descent Parsers Top Down Parsers We have a left sentential form xa Expand
More informationTabledriven using an explicit stack (no recursion!). Stack can be viewed as containing both terminals and nonterminals.
Bottomup Parsing: Tabledriven using an explicit stack (no recursion!). Stack can be viewed as containing both terminals and nonterminals. Basic operation is to shift terminals from the input to the
More informationSyntax Analysis: Contextfree Grammars, Pushdown Automata and Parsing Part  4. Y.N. Srikant
Syntax Analysis: Contextfree Grammars, Pushdown Automata and Part  4 Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler
More informationTableDriven Parsing
TableDriven Parsing It is possible to build a nonrecursive predictive parser by maintaining a stack explicitly, rather than implicitly via recursive calls [1] The nonrecursive parser looks up the production
More informationFall Compiler Principles Lecture 2: LL parsing. Roman Manevich BenGurion University of the Negev
Fall 20172018 Compiler Principles Lecture 2: LL parsing Roman Manevich BenGurion University of the Negev 1 Books Compilers Principles, Techniques, and Tools Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman
More informationCompiler Design 1. TopDown Parsing. Goutam Biswas. Lect 5
Compiler Design 1 TopDown Parsing Compiler Design 2 Nonterminal as a Function In a topdown parser a nonterminal may be viewed as a generator of a substring of the input. We may view a nonterminal
More informationCompila(on (Semester A, 2013/14)
Compila(on 03683133 (Semester A, 2013/14) Lecture 4: Syntax Analysis (Top Down Parsing) Modern Compiler Design: Chapter 2.2 Noam Rinetzky Slides credit: Roman Manevich, Mooly Sagiv, Jeff Ullman, Eran
More informationCSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall
CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall Phases of a compiler Syntactic structure Figure 1.6, page 5 of text Recap Lexical analysis: LEX/FLEX (regex > lexer) Syntactic analysis:
More informationTableDriven TopDown Parsers
TableDriven TopDown Parsers Recursive descent parsers have many attractive features. They are actual pieces of code that can be read by programmers and extended. This makes it fairly easy to understand
More informationMIT TopDown Parsing. Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology
MIT 6.035 TopDown Parsing Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology Orientation Language specification Lexical structure regular expressions Syntactic structure
More informationAmbiguity. Grammar E E + E E * E ( E ) int. The string int * int + int has two parse trees. * int
Administrivia Ambiguity, Precedence, Associativity & opdown Parsing eam assignments this evening for all those not listed as having one. HW#3 is now available, due next uesday morning (Monday is a holiday).
More informationA programming language requires two major definitions A simple one pass compiler
A programming language requires two major definitions A simple one pass compiler [Syntax: what the language looks like A contextfree grammar written in BNF (BackusNaur Form) usually suffices. [Semantics:
More informationCS 321 Programming Languages and Compilers. VI. Parsing
CS 321 Programming Languages and Compilers VI. Parsing Parsing Calculate grammatical structure of program, like diagramming sentences, where: Tokens = words Programs = sentences For further information,
More informationChapter 2 Syntax Analysis
Chapter 2 Syntax Analysis Syntax and vocabulary are overwhelming constraints the rules that run us. Language is using us to talk we think we re using the language, but language is doing the thinking, we
More informationCompilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1. TopDown Parsing. Lect 5. Goutam Biswas
Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1 TopDown Parsing Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 2 Nonterminal as a Function In a topdown parser a nonterminal may be viewed
More informationBuilding a Parser Part III
COMP 506 Rice University Spring 2018 Building a Parser Part III With Practical Application To Lab One source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda
More informationCSE 3302 Programming Languages Lecture 2: Syntax
CSE 3302 Programming Languages Lecture 2: Syntax (based on slides by Chengkai Li) Leonidas Fegaras University of Texas at Arlington CSE 3302 L2 Spring 2011 1 How do we define a PL? Specifying a PL: Syntax:
More informationFall Compiler Principles Lecture 3: Parsing part 2. Roman Manevich BenGurion University
Fall 20142015 Compiler Principles Lecture 3: Parsing part 2 Roman Manevich BenGurion University Tentative syllabus Front End Intermediate Representation Optimizations Code Generation Scanning Lowering
More informationSyntax Analysis. COMP 524: Programming Language Concepts Björn B. Brandenburg. The University of North Carolina at Chapel Hill
Syntax Analysis Björn B. Brandenburg The University of North Carolina at Chapel Hill Based on slides and notes by S. Olivier, A. Block, N. Fisher, F. HernandezCampos, and D. Stotts. The Big Picture Character
More informationCMSC 330: Organization of Programming Languages
CMSC 330: Organization of Programming Languages Context Free Grammars and Parsing 1 Recall: Architecture of Compilers, Interpreters Source Parser Static Analyzer Intermediate Representation Front End Back
More informationLexical and Syntax Analysis. TopDown Parsing
Lexical and Syntax Analysis TopDown Parsing Easy for humans to write and understand String of characters Lexemes identified String of tokens Easy for programs to transform Data structure Syntax A syntax
More informationBottomUp Parsing. Parser Generation. LR Parsing. Constructing LR Parser
Parser Generation Main Problem: given a grammar G, how to build a topdown parser or a bottomup parser for it? parser : a program that, given a sentence, reconstructs a derivation for that sentence 
More informationNote that for recursive descent to work, if A ::= B1 B2 is a grammar rule we need First k (B1) disjoint from First k (B2).
LL(k) Grammars We need a bunch of terminology. For any terminal string a we write First k (a) is the prefix of a of length k (or all of a if its length is less than k) For any string g of terminal and
More informationCS415 Compilers. Lexical Analysis
CS415 Compilers Lexical Analysis These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University Lecture 7 1 Announcements First project and second homework
More informationSyntax Analysis. The Big Picture. The Big Picture. COMP 524: Programming Languages Srinivas Krishnan January 25, 2011
Syntax Analysis COMP 524: Programming Languages Srinivas Krishnan January 25, 2011 Based in part on slides and notes by Bjoern Brandenburg, S. Olivier and A. Block. 1 The Big Picture Character Stream Token
More informationPART 3  SYNTAX ANALYSIS. F. Wotawa TU Graz) Compiler Construction Summer term / 309
PART 3  SYNTAX ANALYSIS F. Wotawa (IST @ TU Graz) Compiler Construction Summer term 2016 64 / 309 Goals Definition of the syntax of a programming language using context free grammars Methods for parsing
More information3. Syntax Analysis. Andrea Polini. Formal Languages and Compilers Master in Computer Science University of Camerino
3. Syntax Analysis Andrea Polini Formal Languages and Compilers Master in Computer Science University of Camerino (Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 1 / 54 Syntax Analysis: the
More informationCS 2210 Sample Midterm. 1. Determine if each of the following claims is true (T) or false (F).
CS 2210 Sample Midterm 1. Determine if each of the following claims is true (T) or false (F). F A language consists of a set of strings, its grammar structure, and a set of operations. (Note: a language
More information