3.4 QUINE MCCLUSKEY METHOD 73. f(a, B, C, D, E)¼AC ĒþB CD þ BCDþĀBD.


 Timothy Williams
 3 years ago
 Views:
Transcription
1 3.4 QUINE MCCLUSKEY METHOD 73 FIGURE 3.22 f(a, B, C, D, E)¼B CD þ BCD. FIGURE 3.23 f(a, B, C, D, E)¼AC ĒþB CD þ BCDþĀBD. A¼1map are, 1, and 1, respectively, whereas the corresponding entries in the A¼0 map are 0 s. Thus the fourvariable Karnaugh map with A in cells B CDE and A in cells B CD E and B C D E shown in Figure 3.21 is equivalent to the maps of Figure The map is then reduced in two steps. Step 1. Group all terms employing 1 s and s. The letter variable terms are ignored at this step. Figure 3.22 shown the relevant groupings on the map of Figure Step 2. Group the letter variable(s) with the adjacent 1 s and s. The resulting terms are then ORed with the terms derived in step 1 to obtain the minimized function (shown in Figure 3.23). 3.4 QUINE MCCLUSKEY METHOD The Karnaugh map approach is not suitable for minimizing Boolean functions having more than six variables. For functions with a large number of variables, a tabular method known as the Quine McCluskey method is much more effective. The method consists of two steps: 1. Generation of all prime implicants. 2. Selection of a minimum subset of prime implications, which will represent the original function.
2 74 COMBINATIONAL LOGIC DESIGN A prime implicant is a product term that cannot be combined with any other product term to generate a term with fewer literals than the original term. As an example, consider a Boolean function which after minimization becomes f (A, B, C)¼ABCþ AB Cþ A BCþ ABCþ A B C f (A, B, C)¼ABþBCþ ACþ A B C The product terms AB, BC, AC, and A B C are all prime implicants because none of them can be ombined with any other term in the function to yield a term with fewer literals. A prime implicants is called an essential prime implicant if it covers at least one minterm that is not covered by any other prime implicant of the function. Example 3.8 Let us minimize the following Boolean function: f (A, B, C, D)¼Sm(1, 4, 5, 10, 12, 13, 14, 15) The Karnaugh map for the function is shown in Figure The prime implicants for the function are B C, AB, A CD, and AC D. The minimized function is f (A, B, C, D)¼ A CDþB Cþ ABþAC D The prime implicant A C D is an essential prime implicant because it covers minterm A B CD, which is not covered by any other prime implicant. Similarly, only AC D covers minterm A BC D, B C covers AB C D, and AB covers ABCD; in other words, AC D, B C, and AB are also essential prime implicants. The Quine McCluskey method for minimization can be formulated as follows: Step 1. Tabulate all the minterms of the function by their binary representations. Step 2. Arrange the minterms into groups according to the number of 1 s in their binary representation. For example, if the first group consists of minterms with n 1 s, the FIGURE 3.24 Examples of adjacencies in Karnaugh.
3 3.4 QUINE MCCLUSKEY METHOD 75 second group will consist of minterms with (nþ1) 1 s and so on. Lines are drawn between different group to simplify identification. Step 3. Compare each minterm in a group with each of the minterms in the group below it. If the compared pair is adjacent (i.e., if they differ by one variable only), they are combined to form a new term. The new term has a dash in the position of the eliminated variable. Both combining terms are checked off in the original list indicating that they are not prime implicatnts. Step 4. Repeat the above step for all groups of minterms in the list. This results in a new list of terms with dashes in place of eliminated variables. Step 5. Compare terms in the new list in search for further combinations. This is done by following step 3. In this case a pair of terms can be combined only if they have dashes in the same positions. As before, a term is checked off if it is combined with another. This step is repeated until no new list can be formed. All terms that remain unchecked are prime implications. Step 6. Select a minimal subset of prime implicants that cover all the terms of the original Boolean function. Example 3.9 procedure: Let us minimize the following Boolean function using the Quine McCluskey f (A, B, C, D, E)¼Sm(0, 1, 2, 9, 11, 12, 13, 27, 28, 29) The minterms are first tabulated according to step 1. Minterm A B C D E The minterms are then grouped according to the number of 1 s contained in each term, as specified in step 2. This results in list 1 of Figure In list 1, terms of group 1 are combined with those of group 2, terms of group 2 are combined with those of group 3, and so on, using step 3. For example, 0(00000) is adjacent to 1(00001). So they are combined to form 0000 which is the first term in list 2. Both combined terms are checked off in list 1. Since 0(00000) is also adjacent to 2(00010) they are combined to form the term 000 0, which is also entered in list 2. A line is then drawn under the two terms in list 2 in order to identify them as a distinct group. The next step is to compare the two terms in group 2 of list 1 with the two terms in group 3. Only terms 1(00001) and 9(01001) combine to give 0 001; all other terms
4 76 COMBINATIONAL LOGIC DESIGN FIGURE 3.25 Determination of prime implicants. differ in more than one variable and therefore do not combine. As a result, the second group of list 2 contains only one combination. The two terms in group 3 are now compared with the three terms in group 4. Terms 9(01001) and 11(01011) combine to give 010 1, terms 9(01001) and 13(01101) combine to give 01 01, terms 12(01100) and 13(01101) combine to give 0110, and terms 12(01100) and 28(11100) combine to give Thus the third group of list 2 contains four terms. Finally, the three terms in group 4 of list 1 are compared with the two terms in group 5. Terms 13(01101) and 29(11101) combine to give 1101, terms 11(01011) and 27(11011) combine to give 1011, and terms 28(11100) and 29(11101) combine to give Therefore the fourth group of list 2 contains three terms. The process of combining terms in adjacent groups is continued for list 2. This results in list 3. It can be seen in Figure 3.25 that certain terms cannot be combined further in list 2. These correspond to the prime implicants of the Boolean function and are labeled PI 1,..., PI 7. The final step of the Quine McCluskey proedure is to find a minimal subset of the prime implicants which can be used to realize the original function. The complete set of prime implicants for the given function can be derived from Figure 3.25; are (BC D, A B C D, A B C E, A C DE, AB DE, AB CE, B CDE) In order to select the smallest number of prime implicants that account for all the original minterms, a prime implicant chart is formed as shown in Figure A prime implicant FIGURE 3.26 Prime implicant chart.
5 3.4 QUINE MCCLUSKEY METHOD 77 FIGURE 3.27 Examples of adjacencies in Karnaugh. chart has a column for each of the original minterms and a row for each prime implicant. For each prime implicant row, an X is placed in the columns of those minterms that are accounted for by the prime implicant. For example, in Figure 3.26 prime implicant PI 1, comprising minterms 12, 13, 28, and 29, has X s in columns 12, 13, 28, and 29. To choose a minimum subset of prime implicants, it is first necessary to identify the essential prime implicants. A column with a single X indicates that the prime implicant row is the only one covering the minterm corresponding to the column; therefore the prime implicant is essential and must be included in the minimized function. Figure 3.26 has three essential prime implicants, and they are identified by asterisks. The minterms covered by the essential prime implicants are marked with asterisks. The next step is to select additional prime implicants that can cover the remaining column terms. This is usually done by forming a reduced prime implicant chart that contains only the minterms that have not been covered by the essential prime implicants. Figure 3.27 shows the reduced prime implicant chart derived from Figure Prime implicant PI 4 covers the minterms 1 and 9. Therefore the minimum sumofproducts equivalent to the original function is f (A, B, C, D, E)¼PI 1 þ PI 3 þ PI 4 þ PI 7 ¼ 110 þ 000 0þ0 001þ 1011 ¼ BC Dþ A B C Eþ A C DEþB CDE For some functions, the prime implicant chart may not contain any essential prime implicants. In other words, in every column of a prime implicant chart there are two or more X s. Such a chart is said to be cyclic. Example 3.10 The following Boolean function has a cyclic prime implicant chart: f (A, B, C)¼Sm(1, 2, 3, 4, 5, 6) The prime implicants of the function can be derived as shown in Figure The resulting prime implicant chart as shown in Figure 3.29 is cyclic; all columns have two X s. As can FIGURE 3.28 Derivation of prime implicants.
6 78 COMBINATIONAL LOGIC DESIGN FIGURE 3.29 Prime implicant chart. be seen, there is no simple way to select the minimum number of prime implicants from the cyclic chart. We can proceed by selecting prime implicant PI 1, which covers minterms 1 and 3. After crossing out row PI 1 and columns 1 and 3, we see that PI 4 and PI 5 cover the remaining columns (Fig. 3.30). Thus the minimum sumofproducts form of the given Boolean function is f (A, B, C)¼PI 1 þ PI 4 þ PI 5 ¼ ACþ B Cþ A B This is not a unique minimum sum of products for the function. For example, f (A, B, C)¼PI 6 þ PI 2 þ PI 3 ¼ A Cþ BCþ AB is also a minimal form of the original function. It can be verified from the Karnaugh map of the function (Fig. 3.31) that these are the minimum sumofproducts forms. Note that each minterm in the Karnaugh map can be grouped within two different loops, which ndicates that two different prime implicants can over the same minterm Simplification of Boolean Function with Don t Cares The Quine McClusky procedure for minimizing Boolean functions containing don t care minterms is similar to the conventional procedure in that all the terms, including don t cares, are used to produce the complete set of prime implicants. However, don t care terms are not listed as column headings in the prime implicant chart because they need not be included in the final expression. FIGURE 3.30 Examples of adjacencies in Karnaugh.
Karnaugh Map (KMap) Karnaugh Map. Karnaugh Map Examples. Ch. 2.4 Ch. 2.5 Simplification using Kmap
Karnaugh Map (KMap) Ch. 2.4 Ch. 2.5 Simplification using Kmap A graphical map method to simplify Boolean function up to 6 variables A diagram made up of squares Each square represents one minterm (or
More informationIntroduction. The QuineMcCluskey Method Handout 5 January 24, CSEE E6861y Prof. Steven Nowick
CSEE E6861y Prof. Steven Nowick The QuineMcCluskey Method Handout 5 January 24, 2013 Introduction The QuineMcCluskey method is an exact algorithm which finds a minimumcost sumofproducts implementation
More informationCombinational Logic Circuits
Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical
More informationCHAPTER2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, KMap and QuineMcCluskey
CHAPTER2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, KMap and QuineMcCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input
More informationA B AB CD Objectives:
Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3
More information4 KARNAUGH MAP MINIMIZATION
4 KARNAUGH MAP MINIMIZATION A Karnaugh map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the
More informationUser s Manual. Ronwaldo A. Collado Diosdado Y. Tejoso Jr. CMSC 130 Logistic Design and Digital Computer Circuits Second Semester, A. Y.
The QuineMcCluskey Method, also known as the Tabulation Method is a specific stepbystep method that is ensured to generate a simplified standardform expression for a function. Ronwaldo A. Collado Diosdado
More informationCSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map
CSCI 22: Computer Architecture I Instructor: Pranava K. Jha Simplification of Boolean Functions using a Karnaugh Map Q.. Plot the following Boolean function on a Karnaugh map: f(a, b, c, d) = m(, 2, 4,
More informationSynthesis 1. 1 Figures in this chapter taken from S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, Typeset by FoilTEX 1
Synthesis 1 1 Figures in this chapter taken from S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, 1998. Typeset by FoilTEX 1 Introduction Logic synthesis is automatic generation of circuitry
More informationQuineMcCluskey Algorithm
QuineMcCluskey Algorithm Useful for minimizing equations with more than 4 inputs. Like Kmap, also uses combining theorem Allows for automation Chapter Edward McCluskey (9906) Pioneer in Electrical
More informationUNIT II. Circuit minimization
UNIT II Circuit minimization The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.
More informationGate Level Minimization Map Method
Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically
More informationModule 7. Karnaugh Maps
1 Module 7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or SumofMinterms (SOM) 2.4 Canonical product of sum or ProductofMaxterms(POM)
More informationChapter 3 Simplification of Boolean functions
3.1 Introduction Chapter 3 Simplification of Boolean functions In this chapter, we are going to discuss several methods for simplifying the Boolean function. What is the need for simplifying the Boolean
More informationChapter 2 Combinational Logic Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard
More informationSimplification of Boolean Functions
COM111 Introduction to Computer Engineering (Fall 20062007) NOTES 5  page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean
More informationCombinational Logic Circuits Part III Theoretical Foundations
Combinational Logic Circuits Part III Theoretical Foundations Overview Simplifying Boolean Functions Algebraic Manipulation Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables) Systematic
More informationSlide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary
Slide Set 5 for ENEL 353 Fall 207 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 207 SN s ENEL 353 Fall 207 Slide Set 5 slide
More informationLarger Kmaps. So far we have only discussed 2 and 3variable Kmaps. We can now create a 4variable map in the
EET 3 Chapter 3 7/3/2 PAGE  23 Larger Kmaps The variable Kmap So ar we have only discussed 2 and 3variable Kmaps. We can now create a variable map in the same way that we created the 3variable
More informationSwitching Theory And Logic Design UNITII GATE LEVEL MINIMIZATION
Switching Theory And Logic Design UNITII GATE LEVEL MINIMIZATION Twovariable kmap: A twovariable kmap can have 2 2 =4 possible combinations of the input variables A and B. Each of these combinations,
More informationTWOLEVEL COMBINATIONAL LOGIC
TWOLEVEL COMBINATIONAL LOGIC OVERVIEW Canonical forms Tolevel simplification Boolean cubes Karnaugh maps QuineMcClusky (Tabulation) Method Don't care terms Canonical and Standard Forms Minterms and
More informationIT 201 Digital System Design Module II Notes
IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More informationSwitching Circuits & Logic Design
Switching Circuits & Logic Design JieHong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 23 5 Karnaugh Maps Kmap Walks and Gray Codes http://asicdigitaldesign.wordpress.com/28/9/26/kmapswalksandgraycodes/
More informationChapter 2 Combinational
Computer Engineering 1 (ECE290) Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization HOANG Trang 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits and Boolean Equations Binary Logic
More informationSpecifying logic functions
CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last
More informationSEE1223: Digital Electronics
SEE223: Digital Electronics 3 Combinational Logic Design Zulkifil Md Yusof Dept. of Microelectronics and Computer Engineering The aculty of Electrical Engineering Universiti Teknologi Malaysia Karnaugh
More informationProgrammable Logic Devices. Programmable Read Only Memory (PROM) Example
Programmable Logic Devices Programmable Logic Devices (PLDs) are the integrated circuits. They contain an array of AND gates & another array of OR gates. There are three kinds of PLDs based on the type
More informationChapter 2. Boolean Expressions:
Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean
More informationChapter 3. GateLevel Minimization. Outlines
Chapter 3 GateLevel Minimization Introduction The Map Method FourVariable Map FiveVariable Map Outlines Product of Sums Simplification Don tcare Conditions NAND and NOR Implementation Other TwoLevel
More informationGet Free notes at ModuleI One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)
More informationCSE 140: Logic Minimization Lecture
CSE 140: Logic Minimization Lecture What is Logic Minimization? Input: A set of minterms corresponding to a function F Output: A minimal set of prime implicants that corresponds to function F Example:
More informationCombinational Logic & Circuits
WeekI Combinational Logic & Circuits Spring' 232  Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other
More informationGateLevel Minimization. section instructor: Ufuk Çelikcan
GateLevel Minimization section instructor: Ufuk Çelikcan Compleity of Digital Circuits Directly related to the compleity of the algebraic epression we use to build the circuit. Truth table may lead to
More informationCMPE223/CMSE222 Digital Logic
CMPE223/CMSE222 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum ProductofSums Forms, Incompletely Specified Functions Terminology For a given term, each
More informationChapter 2 Combinational Logic Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show
More informationSupplement to. Logic and Computer Design Fundamentals 4th Edition 1
Supplement to Logic and Computer esign Fundamentals 4th Edition MORE OPTIMIZTION Selected topics not covered in the fourth edition of Logic and Computer esign Fundamentals are provided here for optional
More information10EC33: DIGITAL ELECTRONICS QUESTION BANK
10EC33: DIGITAL ELECTRONICS Faculty: Dr.Bajarangbali E Examination QuestionS QUESTION BANK 1. Discuss canonical & standard forms of Boolean functions with an example. 2. Convert the following Boolean function
More informationECE380 Digital Logic
ECE38 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum ProductofSums Forms, Incompletely Specified Functions Dr. D. J. Jackson Lecture 8 Terminology For
More informationLiteral Cost F = BD + A B C + A C D F = BD + A B C + A BD + AB C F = (A + B)(A + D)(B + C + D )( B + C + D) L = 10
Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm
More informationSwitching Circuits Simplifications Using Binary Coded Octal Minterms
Vol. 2, No. 2, pp. 4551, 2017 OI: http://ijoaem.org/0020204 Switching Circuits Simplifications Using Binary Coded Octal Minterms Sahadev Roy Abstract In this paper, a simple approach for detection of
More informationGateLevel Minimization. BME208 Logic Circuits Yalçın İŞLER
GateLevel Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to
More informationDKT 122/3 DIGITAL SYSTEM 1
Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2) Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits
More informationADAPTIVE MAP FOR SIMPLIFYING BOOLEAN EXPRESSIONS
ABSTRACT ADAPTIVE MAP FOR SIMPLIFYING BOOLEAN EXPRESSIONS Dr. Mohammed H. ALJammas Department of Computer and Information Engineering, College of Electronics Engineering, University of Mosul, Mosul 
More informationELCT201: DIGITAL LOGIC DESIGN
ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter
More informationExperiment 4 Boolean Functions Implementation
Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.
More informationCombinational Logic Circuits
Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 21 Binary Logic and Gates 22 Boolean Algebra 23 Standard Forms 24 TwoLevel Circuit Optimization
More informationSlides for Lecture 15
Slides for Lecture 5 ENEL 353: Digital Circuits Fall 203 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary October, 203 ENEL 353 F3 Section
More informationLSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a
More information5. Minimizing Circuits
5. MINIMIZING CIRCUITS 46 5. Minimizing Circuits 5.. Minimizing Circuits. A circuit is minimized if it is a sumofproducts that uses the least number of products of literals and each product contains
More informationIntroduction to Microprocessors and Digital Logic (ME262) Boolean Algebra and Logic Equations. Spring 2011
Introduction to Microprocessors and Digital (ME262) lgebra and Spring 2 Outline. lgebra 2. 3. Karnaugh Maps () 4. Twovariable 5. 6. 7. 2 lgebra s of Simplifying equations are defined in terms of inary
More informationDIGITAL CIRCUIT LOGIC UNIT 5: KARNAUGH MAPS (KMAPS)
DIGITAL CIRCUIT LOGIC UNIT 5: KARNAUGH MAPS (KMAPS) 1 Learning Objectives 1. Given a function (completely or incompletely specified) of three to five variables, plot it on a Karnaugh map. The function
More information(Refer Slide Time 6:48)
Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture  8 Karnaugh Map Minimization using Maxterms We have been taking about
More informationCS8803: Advanced Digital Design for Embedded Hardware
CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883
More informationDigital Logic Lecture 7 Gate Level Minimization
Digital Logic Lecture 7 Gate Level Minimization By Ghada AlMashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. Kmap principles. Simplification using Kmaps. Don tcare
More informationELCT201: DIGITAL LOGIC DESIGN
ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter
More informationGraduate Institute of Electronics Engineering, NTU. CH5 Karnaugh Maps. Lecturer: 吳安宇教授 Date:2006/10/20 ACCESS IC LAB
CH5 Karnaugh Maps Lecturer: 吳安宇教授 Date:2006/0/20 CCESS IC L Problems in lgebraic Simplification The procedures are difficult to apply in a systematic way. It is difficult to tell when you have arrived
More informationMUX using TriState Buffers. Chapter 2  Part 2 1
MUX using TriState Buffers Chapter 2  Part 2 Systematic Simplification A Prime Implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map into a rectangle
More informationDIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 2. LECTURE: LOGIC NETWORK MINIMIZATION 2016/2017
27.2.2. DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: LOGIC NETWORK MINIMIZATION 26/27 2. LECTURE: CONTENTS. Canonical forms of Boolean functions
More informationCS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN Lecture Notes
CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN Lecture Notes 1.1 Introduction: UNIT I BOOLEAN ALGEBRA AND LOGIC GATES Like normal algebra, Boolean algebra uses alphabetical letters to denote variables. Unlike
More informationUniversity of Technology
University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 5 & 6 Minimization with Karnaugh Maps Karnaugh maps lternate way of representing oolean function ll rows
More informationCombinational Circuits Digital Logic (Materials taken primarily from:
Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a
More informationEECS150 Homework 2 Solutions Fall ) CLD2 problem 2.2. Page 1 of 15
1.) CLD2 problem 2.2 We are allowed to use AND gates, OR gates, and inverters. Note that all of the Boolean expression are already conveniently expressed in terms of AND's, OR's, and inversions. Thus,
More informationUnit 4: Formal Verification
Course contents Unit 4: Formal Verification Logic synthesis basics Binarydecision diagram (BDD) Verification Logic optimization Technology mapping Readings Chapter 11 Unit 4 1 Logic Synthesis & Verification
More informationGiovanni De Micheli. Integrated Systems Centre EPF Lausanne
Twolevel Logic Synthesis and Optimization Giovanni De Micheli Integrated Systems Centre EPF Lausanne This presentation can be used for noncommercial purposes as long as this note and the copyright footers
More informationContents. Chapter 3 Combinational Circuits Page 1 of 34
Chapter 3 Combinational Circuits Page of 34 Contents Contents... 3 Combinational Circuits... 2 3. Analysis of Combinational Circuits... 2 3.. Using a Truth Table... 2 3..2 Using a Boolean unction... 4
More informationGateLevel Minimization
MEC520 디지털공학 GateLevel Minimization JeeHwan Ryu School of Mechanical Engineering GateLevel MinimizationThe Map Method Truth table is unique Many different algebraic expression Boolean expressions may
More informationCprE 281: Digital Logic
CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Minimization CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative
More informationChapter 2 Part 5 Combinational Logic Circuits
Universit of Wisconsin  Madison ECE/Comp Sci 352 Digital Sstems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring 2002 Chapter 2 Part 5 Combinational Logic Circuits Originals b: Charles R. Kime and Tom
More informationGate Level Minimization
Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =
More informationB.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN
B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is  Write the first 9 decimal digits in base 3. (c) What is meant by don
More informationDepartment of Electrical and Computer Engineering University of Wisconsin  Madison. ECE/CS 352 Digital System Fundamentals.
Department of Electrical and Computer Engineering University of Wisconsin  Madison ECE/C 352 Digital ystem Fundamentals Quiz #2 Thursday, March 7, 22, 7:158:3PM 1. (15 points) (a) (5 points) NAND, NOR
More informationSimplification of Boolean Functions
Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.
More information2.6 BOOLEAN FUNCTIONS
2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses
More informationENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.
Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to
More informationPROGRAMMABLE LOGIC DEVICES
PROGRAMMABLE LOGIC DEVICES Programmable logic devices (PLDs) are used for designing logic circuits. PLDs can be configured by the user to perform specific functions. The different types of PLDs available
More informationSummary. Boolean Addition
Summary Boolean Addition In Boolean algebra, a variable is a symbol used to represent an action, a condition, or data. A single variable can only have a value of or 0. The complement represents the inverse
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2011 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationICS 252 Introduction to Computer Design
ICS 252 Introduction to Computer Design Logic Optimization Eli Bozorgzadeh Computer Science DepartmentUCI Hardware compilation flow HDL RTL Synthesis netlist Logic synthesis library netlist Physical design
More informationBoolean Function Simplification
Universit of Wisconsin  Madison ECE/Comp Sci 352 Digital Sstems Fundamentals Charles R. Kime Section Fall 200 Chapter 2 Combinational Logic Circuits Part 5 Charles Kime & Thomas Kaminski Boolean Function
More informationIncompletely Specified Functions with Don t Cares 2Level Transformation Review Boolean Cube KarnaughMap Representation and Methods Examples
Lecture B: Logic Minimization Incompletely Specified Functions with Don t Cares 2Level Transformation Review Boolean Cube KarnaughMap Representation and Methods Examples Incompletely specified functions
More informationWWWBASED BOOLEAN FUNCTION MINIMIZATION
Int. J. Appl. Math. Comput. Sci., 2003, Vol. 13, No. 4, 577 583 WWWBASED BOOLEAN FUNCTION MINIMIZATION SEBASTIAN P. TOMASZEWSKI, ILGAZ U. CELIK GEORGE E. ANTONIOU BAE SYSTEMS Controls 600 Main Street,
More informationSimplification of twolevel combinational logic
ombinational logic optimization! lternate representations of oolean functions " cubes " karnaugh maps! Simplification " twolevel simplification " exploiting don t cares " algorithm for simplification
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationDate Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 04. Boolean Expression Simplification and Implementation
Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 04 Boolean Expression Simplification and Implementation OBJECTIVES: To understand the utilization
More informationCSE 140 Homework Three
CSE 140 Homework Three March 3, 2014 Only Problem Set Part B will be graded. Turn in only Problem Set Part B which will be due on March 14, 2014 (Friday) at 4:00pm. 1 Problem Set Part A Roth&Kinney, 6th
More informationCh. 5 : Boolean Algebra &
Ch. 5 : Boolean Algebra & Reduction elektronik@fisika.ui.ac.id Objectives Should able to: Write Boolean equations for combinational logic applications. Utilize Boolean algebra laws and rules for simplifying
More informationwww.vidyarthiplus.com Question Paper Code : 31298 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013. Third Semester Computer Science and Engineering CS 2202/CS 34/EC 1206 A/10144 CS 303/080230012DIGITAL
More informationAssignment (36) Boolean Algebra and Logic Simplification  General Questions
Assignment (36) Boolean Algebra and Logic Simplification  General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make
More informationPoints Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 4: Logic Simplication & Karnaugh Map
Points Addressed in this Lecture Lecture 4: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London Standard form of Boolean Expressions SumofProducts (SOP),
More information(Refer Slide Time 5:19)
Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture  7 Logic Minimization using Karnaugh Maps In the last lecture we introduced
More informationOutcomes. Unit 9. Logic Function Synthesis KARNAUGH MAPS. Implementing Combinational Functions with Karnaugh Maps
.. Outcomes Unit I can use Karnaugh maps to synthesize combinational functions with several outputs I can determine the appropriate size and contents of a memory to implement any logic function (i.e. truth
More informationECE 5745 Complex Digital ASIC Design Topic 12: Synthesis Algorithms
ECE 5745 Complex Digital ASIC Design Topic 12: Synthesis Algorithms Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5745 RTL to
More information2008 The McGrawHill Companies, Inc. All rights reserved.
28 The McGrawHill Companies, Inc. All rights reserved. 28 The McGrawHill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28
More informationCOMBINATIONAL LOGIC CIRCUITS
COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic
More informationLOGIC CIRCUITS. Kirti P_Didital Design 1
LOGIC CIRCUITS Kirti P_Didital Design 1 Introduction The digital system consists of two types of circuits, namely (i) Combinational circuits and (ii) Sequential circuit A combinational circuit consists
More informationAdvanced Digital Logic Design EECS 303
Advanced Digital Logic Design EECS 303 http://ziyang.eecs.northwestern.edu/eecs303/ Teacher: Robert Dick Office: L477 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298 Outline 1. 2. 2 Robert Dick
More informationAll arithmetic operations performed with Boolean quantities have but one of two possible
UNIT 1 BOOLEAN ALGEBRA AND MINIMIZATION 1.1 Introduction: The English mathematician George Boole (18151864) sought to give symbolic form to Aristotle s system of logic. Boole wrote a treatise on the subject
More informationCS470: Computer Architecture. AMD Quad Core
CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flipflops Functional bocks: Combinational, Sequential Instruction
More informationDesign of Framework for Logic Synthesis Engine
Design of Framework for Logic Synthesis Engine Tribikram Pradhan 1, Pramod Kumar 2, Anil N S 3, Amit Bakshi 4 1 School of Information technology and Engineering, VIT University, Vellore 632014, Tamilnadu,
More informationA graphical method of simplifying logic
45 Karnaugh Map Method A graphical method of simplifying logic equations or truth tables. Also called a K map. Theoretically can be used for any number of input variables, but practically limited to 5
More information