Recursion I and II. Discrete Structures (CS 173) Madhusudan Parthasarathy, University of Illinois 1

Size: px
Start display at page:

Download "Recursion I and II. Discrete Structures (CS 173) Madhusudan Parthasarathy, University of Illinois 1"

Transcription

1 Recursion I and II Discrete Structures (CS 173) Madhusudan Parthasarathy, University of Illinois 1

2 Recursive definitions of functions 2

3 One simple form In other words, f(n) is defined in terms of f(n-1) 3

4 In other words, f(n) is defined in terms of f(n-1),.. f(n-k), and with k base cases 4

5 The primary principle of recursion 5

6 Proof Notice that there is at least one function that satisfies the recursive definition. For any n, replace f(n) by its definition successively till you get to the base case(s). And then substitute the definition of the base cases. This gives a function g that clearly satisfies the recursive definitions. And then prove that the above function g is the only function that satisfies the recursive definitions: Prove that for any g that satisfies the recursive definitions, g is equal to g. Or prove by contradiction (take the smallest value where g and g differ and argue they cannot differ as they agree on smaller values). 6

7 7

8 Recursive definitions of functions can be used to compute the function (provided the function combining the values of the function on smaller values, i.e., m, is computable). How? Recursion. Functional prog languages give you such a framework. 8

9 Induction and Recursion Very similar In induction, you prove a property. In recursive definitions, you define a function. In many of the induction problems you have already done, you can turn the question from proving a property to finding an object. And you can turn your proof into a recursive function that computes the object. Let s look at some examples. 9

10 Example you already solved Two players A and B take turns adding numbers from 1 through 8, and the first person to get to the target (9n+1). A starts game. Prove A has a winning strategy. 10

11 Example you already solved Two players A and B take turns adding numbers from 1 through 8, and the first person to get to the target (9n+1). A starts game. Prove A has a winning strategy. Construct winning strategy for A. 11

12 Example you already solved Return of the Guild of Parity Milliners. Prove that Linus can maintain the code of the cult. Show how Linus can maintain the code of the cult every day. 12

13 Example you already solved Hail to the orange and blue Compute the station Show there exists a station you can start with so that when you go clockwise from there, number of orange stations you see is at least as many as the number of blue stations you see. 13

14 Example Show that any connected graph with at least two vertices is weakly 2-colorable. (you can color the graph with 2 colors such that for every vertex u, there is *some* neighbor v of u such that u and v have different colors). Compute the weak 2-coloring. 14

15 Examples Show every densely connected graph has a Hamiltonian path. Find the Hamiltonian path, given any densely connected graph. 15

16 Example: Tiling using triominoes 16

17 Proving properties of rec def functions: Induction! How do you prove a property P of a recursively defined fn f? By induction, closely following the structure of the recursive def. 17

18 Example: the Mars question Assume we have one person living on Mars in Year 1. Every year, the number of people living on Mars doubles and we send one more person to Mars. How many people live in Mars in Year n? 18

19 Proving closed forms of rec def fns Example: T: Nat - {0} -> Nat T(1) = 1 T(n) = 2T(n-1)+3 for every n>1 19

20 Recursively definitions from Nat to non-numerical objects CBT(n) : the complete binary tree on n nodes 20

21 Recursively definitions from Nat to non-numerical objects Hypercubes Q 0 = Graph with single node with no edges Q n+1 = Graph that has two copies of Q n with edges joining corresponding nodes (the copies ) in the two graphs. 21

22 Factorial 22

23 Fibonacci series 23

24 E.g.: proving properties of rec def functions For every natural number n, Fib(3n) is even. 24

25 E.g.: proving properties of rec def functions 25

26 Lists and (finite) sequences List/finite sequences over A Represented also as 26

27 Operations on lists () or null is the empty list cons(a, l): list obtained by inserting a into the list l as the first element first(l): the first element of the list, if the list is nonempty, otherwise undefined rest(l): the list obtained by removing the first element of l, if l is nonempty, otherwise undefined 27

28 More operations on lists null : denotes the null list null? (l) : returns true/false, checks if l is the null list or not list (a): returns the list containing the single element a. append(l1, l2): list obtained by concatenating the two lists l1 and l2, l2 after l1. Defined for all pairs of lists take (n, l) : If l has at least n elements, returns a list containing the first n elements, otherwise undefined drop (n, l) : If l has at least n elements, returns a list with all but the first n elements; otherwise undefined. 28

29 Let s write recursive functions on lists Key parts of definition Define on some base cases Define the function on length n lists using definition of function on lists of length strictly smaller than n. In fact, there is a programming language (many: lisp, ML, Scheme, Racket*) that can turn (syntactically wellformed) recursive definitions into programs. 29

30 Length of a list (define (my-length lst) (cond [(null? lst) 0] [else (+ 1 (my-length (rest lst)))])) 30

31 Reverse a list (define (rev-it lst) (cond [(empty? lst) null] [else (append (rev-it (rest lst)) (cons (first lst) null))])) 31

32 Merge two sorted lists into a single sorted list 32

33 Merge two sorted lists into a single sorted list (define (sortedmerge lst1 lst2) (cond [(empty? lst1) lst2] [(empty? lst2) lst1] [(< (first lst1) (first lst2)) (cons (first lst1) (sortedmerge (rest lst1) lst2))] [else (cons (first lst2) (sortedmerge lst1 (rest lst2)))] )) 33

34 Racket --- extra credit problems Install DrRacket (easy; see Play with it; there re some tutorials, youtube videos, etc. Concentrate on the parts that deal with lists and recursion only! (there s lots more to Racket and to functional prog.) Try doing some exercises on it We ll hand out one set of exercises that involve writing math recursive definitions, and for extra-credit to program them in Racket. 34

35 Next Tue Review of graphs, trees, and induction. And on doing induction problems, in preparation for Thursday s examlet. 35

CS115 INTRODUCTION TO COMPUTER SCIENCE 1. Additional Notes Module 5

CS115 INTRODUCTION TO COMPUTER SCIENCE 1. Additional Notes Module 5 CS115 INTRODUCTION TO COMPUTER SCIENCE 1 Additional Notes Module 5 Example my-length (Slide 17) 2 (define (my-length alos) [(empty? alos) 0] [else (+ 1 (my-length (rest alos)))])) (my-length empty) alos

More information

Types of recursion. Structural vs. general recursion. Pure structural recursion. Readings: none. In this module: learn to use accumulative recursion

Types of recursion. Structural vs. general recursion. Pure structural recursion. Readings: none. In this module: learn to use accumulative recursion Types of recursion Readings: none. In this module: learn to use accumulative recursion learn to recognize generative recursion CS 135 Fall 2018 07: Types of recursion 1 Structural vs. general recursion

More information

Analyzing Complexity of Lists

Analyzing Complexity of Lists Analyzing Complexity of Lists Operation Sorted Array Sorted Linked List Unsorted Array Unsorted Linked List Search( L, x ) O(logn) O( n ) O( n ) O( n ) Insert( L, x ) O(logn) O( n ) + O( 1 ) O( 1 ) + O(

More information

Types of recursion. Readings: none. In this module: a glimpse of non-structural recursion. CS 135 Winter : Types of recursion 1

Types of recursion. Readings: none. In this module: a glimpse of non-structural recursion. CS 135 Winter : Types of recursion 1 Types of recursion Readings: none. In this module: a glimpse of non-structural recursion CS 135 Winter 2018 07: Types of recursion 1 Structural vs. general recursion All of the recursion we have done to

More information

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Section 5.3 1 Recursion 2 Recursion Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Previously sequences were defined using a specific

More information

Module 9: Binary trees

Module 9: Binary trees Module 9: Binary trees Readings: HtDP, Section 14 We will cover the ideas in the text using different examples and different terminology. The readings are still important as an additional source of examples.

More information

5.3 Recursive definitions and structural induction

5.3 Recursive definitions and structural induction Recall factorial function: n! = n (n-1) 1, for n 0 and 0! = 1 Then 4! = 4 3 2 1 = 24 5! = 5 4 3 2 1 = 120 1 Recall factorial function: f(n) = n! = n (n-1) 1, for n 0 and f(0) =0! = 1 Then f(4) = 4! = 4

More information

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Section 5.3 1 Recursion Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Previously sequences were defined using a specific formula,

More information

1.3. Conditional expressions To express case distinctions like

1.3. Conditional expressions To express case distinctions like Introduction Much of the theory developed in the underlying course Logic II can be implemented in a proof assistant. In the present setting this is interesting, since we can then machine extract from a

More information

CS 173, Running Time Analysis, Counting, and Dynamic Programming. Tandy Warnow

CS 173, Running Time Analysis, Counting, and Dynamic Programming. Tandy Warnow CS 173, Running Time Analysis, Counting, and Dynamic Programming Tandy Warnow CS 173 September 25, 2018 Tandy Warnow Today Topics: Results from survey Midterm Very basic counting Analyzing running times

More information

Recursive Definitions Structural Induction Recursive Algorithms

Recursive Definitions Structural Induction Recursive Algorithms Chapter 4 1 4.3-4.4 Recursive Definitions Structural Induction Recursive Algorithms 2 Section 4.1 3 Principle of Mathematical Induction Principle of Mathematical Induction: To prove that P(n) is true for

More information

10/9/17. Using recursion to define objects. CS 220: Discrete Structures and their Applications

10/9/17. Using recursion to define objects. CS 220: Discrete Structures and their Applications Using recursion to define objects CS 220: Discrete Structures and their Applications Recursive objects and 6.9 6.10 in zybooks We can use recursion to define functions: The factorial function can be defined

More information

Generative and accumulative recursion. What is generative recursion? Example revisited: GCD. Readings: Sections 25, 26, 27, 30, 31

Generative and accumulative recursion. What is generative recursion? Example revisited: GCD. Readings: Sections 25, 26, 27, 30, 31 Generative and accumulative recursion Readings: Sections 25, 26, 27, 30, 31 Some subsections not explicitly covered in lecture Section 27.2 technique applied to strings CS 135 Fall 2017 11: Generative

More information

Working with recursion. From definition to template. Readings: HtDP, sections 11, 12, 13 (Intermezzo 2).

Working with recursion. From definition to template. Readings: HtDP, sections 11, 12, 13 (Intermezzo 2). Working with recursion Readings: HtDP, sections 11, 12, 13 (Intermezzo 2). We can extend the idea of a self-referential definition to defining the natural numbers, which leads to the use of recursion in

More information

Fall 2018 Discussion 8: October 24, 2018 Solutions. 1 Introduction. 2 Primitives

Fall 2018 Discussion 8: October 24, 2018 Solutions. 1 Introduction. 2 Primitives CS 6A Scheme Fall 208 Discussion 8: October 24, 208 Solutions Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write

More information

Working with recursion

Working with recursion Working with recursion Readings: HtDP, sections 11, 12, 13 (Intermezzo 2). We can extend the idea of a self-referential definition to defining the natural numbers, which leads to the use of recursion in

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Module 8: Binary trees

Module 8: Binary trees Module 8: Binary trees Readings: HtDP, Section 14 We will cover the ideas in the text using different examples and different terminology. The readings are still important as an additional source of examples.

More information

CS 220: Discrete Structures and their Applications. Recursive objects and structural induction in zybooks

CS 220: Discrete Structures and their Applications. Recursive objects and structural induction in zybooks CS 220: Discrete Structures and their Applications Recursive objects and structural induction 6.9 6.10 in zybooks Using recursion to define objects We can use recursion to define functions: The factorial

More information

Module 5: Lists. Readings: HtDP, Sections 9, 10.

Module 5: Lists. Readings: HtDP, Sections 9, 10. Module 5: Lists Readings: HtDP, Sections 9, 10. Lists are the main tool used in Racket to work with unbounded data. As with conditional expressions and structures, the data definition for lists leads naturally

More information

Recursion and Structural Induction

Recursion and Structural Induction Recursion and Structural Induction Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Recursively Defined Functions Recursively Defined Functions Suppose we have a function with the set of non-negative

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2016 http://cseweb.ucsd.edu/classes/wi16/cse20-ab/ Today's learning goals Explain the steps in a proof by (strong) mathematical induction Use (strong) mathematical induction

More information

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015 SCHEME 7 COMPUTER SCIENCE 61A October 29, 2015 1 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall CSE 20 https://goo.gl/forms/1o 1KOd17RMoURxjn2 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Explain the steps in a proof by mathematical and/or structural

More information

PROGRAMMING IN HASKELL. CS Chapter 6 - Recursive Functions

PROGRAMMING IN HASKELL. CS Chapter 6 - Recursive Functions PROGRAMMING IN HASKELL CS-205 - Chapter 6 - Recursive Functions 0 Introduction As we have seen, many functions can naturally be defined in terms of other functions. factorial :: Int Int factorial n product

More information

A brief tour of history

A brief tour of history Introducing Racket λ A brief tour of history We wanted a language that allowed symbolic manipulation Scheme The key to understanding LISP is understanding S-Expressions Racket List of either atoms or

More information

CS173 Longest Increasing Substrings. Tandy Warnow

CS173 Longest Increasing Substrings. Tandy Warnow CS173 Longest Increasing Substrings Tandy Warnow CS 173 Longest Increasing Substrings Tandy Warnow Today s material The Longest Increasing Subsequence problem DP algorithm for finding a longest increasing

More information

Recursively Defined Functions

Recursively Defined Functions Section 5.3 Recursively Defined Functions Definition: A recursive or inductive definition of a function consists of two steps. BASIS STEP: Specify the value of the function at zero. RECURSIVE STEP: Give

More information

Functional programming with Common Lisp

Functional programming with Common Lisp Functional programming with Common Lisp Dr. C. Constantinides Department of Computer Science and Software Engineering Concordia University Montreal, Canada August 11, 2016 1 / 81 Expressions and functions

More information

Summer 2017 Discussion 10: July 25, Introduction. 2 Primitives and Define

Summer 2017 Discussion 10: July 25, Introduction. 2 Primitives and Define CS 6A Scheme Summer 207 Discussion 0: July 25, 207 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

CS 135 Winter 2018 Tutorial 7: Accumulative Recursion and Binary Trees. CS 135 Winter 2018 Tutorial 7: Accumulative Recursion and Binary Trees 1

CS 135 Winter 2018 Tutorial 7: Accumulative Recursion and Binary Trees. CS 135 Winter 2018 Tutorial 7: Accumulative Recursion and Binary Trees 1 CS 135 Winter 2018 Tutorial 7: Accumulative Recursion and Binary Trees CS 135 Winter 2018 Tutorial 7: Accumulative Recursion and Binary Trees 1 Goals of this tutorial You should be able to... understand

More information

Interpreters and Tail Calls Fall 2017 Discussion 8: November 1, 2017 Solutions. 1 Calculator. calc> (+ 2 2) 4

Interpreters and Tail Calls Fall 2017 Discussion 8: November 1, 2017 Solutions. 1 Calculator. calc> (+ 2 2) 4 CS 61A Interpreters and Tail Calls Fall 2017 Discussion 8: November 1, 2017 Solutions 1 Calculator We are beginning to dive into the realm of interpreting computer programs that is, writing programs that

More information

Quick announcement. Midterm date is Wednesday Oct 24, 11-12pm.

Quick announcement. Midterm date is Wednesday Oct 24, 11-12pm. Quick announcement Midterm date is Wednesday Oct 24, 11-12pm. The lambda calculus = ID (λ ID. ) ( ) The lambda calculus (Racket) = ID (lambda (ID) ) ( )

More information

CS525 Winter 2012 \ Class Assignment #2 Preparation

CS525 Winter 2012 \ Class Assignment #2 Preparation 1 CS525 Winter 2012 \ Class Assignment #2 Preparation Ariel Stolerman 2.26) Let be a CFG in Chomsky Normal Form. Following is a proof that for any ( ) of length exactly steps are required for any derivation

More information

Announcements. CS243: Discrete Structures. Strong Induction and Recursively Defined Structures. Review. Example (review) Example (review), cont.

Announcements. CS243: Discrete Structures. Strong Induction and Recursively Defined Structures. Review. Example (review) Example (review), cont. Announcements CS43: Discrete Structures Strong Induction and Recursively Defined Structures Işıl Dillig Homework 4 is due today Homework 5 is out today Covers induction (last lecture, this lecture, and

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 15 Graphs: Planar Graphs 1 Outline What is a Planar Graph? Euler Planar Formula Platonic Solids Five Color Theorem Kuratowski s Theorem 2 What is a Planar Graph? Definition

More information

CS70 - Lecture 6. Graphs: Coloring; Special Graphs. 1. Review of L5 2. Planar Five Color Theorem 3. Special Graphs:

CS70 - Lecture 6. Graphs: Coloring; Special Graphs. 1. Review of L5 2. Planar Five Color Theorem 3. Special Graphs: CS70 - Lecture 6 Graphs: Coloring; Special Graphs 1. Review of L5 2. Planar Five Color Theorem 3. Special Graphs: Trees: Three characterizations Hypercubes: Strongly connected! Administration You need

More information

CSC236H Lecture 5. October 17, 2018

CSC236H Lecture 5. October 17, 2018 CSC236H Lecture 5 October 17, 2018 Runtime of recursive programs def fact1(n): if n == 1: return 1 else: return n * fact1(n-1) (a) Base case: T (1) = c (constant amount of work) (b) Recursive call: T

More information

More Scheme CS 331. Quiz. 4. What is the length of the list (()()()())? Which element does (car (cdr (x y z))) extract from the list?

More Scheme CS 331. Quiz. 4. What is the length of the list (()()()())? Which element does (car (cdr (x y z))) extract from the list? More Scheme CS 331 Quiz 1. What is (car ((2) 3 4))? (2) 2. What is (cdr ((2) (3) (4)))? ((3)(4)) 3. What is (cons 2 (2 3 4))? (2 2 3 4) 4. What is the length of the list (()()()())? 4 5. Which element

More information

Module 05: Types of recursion

Module 05: Types of recursion Module 05: Types of recursion Topics: Review of purely structural recursion Accumulative recursion Generative recursion Readings:ThinkP 5.8-5.10, 6.5-6.7 1 Review: Structural Recursion Template for code

More information

Chapter Summary. Recursively defined Functions. Recursively defined sets and Structures Structural Induction

Chapter Summary. Recursively defined Functions. Recursively defined sets and Structures Structural Induction Section 5.3 1 Chapter Summary Recursively defined Functions. Recursively defined sets and Structures Structural Induction 5.3 Recursive definitions and structural induction A recursively defined picture

More information

cs1120: Exam 1 Due: Wednesday, 06 October at 3:30pm (in class)

cs1120: Exam 1 Due: Wednesday, 06 October at 3:30pm (in class) cs1120: Exam 1 Due: Wednesday, 06 October at 3:30pm (in class) UVA ID (e.g., wrw6y) : Directions Work alone. You may not discuss these problems or anything related to the material covered by this exam

More information

This chapter covers recursive definition, including finding closed forms.

This chapter covers recursive definition, including finding closed forms. Chapter 12 Recursive Definition This chapter covers recursive definition, including finding closed forms. 12.1 Recursive definitions Thus far, we have defined objects of variable length using semi-formal

More information

Induction and Recursion. CMPS/MATH 2170: Discrete Mathematics

Induction and Recursion. CMPS/MATH 2170: Discrete Mathematics Induction and Recursion CMPS/MATH 2170: Discrete Mathematics Outline Mathematical induction (5.1) Sequences and Summations (2.4) Strong induction (5.2) Recursive definitions (5.3) Recurrence Relations

More information

Introduction to Functional Programming

Introduction to Functional Programming Introduction to Functional Programming Xiao Jia xjia@cs.sjtu.edu.cn Summer 2013 Scheme Appeared in 1975 Designed by Guy L. Steele Gerald Jay Sussman Influenced by Lisp, ALGOL Influenced Common Lisp, Haskell,

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Graph Theory 2016 EPFL Frank de Zeeuw & Claudiu Valculescu 1. Prove that the following statements about a graph G are equivalent. - G is a tree; - G is minimally connected (it is

More information

Lists. Readings: HtDP, sections 9 and 10. Avoid 10.3 (uses draw.ss). CS 135 Winter : Lists 1

Lists. Readings: HtDP, sections 9 and 10. Avoid 10.3 (uses draw.ss). CS 135 Winter : Lists 1 Lists Readings: HtDP, sections 9 and 10. Avoid 10.3 (uses draw.ss). CS 135 Winter 2018 05: Lists 1 Introducing lists Structures are useful for representing a fixed amount of data. But there are many circumstances

More information

ITERATORS AND STREAMS 9

ITERATORS AND STREAMS 9 ITERATORS AND STREAMS 9 COMPUTER SCIENCE 61A November 12, 2015 1 Iterators An iterator is an object that tracks the position in a sequence of values. It can return an element at a time, and it is only

More information

CS 135 Fall 2018 Final Exam Review. CS 135 Fall 2018 Final Exam Review 1

CS 135 Fall 2018 Final Exam Review. CS 135 Fall 2018 Final Exam Review 1 CS 135 Fall 2018 Final Exam Review CS 135 Fall 2018 Final Exam Review 1 Final Exam Information The final exam will be held on Saturday, December 15 th 9:00AM - 11:30AM in the PAC Check your exam seating

More information

CSCC24 Functional Programming Scheme Part 2

CSCC24 Functional Programming Scheme Part 2 CSCC24 Functional Programming Scheme Part 2 Carolyn MacLeod 1 winter 2012 1 Based on slides from Anya Tafliovich, and with many thanks to Gerald Penn and Prabhakar Ragde. 1 The Spirit of Lisp-like Languages

More information

It is important that you show your work. There are 134 points available on this test.

It is important that you show your work. There are 134 points available on this test. Math 1165 Discrete Math Test April 4, 001 Your name It is important that you show your work There are 134 points available on this test 1 (10 points) Show how to tile the punctured chess boards below with

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 4 Graphs Definitions Traversals Adam Smith 9/8/10 Exercise How can you simulate an array with two unbounded stacks and a small amount of memory? (Hint: think of a

More information

Functional Programming. Pure Functional Programming

Functional Programming. Pure Functional Programming Functional Programming Pure Functional Programming Computation is largely performed by applying functions to values. The value of an expression depends only on the values of its sub-expressions (if any).

More information

Midterm 2 Solutions. CS70 Discrete Mathematics and Probability Theory, Spring 2009

Midterm 2 Solutions. CS70 Discrete Mathematics and Probability Theory, Spring 2009 CS70 Discrete Mathematics and Probability Theory, Spring 2009 Midterm 2 Solutions Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature, and sometimes

More information

by the evening of Tuesday, Feb 6

by the evening of Tuesday, Feb 6 Homework 1 Due 14 February Handout 6 CSCI 334: Spring 2018 Notes This homework has three types of problems: Self Check: You are strongly encouraged to think about and work through these questions, and

More information

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1 Introduction to Automata Theory BİL405 - Automata Theory and Formal Languages 1 Automata, Computability and Complexity Automata, Computability and Complexity are linked by the question: What are the fundamental

More information

CS116 - Module 5 - Accumulative Recursion

CS116 - Module 5 - Accumulative Recursion CS116 - Module 5 - Accumulative Recursion Cameron Morland Winter 2018 1 Cameron Morland CS116 - Module 5 - Accumulative Recursion Types of Recursion Structural Recursion Generative Recursion Accumulative

More information

Scheme. Functional Programming. Lambda Calculus. CSC 4101: Programming Languages 1. Textbook, Sections , 13.7

Scheme. Functional Programming. Lambda Calculus. CSC 4101: Programming Languages 1. Textbook, Sections , 13.7 Scheme Textbook, Sections 13.1 13.3, 13.7 1 Functional Programming Based on mathematical functions Take argument, return value Only function call, no assignment Functions are first-class values E.g., functions

More information

CMPS 2200 Fall Dynamic Programming. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Dynamic Programming. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 00 Fall 04 Dynamic Programming Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk 9/30/4 CMPS 00 Intro. to Algorithms Dynamic programming Algorithm design technique

More information

Recursion & Iteration

Recursion & Iteration Recursion & Iteration York University Department of Computer Science and Engineering 1 Overview Recursion Examples Iteration Examples Iteration vs. Recursion Example [ref.: Chap 5,6 Wilensky] 2 Recursion

More information

Trees. Binary arithmetic expressions. Visualizing binary arithmetic expressions. ((2 6) + (5 2))/(5 3) can be defined in terms of two smaller

Trees. Binary arithmetic expressions. Visualizing binary arithmetic expressions. ((2 6) + (5 2))/(5 3) can be defined in terms of two smaller Trees Readings: HtDP, sections 14, 15, 16. We will cover the ideas in the text using different examples and different terminology. The readings are still important as an additional source of examples.

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite

More information

Today. Types of graphs. Complete Graphs. Trees. Hypercubes.

Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Complete Graph. K n complete graph on n vertices. All edges are present. Everyone is my neighbor. Each vertex is adjacent to every other vertex.

More information

Solutions to the Second Midterm Exam

Solutions to the Second Midterm Exam CS/Math 240: Intro to Discrete Math 3/27/2011 Instructor: Dieter van Melkebeek Solutions to the Second Midterm Exam Problem 1 This question deals with the following implementation of binary search. Function

More information

MORE SCHEME. 1 What Would Scheme Print? COMPUTER SCIENCE MENTORS 61A. October 30 to November 3, Solution: Solutions begin on the following page.

MORE SCHEME. 1 What Would Scheme Print? COMPUTER SCIENCE MENTORS 61A. October 30 to November 3, Solution: Solutions begin on the following page. MORE SCHEME COMPUTER SCIENCE MENTORS 61A October 30 to November 3, 2017 1 What Would Scheme Print? Solutions begin on the following page. 1. What will Scheme output? Draw box-and-pointer diagrams to help

More information

CSC236 Week 5. Larry Zhang

CSC236 Week 5. Larry Zhang CSC236 Week 5 Larry Zhang 1 Logistics Test 1 after lecture Location : IB110 (Last names A-S), IB 150 (Last names T-Z) Length of test: 50 minutes If you do really well... 2 Recap We learned two types of

More information

Fundamental mathematical techniques reviewed: Mathematical induction Recursion. Typically taught in courses such as Calculus and Discrete Mathematics.

Fundamental mathematical techniques reviewed: Mathematical induction Recursion. Typically taught in courses such as Calculus and Discrete Mathematics. Fundamental mathematical techniques reviewed: Mathematical induction Recursion Typically taught in courses such as Calculus and Discrete Mathematics. Techniques introduced: Divide-and-Conquer Algorithms

More information

CSC236 Week 4. Larry Zhang

CSC236 Week 4. Larry Zhang CSC236 Week 4 Larry Zhang 1 Announcements PS2 is out Larry s office hours in the reading week: as usual Tuesday 12-2, Wednesday 2-4 2 NEW TOPIC Recursion To really understand the math of recursion, and

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 13 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite to writing a

More information

Midterm CSE 21 Spring 2012

Midterm CSE 21 Spring 2012 Signature Name Student ID Midterm CSE 21 Spring 2012 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 _ (20 points) _ (15 points) _ (13 points) _ (23 points) _ (10 points) _ (8 points) Total _ (89 points) (84

More information

Blocking Combinatorial Games

Blocking Combinatorial Games Blocking Combinatorial Games by Arthur Holshouser and Harold Reiter Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA, 28208 Harold Reiter Department of Mathematics UNC Charlotte Charlotte, NC 28223

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1-DIMENSIONAL SAME GAME. Department of Mathematics Oberlin College Oberlin OH 44074

COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1-DIMENSIONAL SAME GAME. Department of Mathematics Oberlin College Oberlin OH 44074 COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1-DIMENSIONAL SAME GAME CHRIS BURNS AND BENJAMIN PURCELL Department of Mathematics Oberlin College Oberlin OH 44074 Abstract. Ralf Stephan recently

More information

Homework 1. Notes. What To Turn In. Unix Accounts. Reading. Handout 3 CSCI 334: Spring, 2017

Homework 1. Notes. What To Turn In. Unix Accounts. Reading. Handout 3 CSCI 334: Spring, 2017 Homework 1 Due 14 February Handout 3 CSCI 334: Spring, 2017 Notes This homework has three types of problems: Self Check: You are strongly encouraged to think about and work through these questions, but

More information

CMPSCI 250: Introduction to Computation. Lecture #14: Induction and Recursion (Still More Induction) David Mix Barrington 14 March 2013

CMPSCI 250: Introduction to Computation. Lecture #14: Induction and Recursion (Still More Induction) David Mix Barrington 14 March 2013 CMPSCI 250: Introduction to Computation Lecture #14: Induction and Recursion (Still More Induction) David Mix Barrington 14 March 2013 Induction and Recursion Three Rules for Recursive Algorithms Proving

More information

CS 61A Interpreters, Tail Calls, Macros, Streams, Iterators. Spring 2019 Guerrilla Section 5: April 20, Interpreters.

CS 61A Interpreters, Tail Calls, Macros, Streams, Iterators. Spring 2019 Guerrilla Section 5: April 20, Interpreters. CS 61A Spring 2019 Guerrilla Section 5: April 20, 2019 1 Interpreters 1.1 Determine the number of calls to scheme eval and the number of calls to scheme apply for the following expressions. > (+ 1 2) 3

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Exercise 1 : B-Trees [ =17pts]

Exercise 1 : B-Trees [ =17pts] CS - Fall 003 Assignment Due : Thu November 7 (written part), Tue Dec 0 (programming part) Exercise : B-Trees [+++3+=7pts] 3 0 3 3 3 0 Figure : B-Tree. Consider the B-Tree of figure.. What are the values

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

SCHEME 8. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. March 23, 2017

SCHEME 8. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. March 23, 2017 SCHEME 8 COMPUTER SCIENCE 61A March 2, 2017 1 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

An Explicit-Continuation Metacircular Evaluator

An Explicit-Continuation Metacircular Evaluator Computer Science (1)21b (Spring Term, 2018) Structure and Interpretation of Computer Programs An Explicit-Continuation Metacircular Evaluator The vanilla metacircular evaluator gives a lot of information

More information

CS4311 Design and Analysis of Algorithms. Lecture 9: Dynamic Programming I

CS4311 Design and Analysis of Algorithms. Lecture 9: Dynamic Programming I CS4311 Design and Analysis of Algorithms Lecture 9: Dynamic Programming I 1 About this lecture Divide-and-conquer strategy allows us to solve a big problem by handling only smaller sub-problems Some problems

More information

TECH. Recurrence Equations vs. Recursive Procedures. Recursion and Induction. e.g. Fibonacci Function. The working of recursive procedure

TECH. Recurrence Equations vs. Recursive Procedures. Recursion and Induction. e.g. Fibonacci Function. The working of recursive procedure Recursion and Induction For advanced algorithm development, recursion is an essential design technique Recursive Procedures What is a Proof? Induction Proofs Proving Correctness of Procedures Recurrence

More information

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer Prelim 2 CS 2110, November 20, 2014, 7:30 PM 1 2 3 4 5 Extra Total Question True/False Short Answer Complexity Induction Trees Graphs Extra Credit Max 20 10 15 25 30 5 100 Score Grader The exam is closed

More information

Lecture 1. 1 Notation

Lecture 1. 1 Notation Lecture 1 (The material on mathematical logic is covered in the textbook starting with Chapter 5; however, for the first few lectures, I will be providing some required background topics and will not be

More information

1. Find f(1), f(2), f(3), and f(4) if f(n) is defined recursively by f(0) = 1 and for n = 0, 1, 2,

1. Find f(1), f(2), f(3), and f(4) if f(n) is defined recursively by f(0) = 1 and for n = 0, 1, 2, Exercises Exercises 1. Find f(1), f(2), f(3), and f(4) if f(n) is defined recursively by f(0) = 1 and for n = 0, 1, 2, a) f(n + 1) = f(n) + 2. b) f(n + 1) = 3f(n). c) f(n + 1) = 2f(n). d) f(n + 1) = f(n)2

More information

Chapter Summary. Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms Chapter Summary Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms Section 5.1 Sec.on Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken

More information

Lecture 3.4: Recursive Algorithms

Lecture 3.4: Recursive Algorithms Lecture 3.4: Recursive Algorithms CS 250, Discrete Structures, Fall 2014 Nitesh Saxena Adopted from previous lectures by Zeph Grunschlag Course Admin Graded Mid-Term 1 Please pick them up, if you haven

More information

Combinatorial Interpretations of Spanning Tree Identities

Combinatorial Interpretations of Spanning Tree Identities Combinatorial Interpretations of Spanning Tree Identities Arthur T. Benjamin and Carl R. Yerger November 14, 2004 Abstract We present a combinatorial proof that the wheel graph W n has L 2n 2 spanning

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages CS 314 Principles of Programming Languages Lecture 16: Functional Programming Zheng (Eddy Zhang Rutgers University April 2, 2018 Review: Computation Paradigms Functional: Composition of operations on data.

More information

YOUR NAME PLEASE: *** SOLUTIONS ***

YOUR NAME PLEASE: *** SOLUTIONS *** YOUR NAME PLEASE: *** SOLUTIONS *** Computer Science 201b SAMPLE Exam 1 SOLUTIONS February 15, 2015 Closed book and closed notes. No electronic devices. Show ALL work you want graded on the test itself.

More information

Fall 2017 Discussion 7: October 25, 2017 Solutions. 1 Introduction. 2 Primitives

Fall 2017 Discussion 7: October 25, 2017 Solutions. 1 Introduction. 2 Primitives CS 6A Scheme Fall 207 Discussion 7: October 25, 207 Solutions Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write

More information

Solving NP-hard Problems on Special Instances

Solving NP-hard Problems on Special Instances Solving NP-hard Problems on Special Instances Solve it in poly- time I can t You can assume the input is xxxxx No Problem, here is a poly-time algorithm 1 Solving NP-hard Problems on Special Instances

More information

Solving Linear Recurrence Relations (8.2)

Solving Linear Recurrence Relations (8.2) EECS 203 Spring 2016 Lecture 18 Page 1 of 10 Review: Recurrence relations (Chapter 8) Last time we started in on recurrence relations. In computer science, one of the primary reasons we look at solving

More information

;; definition of function, fun, that adds 7 to the input (define fun (lambda (x) (+ x 7)))

;; definition of function, fun, that adds 7 to the input (define fun (lambda (x) (+ x 7))) Homework 1 Due 13 September Handout 2 CSC 131: Fall, 2006 6 September Reading 1. Read Mitchell, Chapter 3. 2. The Scheme Tutorial and the Scheme Quick Reference from the Links web page, as needed for the

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 1. O(logn) 2. O(n) 3. O(nlogn) 4. O(n 2 ) 5. O(2 n ) 2. [1 pt] What is the solution

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

CS 1101 Exam 3 A-Term 2013

CS 1101 Exam 3 A-Term 2013 NAME: CS 1101 Exam 3 A-Term 2013 Question 1: (55) Question 2: (20) Question 3: (25) TOTAL: (100) You have 50 minutes to complete this exam. You do not need to show templates, but you may receive partial

More information

CSCI 121: Recursive Functions & Procedures

CSCI 121: Recursive Functions & Procedures CSCI 121: Recursive Functions & Procedures Sorting quizzes Every time I give a quiz, I need to enter grades into my gradebook. My grading sheet is organized alphabetically. So I sort the papers alphabetically,

More information

INTERPRETERS 8. 1 Calculator COMPUTER SCIENCE 61A. November 3, 2016

INTERPRETERS 8. 1 Calculator COMPUTER SCIENCE 61A. November 3, 2016 INTERPRETERS 8 COMPUTER SCIENCE 61A November 3, 2016 1 Calculator We are beginning to dive into the realm of interpreting computer programs that is, writing programs that understand other programs. In

More information