# Compiler Construction 2016/2017 Syntax Analysis

Size: px
Start display at page:

Transcription

1 Compiler Construction 2016/2017 Syntax Analysis Peter Thiemann November 2, 2016

2 Outline 1 Syntax Analysis Recursive top-down parsing Nonrecursive top-down parsing Bottom-up parsing

3 Syntax Analysis tokens --> [parser] --> IR Parser recognize context-free syntax guide context-sensitive analysis construct IR(s) produce meaningful error messages attempt error correction

4 Syntax/Expressions An expression grammar in BNF 1 <goal> ::= <expr> 2 <expr> ::= <expr> <op> <expr> 3 num 4 id 5 <op> ::= * 8 / Simple expressions with numbers and identifiers

5 Derivation To derive a word/sentence from a BNF, we start with the goal variable In each derivation step, we replace a variable with the right hand side of one of its rules leftmost derivation: choose the leftmost variable in each step rightmost derivation: choose the rightmost variable in each step parsing is the discovery of a derivation: given a sentence, find a derivation from the goal variable that produces this sentence

6 Derivation, formally We write α, β, γ for (possibly empty) strings of terminal symbols and variables If N is a variable and N ::= β is a rule for N, then we write αnγ αβγ for a single derivation step We write α β if there is a (possibly empty) sequence of derivation steps from α to β We write α + β if there is a non-empty sequence of derivation steps from α to β

7 Example: x + 2 * y Compare leftmost derivation with rightmost derivation

8 Grammar with built-in precedence G-ETF 1 <goal> ::= <expr> 2 <expr> ::= <expr> + <term> 3 <expr> - <term> 4 <term> 5 <term> ::= <term> * <factor> 6 <term> / <factor> 7 <factor> 8 <factor> ::= num 9 id Enforces precedence

9 Example: x + 2 * y with precedence Only one possible derivation

10 Ambiguity If a grammar has more than one derivation for a single sentence, then it is ambiguous Example: <stmt> ::= if <expr> then <stmt> if <expr> then <stmt> else <stmt> other stmts Consider deriving the sentence: if E1 then if E2 then S1 else S2 It has two derivations.

11 Ambiguity fixed May be able to eliminate ambiguities by rearranging the grammar: <stmt> ::= <matched> <unmatched> <matched> ::= if <expr> then <matched> else <matched> other stmts <unmatched> ::= if <expr> then <stmt> if <expr> then <matched> else <unmatched> This grammar generates the same language as the ambiguous grammar, but applies the common sense rule: match each else with the closest unmatched then Generally accepted resolution of this ambiguity

12 Two approaches to parsing Top-down parsing start at the root of the derivation tree extend derivation by guessing the next production may require backtracking Bottom-up parsing start at the leaves of the derivation tree combine tree fragments to larger fragments bookkeeping of successful fragments (by finite automaton)

13 Outline 1 Syntax Analysis Recursive top-down parsing Nonrecursive top-down parsing Bottom-up parsing

14 Top-down parsing / Recursive descent Approach Define a procedure for each syntactic variable The procedure for N consumes token sequences derivable from N has an alternative path for each rule for N The code for a rule N ::= α consists of a code fragment for each symbol in α consider the symbols in α from left to right a terminal symbol consumes the symbol a variable N calls the procedure for N

15 Recursive descent for G-ETF // <factor> ::= NUM ID IR factor() { if( cur_token == NUM ) { next_token(); return IR_NUM; } if( cur_token == ID ) { next_token(); return IR_ID; } syntax_error("num or ID expected"); }

16 Recursive descent for G-ETF/2 /* <term> ::= <term> * <factor> <term> / <factor> <factor> **/ IR term() { if(??? ) { term(); check(mul); factor(); return IR_MUL(...); } if(??? ) { term(); check(div); factor(); return IR_DIV(...); } return factor(); }

17 Trouble with recursive descent / top-down parsing Alternatives How do we decide on one of the productions? Would it help to look at the next token?

18 Trouble with recursive descent / top-down parsing Alternatives How do we decide on one of the productions? Would it help to look at the next token? Left recursion If we choose the first or second rule, we end up in an infinite recursion without consuming input.

19 Fact: Top-down parsers cannot deal with left recursion A variable N in a BNF is left recursive, if there is a derivation such that N + Nα, where α is an arbitrary string of variables and terminals.

20 Fact: Top-down parsers cannot deal with left recursion A variable N in a BNF is left recursive, if there is a derivation such that N + Nα, where α is an arbitrary string of variables and terminals. Fact: if a BNF has a left recursive variable, then top-down parsing for this BNF may not terminate.

21 Fact: Top-down parsers cannot deal with left recursion A variable N in a BNF is left recursive, if there is a derivation such that N + Nα, where α is an arbitrary string of variables and terminals. Fact: if a BNF has a left recursive variable, then top-down parsing for this BNF may not terminate. Cure: remove left recursion by transforming the BNF

22 Elimination of direct left recursion Suppose G has a left recursive variable A with rules A Aα 1 Aα n β 1 β m where none of the β i starts with A and all α j ε Add a new variable A Remove all productions for A Add new productions A β 1 A β m A A ε α 1 A α n A This transformation is always possible: same language, but A no longer left recursive

23 Example: transforming G-ETF Original grammar G-ETF After elimination of left recursion <goal> <expr> <term> <factor> ::= num id ::= <expr> ::= <expr> + <term> <expr> - <term> <term> ::= <term> * <factor> <term> / <factor> <factor> <goal> <expr> <expr > <term> <term > <factor> ::= num id ::= <expr> ::= <term> <expr > ::= + <term> <expr > - <term> <expr > ::= <factor> <term > ::= * <factor> <term > / <factor> <term >

24 Twist: different derivation trees elimination of left recursion changes the derivation trees consider

25 What about alternatives? /* <term > ::= * <factor> <term > / <factor> <term > **/ IR term1(ir arg1) { if( cur_token == MUL ) { next_token(); IR arg2 = factor(); return term1(ir_mul(arg1, arg2)); } if( cur_token == DIV ) { next_token(); IR arg2 = factor();; return term1(ir_div(arg1, arg2)); } if ( cur_token??? ) { return arg1; } syntax_error ("MUL, DIV, or??? expected"); }

26 How do we select between several alternative rules? Solution: lookahead what is the next token?

27 How do we select between several alternative rules? Solution: lookahead what is the next token? But how do we determine lookahead symbols?

28 How do we select between several alternative rules? Solution: lookahead what is the next token? But how do we determine lookahead symbols? First symbols For each right hand side α of a rule and k > 0, we want to determine FIRST k (α) = {w k α w}

29 How do we select between several alternative rules? Solution: lookahead what is the next token? But how do we determine lookahead symbols? First symbols For each right hand side α of a rule and k > 0, we want to determine k-cutoff of a word FIRST k (α) = {w k α w} w w k = w 1 w k w = w 1 w 2, w 1 = k

30 First symbols Computing first symbols FIRST k (ε) = {ε} FIRST k (aα) = {(aw) k w FIRST k (α)} FIRST k (Nα) = {(vw) k v FIRST k (N), w FIRST k (α)}

31 First symbols Computing first symbols FIRST k (ε) = {ε} FIRST k (aα) = {(aw) k w FIRST k (α)} FIRST k (Nα) = {(vw) k v FIRST k (N), w FIRST k (α)} Computing first symbols for N FIRST k (N) = {FIRST k (α) N ::= α is a rule}

32 Example G-ETF/LR and k = 1 <goal> <expr> <expr > <term> <term > <factor> ::= num id ::= <expr> ::= <term> <expr > ::= + <term> <expr > - <term> <expr > ::= <factor> <term > ::= * <factor> <term > / <factor> <term > FIRST 1 (G) = FIRST 1 (E) FIRST 1 (E) = FIRST 1 (T ) FIRST 1 (E ) FIRST 1 (E ) = {+,, ε} FIRST 1 (T ) = FIRST 1 (F ) FIRST 1 (T ) FIRST 1 (T ) = {, /, ε} FIRST 1 (F) = {num, id}

33 Example G-ETF/LR and k = 1 <goal> <expr> <expr > <term> <term > <factor> ::= num id ::= <expr> ::= <term> <expr > ::= + <term> <expr > - <term> <expr > ::= <factor> <term > ::= * <factor> <term > / <factor> <term > FIRST 1 (G) = FIRST 1 (E) FIRST 1 (E) = FIRST 1 (T ) FIRST 1 (E ) FIRST 1 (E ) = {+,, ε} FIRST 1 (T ) = FIRST 1 (F ) FIRST 1 (T ) = {num, id} FIRST 1 (T ) = {, /, ε} FIRST 1 (F) = {num, id}

34 Example G-ETF/LR and k = 1 <goal> <expr> <expr > <term> <term > <factor> ::= num id ::= <expr> ::= <term> <expr > ::= + <term> <expr > - <term> <expr > ::= <factor> <term > ::= * <factor> <term > / <factor> <term > FIRST 1 (G) = FIRST 1 (E) FIRST 1 (E) = FIRST 1 (T ) FIRST 1 (E ) = {num, id} FIRST 1 (E ) = {+,, ε} FIRST 1 (T ) = FIRST 1 (F ) FIRST 1 (T ) = {num, id} FIRST 1 (T ) = {, /, ε} FIRST 1 (F) = {num, id}

35 Lookahead, 1. Attempt If A ::= α 1 α n is the list of all rules for A, then the first-sets of all right hand sides must be disjoint: i j : FIRST 1 (α i ) FIRST 1 (α j ) On input aw, the parser for N chooses the right hand side i with a FIRST 1 (α i ) Signal syntax error, if no such i exists.

36 Another example for FIRST A ::= B Cx ε B ::= C ya C ::= B z FIRST 1 (A) = FIRST 1 (B) FIRST 1 (C) {x} {ε} FIRST 1 (B) = FIRST 1 (C) {y} FIRST 1 (C) = FIRST 1 (B) {z}

37 Another example for FIRST A ::= B Cx ε B ::= C ya C ::= B z FIRST 1 (A) = FIRST 1 (B) FIRST 1 (C) {x} {ε} FIRST 1 (B) = FIRST 1 (C) {y} FIRST 1 (C) = FIRST 1 (B) {z} Computing FIRST by fixpoint A B C 0 1 ε y z 2 y, z, ε z, y y, z 3 y, z, ε z, y y, z no further change, fixpoint reached

38 Epsilon rules and FOLLOW What if there is a rule A ::= ε? As FIRST(ε) = ε, this rule is always applicable!

39 Epsilon rules and FOLLOW What if there is a rule A ::= ε? As FIRST(ε) = ε, this rule is always applicable! Solution Consider the symbols that can possibly follow A! FOLLOW k (A) = {w k S αaw}

40 Computing FOLLOW FOLLOW k (A) = {FIRST k (β) k FOLLOW k (B) B ::= αaβ is a rule} We assume that the goal variable G does not appear on the right hand side of productions and that FOLLOW k (G) = {ε}

44 Lookahead, 2. Attempt Lookahead set for a rule LA k (A ::= α) = FIRST k (α) k FOLLOW k (A) Definition LL(k) grammar A BNF is an LL(k) grammar, if for each variable A its rule set A ::= α 1 α n fulfills LL(k) Parsing i j : LA k (A ::= α i ) LA k (A ::= α j ) = On input w, the parser for A chooses the unique right hand side α i such that w k LA k (A ::= α i ) and signals a syntax error if no such i exists.

45 Outline 1 Syntax Analysis Recursive top-down parsing Nonrecursive top-down parsing Bottom-up parsing

46 Nonrecursive top-down parsing A top-down parser may be implemented without recursion using a pushdown automaton The pushdown keeps track of the terminals and variables that still need to be matched

47 The pushdown automaton Q = {q} a single state, also serves as initial state Σ is the input alphabet Γ = Σ VAR, the set of terminals and variables, is the pushdown alphabet Z 0 = G VAR, the pushdown bottom symbol is the goal variable δ is defined by δ(q, ε, A) (q, α) if A ::= α is a rule δ(q, a, a) = (q, ε) In the PDA, the choice of the rule is nondeterministic, in practice we disambiguate using LL(k) grammars with lookahead

48 Nonrecursive top-down parser with parse table M push EOF push Start_Symbol token next_token() repeat X Stack[tos] if X is a terminal or EOF then if X = token then pop X token next_token() else error() else /* X is a variable */ if M[X,token] = X ::= Y1Y2... Yk then pop X push Yk,...,Y2,Y1 else error() until X = EOF

49 Parse table The parse table M maps a variable and a lookahead symbol (from the input) to a production (number) 1 <goal> ::= <expr> 2 <expr> ::= <term> <expr > 3 <expr > ::= + <term> <expr > 4 - <term> <expr > 5 6 <term> ::= <factor> <term > 7 <term > ::= * <factor> <term > 8 / <factor> <term > 9 10 <factor> ::= id 11 num id num + / \$ G 1 1 E 2 2 E T 6 6 T F 10 11

50 LL(1) parse table construction Input: a BNF Output: parsing table M Algorithm: 1 For all rules p of the form A ::= α 1 For each a FIRST 1 (α): add p to M[A, a] 2 If ε FIRST 1 (α) 1 For each b FOLLOW 1 (A): add p to M[A, b] 2 If ε FOLLOW 1 (A): add p to M[A, ε] 2 Set each undefined entry of M to error Check: The BNF is LL(1) if M[A, a] 1 for all A and a.

51 A BNF that is not LL(1) <stmt> ::= if <expr> then <stmt> if <expr> then <stmt> else <stmt> Both rules have the same FIRST sets because their right hand sides have the same prefix!

52 A BNF that is not LL(1) <stmt> ::= if <expr> then <stmt> if <expr> then <stmt> else <stmt> Both rules have the same FIRST sets because their right hand sides have the same prefix! Left factorization Coalesce to a new rule Introduce new variable that derives the different suffixes <stmt> ::= if <expr> then <stmt> <stmt > <stmt > ::= else <stmt> /*empty*/

53 Still not LL(1)... <stmt> ::= if <expr> then <stmt> <stmt > <stmt > ::= else <stmt> /*empty*/ FIRST 1 (S) = {if} FIRST 1 (S ) = {else, ε} FOLLOW 1 (S) = FIRST 1 (S ) FOLLOW 1 (S ) FOLLOW 1 (S ) = FOLLOW 1 (S)

54 Still not LL(1)... <stmt> ::= if <expr> then <stmt> <stmt > <stmt > ::= else <stmt> /*empty*/ FIRST 1 (S) = {if} FIRST 1 (S ) = {else, ε} FOLLOW 1 (S) = FIRST 1 (S ) FOLLOW 1 (S ) = {else, ε} FOLLOW 1 (S ) FOLLOW 1 (S ) = FOLLOW 1 (S)

55 Still not LL(1)... <stmt> ::= if <expr> then <stmt> <stmt > <stmt > ::= else <stmt> /*empty*/ FIRST 1 (S) = {if} FIRST 1 (S ) = {else, ε} FOLLOW 1 (S) = FIRST 1 (S ) FOLLOW 1 (S ) = {else, ε} FOLLOW 1 (S ) = {else, ε} FOLLOW 1 (S ) = FOLLOW 1 (S) = {else, ε}

56 Still not LL(1)... <stmt> ::= if <expr> then <stmt> <stmt > <stmt > ::= else <stmt> /*empty*/ FIRST 1 (S) = {if} FIRST 1 (S ) = {else, ε} FOLLOW 1 (S) = FIRST 1 (S ) FOLLOW 1 (S ) = {else, ε} FOLLOW 1 (S ) = {else, ε} FOLLOW 1 (S ) = FOLLOW 1 (S) = {else, ε} LA 1 (S ::= else S) = {else} LA 1 (S ::= ε) = {else, ε}

57 Practical fix The rule <stmt > ::= else <stmt> gets precedence on input else.

58 Outline 1 Syntax Analysis Recursive top-down parsing Nonrecursive top-down parsing Bottom-up parsing

59 Bottom-up parsing Goal Given an input string and a BNF, construct a parse tree starting at the leaves and working up to the root.

60 Recall Sentential form For a BNF with start variable S, every α such that S α is a sentential form. If α Σ, then α is a sentence. A left sentential form occurs in a left derivation. A right sentential form occurs in a right derivation.

61 Bottom-up parsing Procedure: The bottom-up parser repeatedly matches a right-sentential form of the language against the tree s upper frontier. At each match, it applies a reduction to build on the frontier: each reduction matches an upper frontier of the partially built tree to the RHS of some production each reduction adds a node on top of the frontier The final result is a rightmost derivation, in reverse.

62 Example Consider the BNF 1 S ::= aabe 2 A ::= Abc 3 b 4 B ::= d and the input string abbcde (Construct a rightmost derivation)

63 Handles To construct a the rightmost derivation, we need to find handles. Handle A handle is a substring α of the trees frontier that matches a rule A ::= α which is applied at that point in a rightmost derivation

64 Handles To construct a the rightmost derivation, we need to find handles. Handle A handle is a substring α of the trees frontier that matches a rule A ::= α which is applied at that point in a rightmost derivation Formally In a right-sentential form αβw, the string β is a handle for production A ::= β if S rm αaw rm αβw then β is a handle for A ::= β in αβw

65 Example: G-ETF 1 <goal> ::= <expr> 2 <expr> ::= <expr> + <term> 3 <expr> - <term> 4 <term> 5 <term> ::= <term> * <factor> 6 <term> / <factor> 7 <factor> 8 <factor> ::= num 9 id A rightmost derivation for this grammar has unique handles.

66 Stack implementation One scheme to implement a handle-pruning, bottom-up parser is called a shift-reduce parser. Shift-reduce parsers use a stack and an input buffer 1 initialize stack with \$ 2 Repeat until the top of the stack is the goal symbol and the input token is \$ find the handle if we don t have a handle on top of the stack, shift an input symbol onto the stack prune the handle if we have a handle for A ::= β on the stack, reduce: pop β symbols off the stack push A onto the stack

67 Example Apply shift-reduce parsing to x-2*y 1 Shift until top of stack is the right end of a handle 2 Find the left end of the handle and reduce

68 Shift-reduce parsing A shift-reduce parser has just four canonical actions: 1 shift next input symbol is shifted onto the top of the stack 2 reduce right end of handle is on top of stack; locate left end of handle within the stack; pop handle off stack and push appropriate non-terminal LHS 3 accept terminate parsing and signal success 4 error call an error recovery routine But how do we know that there is a complete handle on the stack? which handle to use?

69 LR parsing Recognize handles with a DFA [Knuth 1965] DFA transitions shift states instead of symbols accepting states trigger reductions

70 Skeleton for LR parsing push s0 token next_token() while(true) s top of stack if action[s,token] = SHIFT(si) then push si token next_token() else if action[s,token] = REDUCE(A ::= β) then pop β states s top of stack push goto[s, A] else if action[s, token] = ACCEPT then return else error() Accepting a sentence takes k shifts, l reduces, and 1 accept, where k is the length of the input string and l is the length of the rightmost derivation

71 Example tables 1 <goal> ::= <expr> 2 <expr> ::= <term>+<expr> 3 <term> 4 <term> ::= <factor>*<term> 5 <factor> 6 <factor> ::= id state ACTION GOTO id + \$ E T F 0 s acc 2 s5 r3 3 r5 s6 r5 4 r6 r6 r6 5 s s r2 8 r4 r4

72 Example using the tables Start with Stack \$ 0 Input id * id + id \$

73 Formal definition of LR(k) A BNF is LR(k) if S rm αaw rm αβw and S rm γbx rm αβy and w k = y k implies that αay = γbx.

74 Why study LR grammars? almost all context-free programming language constructs can be expressed naturally with an LR(1) grammar LR grammars are the most general grammar that can be parsed by a deterministic bottom-up parser LR(1) grammars have efficient parsers LR parsers detect errors as early as possible LR grammars are more general: Every LL(k) grammar is also a LR(k) grammar

75 LR parsing LR(1) not useful in practice because tables are too big all deterministic languages have LR(1) grammar very large tables slow construction SLR(1) smallest class of grammars smallest tables simple, fast construction LALR(1) expressivity between SLR(1) and LR(1) same number of states as SLR(1) clever algorithm yields fast construction

76 Constructing LR parse tables Parser states are modeled with LR(k) items. Definition An LR(k) item is a pair [A α β, w] where A αβ is a rule; the can divide the right hand side arbitrarily; intution: how much of the right hand side has been seen already w is a lookahead string containing at most k symbols

77 Constructing LR parse tables Parser states are modeled with LR(k) items. Definition An LR(k) item is a pair [A α β, w] where A αβ is a rule; the can divide the right hand side arbitrarily; intution: how much of the right hand side has been seen already w is a lookahead string containing at most k symbols Cases of interest k = 0: LR(0) items play a role in SLR(1) construction k = 1: LR(1) items are used for constructing LR(1) and LALR(1) parsers

78 Examples Consider LR(0) items without lookahead [A abc] indicates that the parser is now looking for input derived from abc [A ab C] indicates that input derived from ab has been seen, now looking for something derived from C There are four items associated with A abc

79 The characteristic finite state machine (CFSM) The CFSM for a grammar is a DFA which recognizes viable prefixes of right-sentential forms: A viable prefix is any prefix that does not extend beyond the handle. The CFSM accepts when a handle has been discovered and needs to be reduced. A state of the CFSM is a set of items. To construct the CFSM we need two functions wherer I is a set of items and X is a grammar symbol: closure0(i) to build its states goto0(i, X) to determine its transitions

80 States of the CFSM Closure The closure of an item [A α Bβ contains the item itself and any other item that can generate legal strings following α. Thus if the parser has a viable prefix α on the stack, the remaining input should be derivable from Bβ. Closure0 For a set I of LR(0) items, the set closure0(i) is the smallest set such that 1 I closure0(i) 2 If [A α Bβ] closure0(i) then [B γ] closure0(i), for all rules B γ. Implementation: start with first rule, repeat second rule until no further items can be added.

81 Transitions of the CFSM Goto Let I be a set of LR(0) items and X be a grammar symbol. goto0(i, X) = closure0({[a αx β] [A α Xβ] I) If I is the set of items for a viable prefix γα, then goto0(i, X) is the set of items for viable prefix γαx. Accepting states of the CFSM: I is accepting if it contains a reduce item of the form [A α ].

82 Construction of the CFSM New start item [S S\$], where S is a new start symbol that does not occur on any RHS S is the previous start symbol \$ marks the end of input Compute the set of states S where each state is a set of items

83 Construction of the state set function items(g + S ) I closure0({[s S\$]}) S {I} W {I} while W remove some I from W for each grammar symbol X let I goto0(i, X) if I and I / S then add I to W and S return S

84 LR(0) example 1 S E\$ 2 E E+T 3 T 4 T id 5 (E)

85 Construction of the LR(0) parse table Output: tables ACTION and GOTO 1 Let {I 0, I 1,... } = items(g) 2 State i of the CFSM corresponds to item I i if [A α aβ] I i, a Σ and goto0(i i, a) = I j then ACTION[i, a] = SHIFT j If [A α ] I i and A S then ACTION[i, a] = REDUCE A α, for all a If [S S\$ ] I i then ACTION[i, a] = ACCEPT, for all a 3 If goto0(i i, A) = I j for variable A then GOTO[i, A] = j 4 set all undefined entries in ACTION and GOTO to ERROR 5 initial state of parser corresponds to I 0 = closure0({[s S\$]})

86 Example ACTION table

87 Conflicts If there are multiply defined entries in the ACTION table, then the grammar is not LR(0). There are two kinds of conflict shift-reduce: shift and reduce are possible in the same item set reduce-reduce: two different reduce actions are possible in the same item set Examples A ε aα on input a, shift a or reduce A ε? a = b+c*d with expression grammar after reading c, should we shift or reduce? Use lookahead to resolve conflicts

88 SLR(1) simple lookahead LR Add lookahead after computing the LR(0) item sets 1 Let {I 0, I 1,... } = items(g) 2 State i of the CFSM corresponds to item I i if [A α aβ] I i, for a \$ and goto0(i i, a) = I j then ACTION[i, a] = SHIFT j If [A α ] I i and A S then ACTION[i, a] = REDUCE A α, for all a FOLLOW(A) If [S S \$] I i then ACTION[i, \$] = ACCEPT 3 If goto0(i i, A) = I j for variable A then GOTO[i, A] = j 4 set all undefined entries in ACTION and GOTO to ERROR 5 initial state of parser corresponds to I 0 = closure0({[s S\$]})

89 LR(1) items Items of the form [A α β, a] for a Σ Propagate lookahead in construction to choose the correct reduction Lookahead has only effect on reduce items We can decide between reductions [A α, a] and [B α, b] by examining the lookahead.

90 Closure1 Closure1 For a set I of LR(1) items, the set closure1(i) is the smallest set such that 1 I closure1(i) 2 If [A α Bβ, a] closure0(i) then [B γ, b] closure0(i), for all rules B γ and for all b FIRST 1 (βa).

91 Goto1 Let I be a set of LR(1) items and X be a grammar symbol. goto1(i, X) = closure1({[a αx β, a] [A α Xβ, a] I) Construction of the CFSM as before

92 Construction of the LR(1) parse table Output: tables ACTION and GOTO 1 Let {I 0, I 1,... } = items(g) 2 State i of the CFSM corresponds to item I i if [A α aβ, b] I i, a \$ and goto1(i i, a) = I j then ACTION[i, a] = SHIFT j If [A α, b] I i and A S then ACTION[i, b] = REDUCE A α If [S S, \$] I i then ACTION[i, \$] = ACCEPT 3 If goto1(i i, A) = I j for variable A then GOTO[i, A] = j 4 set all undefined entries in ACTION and GOTO to ERROR 5 initial state of parser corresponds to I 0 = closure1({[s S, \$]})

93 LALR(1) parsing The core of a set of LR(1) items is the set of LR(0) items obtained by stripping off all lookahead. The following two sets have the same core: {[A α β, a], [A α β, c]} {[A α β, b], [A α β, c]} Key idea If two LR(1) item sets have the same core, then we can merge their states in the ACTION and GOTO tables.

94 LALR(1) table construction Compared to LR(1) we need a single new step: For each core present among the set of LR(1) items, find all sets having that core and replace these sets by their union. The goto function must be updated to reflect the replacement sets. The resulting algorithm is very expensive. There is a more efficient algorithm that analyses the LR(0) CFSM.

95 Precedence and associativity Precedence and associativity can be used to resolve shift-reduce conflicts in ambiguous grammars. lookahead symbol has higher precedence shift same precedence, left associative reduce Advantages: more concise, albeit ambiguous, grammars shallower parse trees fewer reductions Classic application: expression grammars

96 Precedence applied With precedence and associativity we can use a very simple expression grammar without useless productions. E E E E/E E+E E E (E) E id num

97 Left recursion vs right recursion Right recursion required in top-down parsers for termination more stack space right-associative operators Left recursion works fine in bottom-up parsers limits required stack left associative operators

### A left-sentential form is a sentential form that occurs in the leftmost derivation of some sentence.

Bottom-up parsing Recall For a grammar G, with start symbol S, any string α such that S α is a sentential form If α V t, then α is a sentence in L(G) A left-sentential form is a sentential form that occurs

### Bottom-up parsing. Bottom-Up Parsing. Recall. Goal: For a grammar G, withstartsymbols, any string α such that S α is called a sentential form

Bottom-up parsing Bottom-up parsing Recall Goal: For a grammar G, withstartsymbols, any string α such that S α is called a sentential form If α V t,thenα is called a sentence in L(G) Otherwise it is just

### Context-free grammars

Context-free grammars Section 4.2 Formal way of specifying rules about the structure/syntax of a program terminals - tokens non-terminals - represent higher-level structures of a program start symbol,

### Compiler Construction: Parsing

Compiler Construction: Parsing Mandar Mitra Indian Statistical Institute M. Mitra (ISI) Parsing 1 / 33 Context-free grammars. Reference: Section 4.2 Formal way of specifying rules about the structure/syntax

### PART 3 - SYNTAX ANALYSIS. F. Wotawa TU Graz) Compiler Construction Summer term / 309

PART 3 - SYNTAX ANALYSIS F. Wotawa (IST @ TU Graz) Compiler Construction Summer term 2016 64 / 309 Goals Definition of the syntax of a programming language using context free grammars Methods for parsing

### 3. Syntax Analysis. Andrea Polini. Formal Languages and Compilers Master in Computer Science University of Camerino

3. Syntax Analysis Andrea Polini Formal Languages and Compilers Master in Computer Science University of Camerino (Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 1 / 54 Syntax Analysis: the

### Chapter 4: LR Parsing

Chapter 4: LR Parsing 110 Some definitions Recall For a grammar G, with start symbol S, any string α such that S called a sentential form α is If α Vt, then α is called a sentence in L G Otherwise it is

### S Y N T A X A N A L Y S I S LR

LR parsing There are three commonly used algorithms to build tables for an LR parser: 1. SLR(1) = LR(0) plus use of FOLLOW set to select between actions smallest class of grammars smallest tables (number

### Principles of Programming Languages

Principles of Programming Languages h"p://www.di.unipi.it/~andrea/dida2ca/plp- 14/ Prof. Andrea Corradini Department of Computer Science, Pisa Lesson 8! Bo;om- Up Parsing Shi?- Reduce LR(0) automata and

### LR Parsing Techniques

LR Parsing Techniques Introduction Bottom-Up Parsing LR Parsing as Handle Pruning Shift-Reduce Parser LR(k) Parsing Model Parsing Table Construction: SLR, LR, LALR 1 Bottom-UP Parsing A bottom-up parser

### Syntax Analysis. Amitabha Sanyal. (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

Syntax Analysis (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay September 2007 College of Engineering, Pune Syntax Analysis: 2/124 Syntax

### Formal Languages and Compilers Lecture VII Part 3: Syntactic A

Formal Languages and Compilers Lecture VII Part 3: Syntactic Analysis Free University of Bozen-Bolzano Faculty of Computer Science POS Building, Room: 2.03 artale@inf.unibz.it http://www.inf.unibz.it/

### UNIT-III BOTTOM-UP PARSING

UNIT-III BOTTOM-UP PARSING Constructing a parse tree for an input string beginning at the leaves and going towards the root is called bottom-up parsing. A general type of bottom-up parser is a shift-reduce

### Compiler Design 1. Bottom-UP Parsing. Goutam Biswas. Lect 6

Compiler Design 1 Bottom-UP Parsing Compiler Design 2 The Process The parse tree is built starting from the leaf nodes labeled by the terminals (tokens). The parser tries to discover appropriate reductions,

### LR Parsing, Part 2. Constructing Parse Tables. An NFA Recognizing Viable Prefixes. Computing the Closure. GOTO Function and DFA States

TDDD16 Compilers and Interpreters TDDB44 Compiler Construction LR Parsing, Part 2 Constructing Parse Tables Parse table construction Grammar conflict handling Categories of LR Grammars and Parsers An NFA

### Parsing. Roadmap. > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing

Roadmap > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing The role of the parser > performs context-free syntax analysis > guides

### Bottom up parsing. The sentential forms happen to be a right most derivation in the reverse order. S a A B e a A d e. a A d e a A B e S.

Bottom up parsing Construct a parse tree for an input string beginning at leaves and going towards root OR Reduce a string w of input to start symbol of grammar Consider a grammar S aabe A Abc b B d And

### Syntax Analysis: Context-free Grammars, Pushdown Automata and Parsing Part - 4. Y.N. Srikant

Syntax Analysis: Context-free Grammars, Pushdown Automata and Part - 4 Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler

### Formal Languages and Compilers Lecture VII Part 4: Syntactic A

Formal Languages and Compilers Lecture VII Part 4: Syntactic Analysis Free University of Bozen-Bolzano Faculty of Computer Science POS Building, Room: 2.03 artale@inf.unibz.it http://www.inf.unibz.it/

### 4. Lexical and Syntax Analysis

4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal

### The role of the parser

The role of the parser source code tokens scanner parser IR errors Parser performs context-free syntax analysis guides context-sensitive analysis constructs an intermediate representation produces meaningful

### Parsing. Handle, viable prefix, items, closures, goto s LR(k): SLR(1), LR(1), LALR(1)

TD parsing - LL(1) Parsing First and Follow sets Parse table construction BU Parsing Handle, viable prefix, items, closures, goto s LR(k): SLR(1), LR(1), LALR(1) Problems with SLR Aho, Sethi, Ullman, Compilers

### 4. Lexical and Syntax Analysis

4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal

### Concepts Introduced in Chapter 4

Concepts Introduced in Chapter 4 Grammars Context-Free Grammars Derivations and Parse Trees Ambiguity, Precedence, and Associativity Top Down Parsing Recursive Descent, LL Bottom Up Parsing SLR, LR, LALR

SYNTAX ANALYSIS 1. Define parser. Hierarchical analysis is one in which the tokens are grouped hierarchically into nested collections with collective meaning. Also termed as Parsing. 2. Mention the basic

### MIT Parse Table Construction. Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

MIT 6.035 Parse Table Construction Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology Parse Tables (Review) ACTION Goto State ( ) \$ X s0 shift to s2 error error goto s1

### Bottom-Up Parsing. Lecture 11-12

Bottom-Up Parsing Lecture 11-12 (From slides by G. Necula & R. Bodik) 9/22/06 Prof. Hilfinger CS164 Lecture 11 1 Bottom-Up Parsing Bottom-up parsing is more general than topdown parsing And just as efficient

### 3. Parsing. Oscar Nierstrasz

3. Parsing Oscar Nierstrasz Thanks to Jens Palsberg and Tony Hosking for their kind permission to reuse and adapt the CS132 and CS502 lecture notes. http://www.cs.ucla.edu/~palsberg/ http://www.cs.purdue.edu/homes/hosking/

### CSE P 501 Compilers. LR Parsing Hal Perkins Spring UW CSE P 501 Spring 2018 D-1

CSE P 501 Compilers LR Parsing Hal Perkins Spring 2018 UW CSE P 501 Spring 2018 D-1 Agenda LR Parsing Table-driven Parsers Parser States Shift-Reduce and Reduce-Reduce conflicts UW CSE P 501 Spring 2018

### Compilers. Bottom-up Parsing. (original slides by Sam

Compilers Bottom-up Parsing Yannis Smaragdakis U Athens Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts) Bottom-Up Parsing More general than top-down parsing And just as efficient Builds

### Bottom-up Parser. Jungsik Choi

Formal Languages and Compiler (CSE322) Bottom-up Parser Jungsik Choi chjs@khu.ac.kr * Some slides taken from SKKU SWE3010 (Prof. Hwansoo Han) and TAMU CSCE434-500 (Prof. Lawrence Rauchwerger) Bottom-up

### Bottom Up Parsing. Shift and Reduce. Sentential Form. Handle. Parse Tree. Bottom Up Parsing 9/26/2012. Also known as Shift-Reduce parsing

Also known as Shift-Reduce parsing More powerful than top down Don t need left factored grammars Can handle left recursion Attempt to construct parse tree from an input string eginning at leaves and working

### Introduction to Parsing. Comp 412

COMP 412 FALL 2010 Introduction to Parsing Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make

### COP4020 Programming Languages. Syntax Prof. Robert van Engelen

COP4020 Programming Languages Syntax Prof. Robert van Engelen Overview n Tokens and regular expressions n Syntax and context-free grammars n Grammar derivations n More about parse trees n Top-down and

WWW.STUDENTSFOCUS.COM UNIT -3 SYNTAX ANALYSIS 3.1 ROLE OF THE PARSER Parser obtains a string of tokens from the lexical analyzer and verifies that it can be generated by the language for the source program.

### LR Parsing. Leftmost and Rightmost Derivations. Compiler Design CSE 504. Derivations for id + id: T id = id+id. 1 Shift-Reduce Parsing.

LR Parsing Compiler Design CSE 504 1 Shift-Reduce Parsing 2 LR Parsers 3 SLR and LR(1) Parsers Last modifled: Fri Mar 06 2015 at 13:50:06 EST Version: 1.7 16:58:46 2016/01/29 Compiled at 12:57 on 2016/02/26

### Lexical and Syntax Analysis. Bottom-Up Parsing

Lexical and Syntax Analysis Bottom-Up Parsing Parsing There are two ways to construct derivation of a grammar. Top-Down: begin with start symbol; repeatedly replace an instance of a production s LHS with

### Section A. A grammar that produces more than one parse tree for some sentences is said to be ambiguous.

Section A 1. What do you meant by parser and its types? A parser for grammar G is a program that takes as input a string w and produces as output either a parse tree for w, if w is a sentence of G, or

### Wednesday, September 9, 15. Parsers

Parsers What is a parser A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure of a program (think: diagramming a sentence) Agenda

### Parsers. What is a parser. Languages. Agenda. Terminology. Languages. A parser has two jobs:

What is a parser Parsers A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure of a program (think: diagramming a sentence) Agenda

### Wednesday, August 31, Parsers

Parsers How do we combine tokens? Combine tokens ( words in a language) to form programs ( sentences in a language) Not all combinations of tokens are correct programs (not all sentences are grammatically

### Parsing III. CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones

Parsing III (Top-down parsing: recursive descent & LL(1) ) (Bottom-up parsing) CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones Copyright 2003, Keith D. Cooper,

### Monday, September 13, Parsers

Parsers Agenda Terminology LL(1) Parsers Overview of LR Parsing Terminology Grammar G = (Vt, Vn, S, P) Vt is the set of terminals Vn is the set of non-terminals S is the start symbol P is the set of productions

### Parsing Wrapup. Roadmap (Where are we?) Last lecture Shift-reduce parser LR(1) parsing. This lecture LR(1) parsing

Parsing Wrapup Roadmap (Where are we?) Last lecture Shift-reduce parser LR(1) parsing LR(1) items Computing closure Computing goto LR(1) canonical collection This lecture LR(1) parsing Building ACTION

### EDAN65: Compilers, Lecture 06 A LR parsing. Görel Hedin Revised:

EDAN65: Compilers, Lecture 06 A LR parsing Görel Hedin Revised: 2017-09-11 This lecture Regular expressions Context-free grammar Attribute grammar Lexical analyzer (scanner) Syntactic analyzer (parser)

### Lecture 7: Deterministic Bottom-Up Parsing

Lecture 7: Deterministic Bottom-Up Parsing (From slides by G. Necula & R. Bodik) Last modified: Tue Sep 20 12:50:42 2011 CS164: Lecture #7 1 Avoiding nondeterministic choice: LR We ve been looking at general

### CA Compiler Construction

CA4003 - Compiler Construction David Sinclair A top-down parser starts with the root of the parse tree, labelled with the goal symbol of the grammar, and repeats the following steps until the fringe of

### Parsers. Xiaokang Qiu Purdue University. August 31, 2018 ECE 468

Parsers Xiaokang Qiu Purdue University ECE 468 August 31, 2018 What is a parser A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure

### Bottom-Up Parsing. Lecture 11-12

Bottom-Up Parsing Lecture 11-12 (From slides by G. Necula & R. Bodik) 2/20/08 Prof. Hilfinger CS164 Lecture 11 1 Administrivia Test I during class on 10 March. 2/20/08 Prof. Hilfinger CS164 Lecture 11

### Lecture 8: Deterministic Bottom-Up Parsing

Lecture 8: Deterministic Bottom-Up Parsing (From slides by G. Necula & R. Bodik) Last modified: Fri Feb 12 13:02:57 2010 CS164: Lecture #8 1 Avoiding nondeterministic choice: LR We ve been looking at general

### CSE 401 Compilers. LR Parsing Hal Perkins Autumn /10/ Hal Perkins & UW CSE D-1

CSE 401 Compilers LR Parsing Hal Perkins Autumn 2011 10/10/2011 2002-11 Hal Perkins & UW CSE D-1 Agenda LR Parsing Table-driven Parsers Parser States Shift-Reduce and Reduce-Reduce conflicts 10/10/2011

### LR Parsers. Aditi Raste, CCOEW

LR Parsers Aditi Raste, CCOEW 1 LR Parsers Most powerful shift-reduce parsers and yet efficient. LR(k) parsing L : left to right scanning of input R : constructing rightmost derivation in reverse k : number

### SLR parsers. LR(0) items

SLR parsers LR(0) items As we have seen, in order to make shift-reduce parsing practical, we need a reasonable way to identify viable prefixes (and so, possible handles). Up to now, it has not been clear

### In One Slide. Outline. LR Parsing. Table Construction

LR Parsing Table Construction #1 In One Slide An LR(1) parsing table can be constructed automatically from a CFG. An LR(1) item is a pair made up of a production and a lookahead token; it represents a

### Parser Generation. Bottom-Up Parsing. Constructing LR Parser. LR Parsing. Construct parse tree bottom-up --- from leaves to the root

Parser Generation Main Problem: given a grammar G, how to build a top-down parser or a bottom-up parser for it? parser : a program that, given a sentence, reconstructs a derivation for that sentence ----

### LR Parsing LALR Parser Generators

LR Parsing LALR Parser Generators Outline Review of bottom-up parsing Computing the parsing DFA Using parser generators 2 Bottom-up Parsing (Review) A bottom-up parser rewrites the input string to the

### CSE302: Compiler Design

CSE302: Compiler Design Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University March 20, 2007 Outline Recap LR(0)

### LR Parsing Techniques

LR Parsing Techniques Bottom-Up Parsing - LR: a special form of BU Parser LR Parsing as Handle Pruning Shift-Reduce Parser (LR Implementation) LR(k) Parsing Model - k lookaheads to determine next action

### Chapter 4. Lexical and Syntax Analysis. Topics. Compilation. Language Implementation. Issues in Lexical and Syntax Analysis.

Topics Chapter 4 Lexical and Syntax Analysis Introduction Lexical Analysis Syntax Analysis Recursive -Descent Parsing Bottom-Up parsing 2 Language Implementation Compilation There are three possible approaches

### Syntax Analyzer --- Parser

Syntax Analyzer --- Parser ASU Textbook Chapter 4.2--4.9 (w/o error handling) Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 A program represented by a sequence of tokens

### CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages Lecture 5: Syntax Analysis (Parsing) Zheng (Eddy) Zhang Rutgers University January 31, 2018 Class Information Homework 1 is being graded now. The sample solution

### LR Parsing - The Items

LR Parsing - The Items Lecture 10 Sections 4.5, 4.7 Robb T. Koether Hampden-Sydney College Fri, Feb 13, 2015 Robb T. Koether (Hampden-Sydney College) LR Parsing - The Items Fri, Feb 13, 2015 1 / 31 1 LR

### Syntax Analysis, VII One more LR(1) example, plus some more stuff. Comp 412 COMP 412 FALL Chapter 3 in EaC2e. target code.

COMP 412 FALL 2017 Syntax Analysis, VII One more LR(1) example, plus some more stuff Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon,

### Syntactic Analysis. Top-Down Parsing

Syntactic Analysis Top-Down Parsing Copyright 2017, Pedro C. Diniz, all rights reserved. Students enrolled in Compilers class at University of Southern California (USC) have explicit permission to make

### Compilers. Yannis Smaragdakis, U. Athens (original slides by Sam

Compilers Parsing Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts) Next step text chars Lexical analyzer tokens Parser IR Errors Parsing: Organize tokens into sentences Do tokens conform

### CS 4120 Introduction to Compilers

CS 4120 Introduction to Compilers Andrew Myers Cornell University Lecture 6: Bottom-Up Parsing 9/9/09 Bottom-up parsing A more powerful parsing technology LR grammars -- more expressive than LL can handle

### CS 406/534 Compiler Construction Parsing Part I

CS 406/534 Compiler Construction Parsing Part I Prof. Li Xu Dept. of Computer Science UMass Lowell Fall 2004 Part of the course lecture notes are based on Prof. Keith Cooper, Prof. Ken Kennedy and Dr.

### Principle of Compilers Lecture IV Part 4: Syntactic Analysis. Alessandro Artale

Free University of Bolzano Principles of Compilers Lecture IV Part 4, 2003/2004 AArtale (1) Principle of Compilers Lecture IV Part 4: Syntactic Analysis Alessandro Artale Faculty of Computer Science Free

### CSE 130 Programming Language Principles & Paradigms Lecture # 5. Chapter 4 Lexical and Syntax Analysis

Chapter 4 Lexical and Syntax Analysis Introduction - Language implementation systems must analyze source code, regardless of the specific implementation approach - Nearly all syntax analysis is based on

### Top down vs. bottom up parsing

Parsing A grammar describes the strings that are syntactically legal A recogniser simply accepts or rejects strings A generator produces sentences in the language described by the grammar A parser constructs

### CSCI312 Principles of Programming Languages

Copyright 2006 The McGraw-Hill Companies, Inc. CSCI312 Principles of Programming Languages! LL Parsing!! Xu Liu Derived from Keith Cooper s COMP 412 at Rice University Recap Copyright 2006 The McGraw-Hill

### LR Parsing LALR Parser Generators

Outline LR Parsing LALR Parser Generators Review of bottom-up parsing Computing the parsing DFA Using parser generators 2 Bottom-up Parsing (Review) A bottom-up parser rewrites the input string to the

### COP4020 Programming Languages. Syntax Prof. Robert van Engelen

COP4020 Programming Languages Syntax Prof. Robert van Engelen Overview Tokens and regular expressions Syntax and context-free grammars Grammar derivations More about parse trees Top-down and bottom-up

### Syntax Analysis. Martin Sulzmann. Martin Sulzmann Syntax Analysis 1 / 38

Syntax Analysis Martin Sulzmann Martin Sulzmann Syntax Analysis 1 / 38 Syntax Analysis Objective Recognize individual tokens as sentences of a language (beyond regular languages). Example 1 (OK) Program

### How do LL(1) Parsers Build Syntax Trees?

How do LL(1) Parsers Build Syntax Trees? So far our LL(1) parser has acted like a recognizer. It verifies that input token are syntactically correct, but it produces no output. Building complete (concrete)

### LALR Parsing. What Yacc and most compilers employ.

LALR Parsing Canonical sets of LR(1) items Number of states much larger than in the SLR construction LR(1) = Order of thousands for a standard prog. Lang. SLR(1) = order of hundreds for a standard prog.

### shift-reduce parsing

Parsing #2 Bottom-up Parsing Rightmost derivations; use of rules from right to left Uses a stack to push symbols the concatenation of the stack symbols with the rest of the input forms a valid bottom-up

### CS415 Compilers. Syntax Analysis. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers Syntax Analysis These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University Limits of Regular Languages Advantages of Regular Expressions

### CS 2210 Sample Midterm. 1. Determine if each of the following claims is true (T) or false (F).

CS 2210 Sample Midterm 1. Determine if each of the following claims is true (T) or false (F). F A language consists of a set of strings, its grammar structure, and a set of operations. (Note: a language

### Bottom-Up Parsing II. Lecture 8

Bottom-Up Parsing II Lecture 8 1 Review: Shift-Reduce Parsing Bottom-up parsing uses two actions: Shift ABC xyz ABCx yz Reduce Cbxy ijk CbA ijk 2 Recall: he Stack Left string can be implemented by a stack

Downloaded from http://himadri.cmsdu.org Page 1 LR Parsing We first understand Context Free Grammars. Consider the input string: x+2*y When scanned by a scanner, it produces the following stream of tokens:

### MODULE 14 SLR PARSER LR(0) ITEMS

MODULE 14 SLR PARSER LR(0) ITEMS In this module we shall discuss one of the LR type parser namely SLR parser. The various steps involved in the SLR parser will be discussed with a focus on the construction

### Acknowledgements. The slides for this lecture are a modified versions of the offering by Prof. Sanjeev K Aggarwal

Acknowledgements The slides for this lecture are a modified versions of the offering by Prof. Sanjeev K Aggarwal Syntax Analysis Check syntax and construct abstract syntax tree if == = ; b 0 a b Error

### Lecture Bottom-Up Parsing

Lecture 14+15 Bottom-Up Parsing CS 241: Foundations of Sequential Programs Winter 2018 Troy Vasiga et al University of Waterloo 1 Example CFG 1. S S 2. S AyB 3. A ab 4. A cd 5. B z 6. B wz 2 Stacks in

### Parsing III. (Top-down parsing: recursive descent & LL(1) )

Parsing III (Top-down parsing: recursive descent & LL(1) ) Roadmap (Where are we?) Previously We set out to study parsing Specifying syntax Context-free grammars Ambiguity Top-down parsers Algorithm &

### Parsing. Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice.

Parsing Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice. Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students

### Top-Down Parsing and Intro to Bottom-Up Parsing. Lecture 7

Top-Down Parsing and Intro to Bottom-Up Parsing Lecture 7 1 Predictive Parsers Like recursive-descent but parser can predict which production to use Predictive parsers are never wrong Always able to guess

VIVA QUESTIONS WITH ANSWERS 1. What is a compiler? A compiler is a program that reads a program written in one language the source language and translates it into an equivalent program in another language-the

### Syntax Analysis Part I

Syntax Analysis Part I Chapter 4: Context-Free Grammars Slides adapted from : Robert van Engelen, Florida State University Position of a Parser in the Compiler Model Source Program Lexical Analyzer Token,

### The Parsing Problem (cont d) Recursive-Descent Parsing. Recursive-Descent Parsing (cont d) ICOM 4036 Programming Languages. The Complexity of Parsing

ICOM 4036 Programming Languages Lexical and Syntax Analysis Lexical Analysis The Parsing Problem Recursive-Descent Parsing Bottom-Up Parsing This lecture covers review questions 14-27 This lecture covers

### Bottom-Up Parsing II (Different types of Shift-Reduce Conflicts) Lecture 10. Prof. Aiken (Modified by Professor Vijay Ganesh.

Bottom-Up Parsing II Different types of Shift-Reduce Conflicts) Lecture 10 Ganesh. Lecture 10) 1 Review: Bottom-Up Parsing Bottom-up parsing is more general than topdown parsing And just as efficient Doesn

### Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.

Eliminating Ambiguity Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. Example: consider the following grammar stat if expr then stat if expr then stat else stat other One can

### Parsing Part II (Top-down parsing, left-recursion removal)

Parsing Part II (Top-down parsing, left-recursion removal) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit

### Let us construct the LR(1) items for the grammar given below to construct the LALR parsing table.

MODULE 18 LALR parsing After understanding the most powerful CALR parser, in this module we will learn to construct the LALR parser. The CALR parser has a large set of items and hence the LALR parser is

### Syntax Analysis. Prof. James L. Frankel Harvard University. Version of 6:43 PM 6-Feb-2018 Copyright 2018, 2015 James L. Frankel. All rights reserved.

Syntax Analysis Prof. James L. Frankel Harvard University Version of 6:43 PM 6-Feb-2018 Copyright 2018, 2015 James L. Frankel. All rights reserved. Context-Free Grammar (CFG) terminals non-terminals start

### UNIT III & IV. Bottom up parsing

UNIT III & IV Bottom up parsing 5.0 Introduction Given a grammar and a sentence belonging to that grammar, if we have to show that the given sentence belongs to the given grammar, there are two methods.

### Parsing. source code. while (k<=n) {sum = sum+k; k=k+1;}

Compiler Construction Grammars Parsing source code scanner tokens regular expressions lexical analysis Lennart Andersson parser context free grammar Revision 2012 01 23 2012 parse tree AST builder (implicit)