Data Representa5on. CSC 2400: Computer Systems. What kinds of data do we need to represent?

Size: px
Start display at page:

Download "Data Representa5on. CSC 2400: Computer Systems. What kinds of data do we need to represent?"

Transcription

1 CSC 2400: Computer Systems Data Representa5on What kinds of data do we need to represent? - Numbers signed, unsigned, integers, floating point, complex, rational, irrational, - Text characters, strings, - Images pixels, colors, shapes, - Sound - Logical true, false - Instructions - q Data type: - representation and operations within the computer 1

2 Word-Oriented Memory Organization q esses Specify Byte Locations - ess of first byte in word - esses of successive words differ by 4 (32-bit) or 8 (64-bit) 32-bit 64-bit Words Words Bytes. 0000?? 0004?? 0008?? 0012?? 0000?? 0008?? Data Representations q Sizes of C Objects (in Bytes) C Data Type Sparc/Unix Typical 32-bit Intel IA32 int long int char short float double long double /12 char * (or any other pointer) 2

3 Byte Ordering q How should bytes within multi-byte word be ordered in memory? q Conventions - Sun s, Mac s are Big Endian machines o Least significant byte has highest address - Alphas, PC s are Little Endian machines o Least significant byte has lowest address Byte Ordering Example q Big Endian - Least significant byte has highest address q Little Endian - Least significant byte has lowest address q Example - Variable x has 4-byte representation 0x ess given by &x is 0x100 Big Endian Little Endian 0x100 0x101 0x102 0x x100 0x101 0x102 0x

4 Integers Unsigned Integers q An n-bit unsigned integer represents 2 n values: from 0 to 2 n

5 Signed Integers q How do computers differen1ate between posi1ve and nega1ve integers? - Posi1ve integers have most significant bit 0 - Nega1ve integers have most significant bit 1 q Nega1ve integer representa1ons: 1. Sign Magnitude 2. One s Complement 3. Two s Complement 1. Sign Magnitude q Use the leimost bit to store the sign - Zero for posi1ve number - One for nega1ve number q Examples è è -44 Sign Magnitude q Hard to do arithme1c this way, so it is rarely used - What is the result of 44 44? 5

6 1. Sign Magnitude (contd.) è è -44 Sign Magnitude q For numbers represented on n bits: - Range of posi1ve integers: from 0 to (2 n-1 1) - Range of nega1ve integers: from (2 n-1 1) to 1 2. One s Complement q LeImost bit is 0 for posi1ve numbers è 44 q To obtain the corresponding nega1ve number (- 44), flip every bit: è -44 q So - 44 is the one s complement of 44. 6

7 2. One s Complement (contd.) q What is the result of 44 44? ( 44) (-44) q Issue: two different representa1ons for zero 3. Two s Complement q LeImost bit is 0 for posi1ve numbers è 44 q To obtain the corresponding nega1ve number - 44, add 1 to the one s complement of 44: è one s complement è two s complement 7

8 3. Two s Complement (contd.) q What is the result of 44 44? ( 44) (-44) q Used by most computer systems q For numbers represented on n bits: - Range of posi1ve integers: - Range of nega1ve integers: from 0 to (2 n-1 1) from 2 n-1 to 1 Converting Two s Complement to Decimal 1. If leading bit is one, take two s complement to get a positive number. 2. Add powers of 2 that have 1 in the corresponding bit positions. 3. If original number was negative, add a minus sign. X two ten Assuming 8-bit 2 s complement numbers. n 2 n

9 More Examples X two ten X two -X ten X -26 ten n 2 n Assuming 8-bit 2 s complement numbers. Two s Complement Signed Integers q Most significant bit is sign bit and has weight 2 n-1. q Range of an n-bit number: -2 n-1 through 2 n The most negative number (-2 n-1 ) has no positive counterpart

10 Number Representa5ons Review q LeImost bit zero indicates q Sign Magnitude: - nega1ve values q One s Complement: - nega1ve values q Two s complement: - nega1ve values positive number most significant bit 1 has weight 0 are the 1 s complement of positive values (flip every bit) are the 2 s complement of positive values most significant bit 1 has weight 2 n-1 Fill in the Table Bit Pattern Value (Sign Magnitude) Value (One s Complement) Value (Two s Complement)

11 Ques5on q What value does represent? ASCII 11

12 The ASCII Code American Standard Code for Information Interchange NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI 16 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US 32 SP! " # $ % & ' ( ) * +, -. / : ; < >? A B C D E F G H I J K L M N O 80 P Q R S T U V W X Y Z [ \ ] ^ _ 96 ` a b c d e f g h i j k l m n o 112 p q r s t u v w x y z { } ~ DEL Lower case: and upper case: E.g., a is 97 and A is 65 (i.e., 32 apart) char Constants q C has char constants (sort of) q Examples Constant Binary Representation (assuming ASCII) Note 'a' letter '0' digit '\x61' hexadecimal form Use single quotes for char constant Use double quotes for string constant * Technically 'a' is of type int; automatically truncated to type char when appropriate 12

13 More char Constants Escape characters Constant Binary Representation (assuming ASCII) Note '\a' alert (bell) '\b' backspace '\f' form feed '\n' newline '\r' carriage return '\t' horizontal tab '\v' vertical tab '\\' backslash '\?' question mark '\'' single quote '\"' double quote '\0' null Used often Interesting Properties of ASCII Code q What is relationship between a decimal digit ('0', '1', ) and its ASCII code? q What is the difference between an upper-case letter ('A', 'B', ) and its lower-case equivalent ('a', 'b', )? q Given two ASCII characters, how do we tell which comes first in alphabetical order? q Are 128 characters enough? ( 13

14 Other Data Types q Floating Points - IEEE representation, to be covered later q Text strings - sequence of characters, terminated with NULL (0) q Image - array of pixels o monochrome: one bit (1/0 black/white) o color: red, green, blue (RGB) components (e.g., 8 bits each) o other properties: transparency q Sound - sequence of fixed-point numbers Limits of the Machine: How much memory space for data? 14

15 Storage Units 1 bit smallest unit of memory 1 byte 8 bits 4 bytes 1 word (system dependent) Words q On most machines, bytes are assembled into larger structures called words, where a word is usually defined to be the number of bits the processor can operate on at one 1me. q Some machines use four- byte words (32 bits), while some others use 8- byte words (64 bits) and some machines use less conven1onal sizes. 32-bit 64-bit Words Words Bytes. 0000?? 0004?? 0008?? 0012?? 0000?? 0008??

16 The sizeof Operator Category sizeof Operators sizeof(type) sizeof(expr) q Unique among operators: evaluated at compile- 1me q Evaluates to type size_t; on tanner, same as unsigned int q Examples int i 10; double d 100.0; sizeof(int) /* On tanner, evaluates to 4 */ sizeof(i) /* On tanner, evaluates to 4 */ sizeof(double) /* On tanner, evaluates to 8 */ sizeof(d) /* On tanner, evaluates to 8 */ sizeof(d ) /* On tanner, evaluates to 8 */ Determining Data Sizes q To determine data sizes on your computer #include <stdio.h> int main() { printf("char: %d\n", (int)sizeof(char)); printf("short: %d\n", (int)sizeof(short)); printf("int: %d\n", (int)sizeof(int)); printf("long: %d\n", (int)sizeof(long)); printf("float: %d\n", ); printf("double: %d\n", ); printf("long double: %d\n", ); return 0; } q Output on tanner char: 1 short: 2 int: 4 long: 4 float: 4 double: 8 long double: 16 16

17 Overflow: Running Out of Room q Adding two large integers together - Sum might be too large to store in available bits - What happens? (8) (-8) (9) (-9) (-15) (+15) Assuming 5-bit 2 s complement numbers. q We have overflow if: - signs of both operands are the same, and - sign of sum is different. Overflow q Unsigned integers - All arithme1c is modulo arithme1c - Sum would just wrap around q Signed integers - Can get nonsense values - Example with 16- bit integers o Sum: o Result:

18 Try It Out q Write a program that computes the sum Use only short int variables in your code: short int a 10000; short int b 20000; short int c 20000; short int sum a + b + c; printf("sum %d\n", sum); Exercise q Assume only four bits are available for represen1ng integers, and signed integers are represented in 2 s complement. q Compute the value of the expression

19 Casting Signed to Unsigned q C Allows Conversions from Signed to Unsigned short int x 15213; unsigned short int ux (unsigned short) x; short int y ; unsigned short int uy (unsigned short) y; q Resulting Value - No change in bit representation - Nonnegative values unchanged o ux Negative values change into (large) positive values o uy Try It Out q C code: char a 0xFF; unsigned char b 0xFF; printf("a %d\n", a); printf("b %d\n", b); 19

20 Int to Char? Try It Out #include <stdio.h> int main() { char c 0x81; int i; } i c; printf(" integer %x\n character %x\n", i, c); i 0x ; c i; printf(" integer %d\n character code %d\n", i, c); return 0; C vs. Java: Cast Conversions q Java: demo1ons are not automa1c C: demo1ons are automa1c int i; char c; i c; /* Implicit promotion */ /* Sign extension in Java and C */ c i; /* Implicit demotion */ /* Java: Compiletime error */ /* C: OK; truncation */ c (char)i; /* Explicit demotion */ /* Truncation in Java and C */ 20

21 What did we learn? q Computer represents everything in binary - Integers, floa1ng- point numbers, characters, - Pixels, sounds, colors, etc. q Memory is bytes, words, endian, two s complement, ASCII, conver1ng between hex- binary- decimal, limits of machine, overflow, cast conversions 21

Data Representa5on. CSC 2400: Computer Systems. What kinds of data do we need to represent?

Data Representa5on. CSC 2400: Computer Systems. What kinds of data do we need to represent? CSC 2400: Computer Systems Data Representa5on What kinds of data do we need to represent? - Numbers signed, unsigned, integers, floating point, complex, rational, irrational, - Text characters, strings,

More information

CSC 8400: Computer Systems. Represen3ng and Manipula3ng Informa3on. Background: Number Systems

CSC 8400: Computer Systems. Represen3ng and Manipula3ng Informa3on. Background: Number Systems CSC 8400: Computer Systems Represen3ng and Manipula3ng Informa3on Background: Number Systems 1 Analog vs. Digital System q Analog Signals - Value varies con1nuously q Digital Signals - Value limited to

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter Bits, Data Types, and Operations How do we represent data in a computer? At the lowest level, a computer is an electronic machine. works by controlling the flow of electrons Easy to recognize two

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations How do we represent data in a computer? At the lowest level, a computer is an electronic machine. works by controlling the flow of electrons Easy to recognize

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations Original slides from Gregory Byrd, North Carolina State University Modified slides by Chris Wilcox, Colorado State University How do we represent data in a computer?!

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations Original slides from Gregory Byrd, North Carolina State University Modified by Chris Wilcox, S. Rajopadhye Colorado State University How do we represent data

More information

Data Representation and Binary Arithmetic. Lecture 2

Data Representation and Binary Arithmetic. Lecture 2 Data Representation and Binary Arithmetic Lecture 2 Computer Data Data is stored as binary; 0 s and 1 s Because two-state ( 0 & 1 ) logic elements can be manufactured easily Bit: binary digit (smallest

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations Computer is a binary digital system. Digital system: finite number of symbols Binary (base two) system: has two states: 0 and 1 Basic unit of information is the

More information

1.1. INTRODUCTION 1.2. NUMBER SYSTEMS

1.1. INTRODUCTION 1.2. NUMBER SYSTEMS Chapter 1. 1.1. INTRODUCTION Digital computers have brought about the information age that we live in today. Computers are important tools because they can locate and process enormous amounts of information

More information

Fundamentals of Programming (C)

Fundamentals of Programming (C) Borrowed from lecturer notes by Omid Jafarinezhad Fundamentals of Programming (C) Group 8 Lecturer: Vahid Khodabakhshi Lecture Number Systems Department of Computer Engineering Outline Numeral Systems

More information

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras Numbers and Computers Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras 1 Think of a number between 1 and 15 8 9 10 11 12 13 14 15 4 5 6 7 12 13 14 15 2 3 6 7 10 11 14 15

More information

Chapter 3. Information Representation

Chapter 3. Information Representation Chapter 3 Information Representation Instruction Set Architecture APPLICATION LEVEL HIGH-ORDER LANGUAGE LEVEL ASSEMBLY LEVEL OPERATING SYSTEM LEVEL INSTRUCTION SET ARCHITECTURE LEVEL 3 MICROCODE LEVEL

More information

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Pradip Vallathol and Junaid Khalid Midterm Examination 1 In Class (50 minutes) Friday, September

More information

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Junaid Khalid and Pradip Vallathol Midterm Examination 1 In Class (50 minutes) Friday, September

More information

EE 109 Unit 3. Analog vs. Digital. Analog vs. Digital. Binary Representation Systems ANALOG VS. DIGITAL

EE 109 Unit 3. Analog vs. Digital. Analog vs. Digital. Binary Representation Systems ANALOG VS. DIGITAL 3. 3. EE 9 Unit 3 Binary Representation Systems ANALOG VS. DIGITAL 3.3 3. Analog vs. Digital The analog world is based on continuous events. Observations can take on any (real) value. The digital world

More information

CMSC 313 Lecture 03 Multiple-byte data big-endian vs little-endian sign extension Multiplication and division Floating point formats Character Codes

CMSC 313 Lecture 03 Multiple-byte data big-endian vs little-endian sign extension Multiplication and division Floating point formats Character Codes Multiple-byte data CMSC 313 Lecture 03 big-endian vs little-endian sign extension Multiplication and division Floating point formats Character Codes UMBC, CMSC313, Richard Chang 4-5 Chapter

More information

Number System (Different Ways To Say How Many) Fall 2016

Number System (Different Ways To Say How Many) Fall 2016 Number System (Different Ways To Say How Many) Fall 2016 Introduction to Information and Communication Technologies CSD 102 Email: mehwish.fatima@ciitlahore.edu.pk Website: https://sites.google.com/a/ciitlahore.edu.pk/ict/

More information

DATA REPRESENTATION. Data Types. Complements. Fixed Point Representations. Floating Point Representations. Other Binary Codes. Error Detection Codes

DATA REPRESENTATION. Data Types. Complements. Fixed Point Representations. Floating Point Representations. Other Binary Codes. Error Detection Codes 1 DATA REPRESENTATION Data Types Complements Fixed Point Representations Floating Point Representations Other Binary Codes Error Detection Codes 2 Data Types DATA REPRESENTATION Information that a Computer

More information

Exercises Software Development I. 03 Data Representation. Data types, range of values, internal format, literals. October 22nd, 2014

Exercises Software Development I. 03 Data Representation. Data types, range of values, internal format, literals. October 22nd, 2014 Exercises Software Development I 03 Data Representation Data types, range of values, ernal format, literals October 22nd, 2014 Software Development I Wer term 2013/2014 Priv.-Doz. Dipl.-Ing. Dr. Andreas

More information

Fundamentals of Programming

Fundamentals of Programming Fundamentals of Programming Lecture 2 Number Systems & Arithmetic Lecturer : Ebrahim Jahandar Some Parts borrowed from slides by IETC1011-Yourk University Common Number Systems System Base Symbols Used

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, FALL 2012

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, FALL 2012 CMSC 33 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 2, FALL 22 TOPICS TODAY Bits of Memory Data formats for negative numbers Modulo arithmetic & two s complement Floating point formats

More information

Bits and Bytes. Data Representation. A binary digit or bit has a value of either 0 or 1; these are the values we can store in hardware devices.

Bits and Bytes. Data Representation. A binary digit or bit has a value of either 0 or 1; these are the values we can store in hardware devices. Bits and Bytes 1 A binary digit or bit has a value of either 0 or 1; these are the values we can store in hardware devices. A byte is a sequence of 8 bits. A byte is also the fundamental unit of storage

More information

Number Representations

Number Representations Simple Arithmetic [Arithm Notes] Number representations Signed numbers Sign-magnitude, ones and twos complement Arithmetic Addition, subtraction, negation, overflow MIPS instructions Logic operations MIPS

More information

Chapter 2 Number System

Chapter 2 Number System Chapter 2 Number System Embedded Systems with ARM Cortext-M Updated: Tuesday, January 16, 2018 What you should know.. Before coming to this class Decimal Binary Octal Hex 0 0000 00 0x0 1 0001 01 0x1 2

More information

2a. Codes and number systems (continued) How to get the binary representation of an integer: special case of application of the inverse Horner scheme

2a. Codes and number systems (continued) How to get the binary representation of an integer: special case of application of the inverse Horner scheme 2a. Codes and number systems (continued) How to get the binary representation of an integer: special case of application of the inverse Horner scheme repeated (integer) division by two. Example: What is

More information

EE 109 Unit 2. Analog vs. Digital. Analog vs. Digital. Binary Representation Systems ANALOG VS. DIGITAL

EE 109 Unit 2. Analog vs. Digital. Analog vs. Digital. Binary Representation Systems ANALOG VS. DIGITAL EE 9 Unit Binary Representation Systems ANALOG VS. DIGITAL Analog vs. Digital The analog world is based on continuous events. Observations can take on any (real) value. The digital world is based on discrete

More information

Oberon Data Types. Matteo Corti. December 5, 2001

Oberon Data Types. Matteo Corti. December 5, 2001 Oberon Data Types Matteo Corti corti@inf.ethz.ch December 5, 2001 1 Introduction This document is aimed at students without any previous programming experience. We briefly describe some data types of the

More information

3.1. Unit 3. Binary Representation

3.1. Unit 3. Binary Representation 3.1 Unit 3 Binary Representation ANALOG VS. DIGITAL 3.2 3.3 Analog vs. Digital The analog world is based on continuous events. Observations can take on (real) any value. The digital world is based on discrete

More information

Unit 3. Analog vs. Digital. Analog vs. Digital ANALOG VS. DIGITAL. Binary Representation

Unit 3. Analog vs. Digital. Analog vs. Digital ANALOG VS. DIGITAL. Binary Representation 3.1 3.2 Unit 3 Binary Representation ANALOG VS. DIGITAL 3.3 3.4 Analog vs. Digital The analog world is based on continuous events. Observations can take on (real) any value. The digital world is based

More information

Number Systems for Computers. Outline of Introduction. Binary, Octal and Hexadecimal numbers. Issues for Binary Representation of Numbers

Number Systems for Computers. Outline of Introduction. Binary, Octal and Hexadecimal numbers. Issues for Binary Representation of Numbers Outline of Introduction Administrivia What is computer architecture? What do computers do? Representing high level things in binary Data objects: integers, decimals, characters, etc. Memory locations (We

More information

Binary Numbers. The Basics. Base 10 Number. What is a Number? = Binary Number Example. Binary Number Example

Binary Numbers. The Basics. Base 10 Number. What is a Number? = Binary Number Example. Binary Number Example The Basics Binary Numbers Part Bit of This and a Bit of That What is a Number? Base Number We use the Hindu-Arabic Number System positional grouping system each position represents a power of Binary numbers

More information

Unit 3, Lesson 2 Data Types, Arithmetic,Variables, Input, Constants, & Library Functions. Mr. Dave Clausen La Cañada High School

Unit 3, Lesson 2 Data Types, Arithmetic,Variables, Input, Constants, & Library Functions. Mr. Dave Clausen La Cañada High School Unit 3, Lesson 2 Data Types, Arithmetic,Variables, Input, Constants, & Library Functions Mr. Dave Clausen La Cañada High School Vocabulary Variable- A variable holds data that can change while the program

More information

Fundamental Data Types

Fundamental Data Types Fundamental Data Types Lecture 4 Sections 2.7-2.10 Robb T. Koether Hampden-Sydney College Mon, Sep 3, 2018 Robb T. Koether (Hampden-Sydney College) Fundamental Data Types Mon, Sep 3, 2018 1 / 25 1 Integers

More information

EE 109 Unit 2. Binary Representation Systems

EE 109 Unit 2. Binary Representation Systems EE 09 Unit 2 Binary Representation Systems ANALOG VS. DIGITAL 2 3 Analog vs. Digital The analog world is based on continuous events. Observations can take on (real) any value. The digital world is based

More information

CPS 104 Computer Organization and Programming Lecture-2 : Data representations,

CPS 104 Computer Organization and Programming Lecture-2 : Data representations, CPS 104 Computer Organization and Programming Lecture-2 : Data representations, Sep. 1, 1999 Dietolf Ramm http://www.cs.duke.edu/~dr/cps104.html CPS104 Lec2.1 GK&DR Fall 1999 Data Representation Computers

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, SPRING 2013 TOPICS TODAY Bits of Memory Data formats for negative numbers Modulo arithmetic & two s complement Floating point

More information

CS341 *** TURN OFF ALL CELLPHONES *** Practice NAME

CS341 *** TURN OFF ALL CELLPHONES *** Practice NAME CS341 *** TURN OFF ALL CELLPHONES *** Practice Final Exam B. Wilson NAME OPEN BOOK / OPEN NOTES: I GIVE PARTIAL CREDIT! SHOW ALL WORK! 1. Processor Architecture (20 points) a. In a Harvard architecture

More information

Under the Hood: Data Representation. Computer Science 104 Lecture 2

Under the Hood: Data Representation. Computer Science 104 Lecture 2 Under the Hood: Data Representation Computer Science 104 Lecture 2 Admin Piazza, Sakai Up Everyone should have access Homework 1 Posted Due Feb 6 PDF or Plain Text Only: No Word or RTF Recommended: Learn

More information

Experiment 3. TITLE Optional: Write here the Title of your program.model SMALL This directive defines the memory model used in the program.

Experiment 3. TITLE Optional: Write here the Title of your program.model SMALL This directive defines the memory model used in the program. Experiment 3 Introduction: In this experiment the students are exposed to the structure of an assembly language program and the definition of data variables and constants. Objectives: Assembly language

More information

ASSIGNMENT 5 TIPS AND TRICKS

ASSIGNMENT 5 TIPS AND TRICKS ASSIGNMENT 5 TIPS AND TRICKS linear-feedback shift registers Java implementation a simple encryption scheme http://princeton.edu/~cos26 Last updated on /26/7 : PM Goals OOP: implement a data type; write

More information

Do not start the test until instructed to do so!

Do not start the test until instructed to do so! Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No calculators or other electronic devices

More information

Do not start the test until instructed to do so!

Do not start the test until instructed to do so! Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No calculators or other electronic devices

More information

Number Systems Base r

Number Systems Base r King Fahd University of Petroleum & Minerals Computer Engineering Dept COE 2 Fundamentals of Computer Engineering Term 22 Dr. Ashraf S. Hasan Mahmoud Rm 22-44 Ext. 724 Email: ashraf@ccse.kfupm.edu.sa 3/7/23

More information

Do not start the test until instructed to do so!

Do not start the test until instructed to do so! Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No calculators or other electronic devices

More information

EXPERIMENT 8: Introduction to Universal Serial Asynchronous Receive Transmit (USART)

EXPERIMENT 8: Introduction to Universal Serial Asynchronous Receive Transmit (USART) EXPERIMENT 8: Introduction to Universal Serial Asynchronous Receive Transmit (USART) Objective: Introduction To understand and apply USART command for sending and receiving data Universal Serial Asynchronous

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, FALL 2012

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, FALL 2012 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, FALL 2012 ANNOUNCEMENTS TA Office Hours (ITE 334): Genaro Hernandez, Jr. Mon 10am 12noon Roshan Ghumare Wed 10am 12noon Prof.

More information

EXPERIMENT 7: Introduction to Universal Serial Asynchronous Receive Transmit (USART)

EXPERIMENT 7: Introduction to Universal Serial Asynchronous Receive Transmit (USART) EXPERIMENT 7: Introduction to Universal Serial Asynchronous Receive Transmit (USART) Objective: To understand and apply USART command for sending and receiving data Introduction Universal Serial Asynchronous

More information

Chapter 8. Characters and Strings

Chapter 8. Characters and Strings Chapter 8 Characters and s OJECTIVES After you have read and studied this chapter, you should be able to Declare and manipulate data of the char data type. Write string processing programs using and uffer

More information

Number Systems II MA1S1. Tristan McLoughlin. November 30, 2013

Number Systems II MA1S1. Tristan McLoughlin. November 30, 2013 Number Systems II MA1S1 Tristan McLoughlin November 30, 2013 http://en.wikipedia.org/wiki/binary numeral system http://accu.org/index.php/articles/18 http://www.binaryconvert.com http://en.wikipedia.org/wiki/ascii

More information

Characters Lesson Outline

Characters Lesson Outline Outline 1. Outline 2. Numeric Encoding of Non-numeric Data #1 3. Numeric Encoding of Non-numeric Data #2 4. Representing Characters 5. How Characters Are Represented #1 6. How Characters Are Represented

More information

Simple Data Types in C. Alan L. Cox

Simple Data Types in C. Alan L. Cox Simple Data Types in C Alan L. Cox alc@rice.edu Objectives Be able to explain to others what a data type is Be able to use basic data types in C programs Be able to see the inaccuracies and limitations

More information

1. Character/String Data, Expressions & Intrinsic Functions. Numeric Representation of Non-numeric Values. (CHARACTER Data Type), Part 1

1. Character/String Data, Expressions & Intrinsic Functions. Numeric Representation of Non-numeric Values. (CHARACTER Data Type), Part 1 Character/String Data, Expressions Intrinsic Functions (CHARACTER Data Type), Part 1 1. Character/String Data, Expressions Intrinsic Functions (CHARACTER Data Type), Part 1 2. Numeric Representation of

More information

Positional Number System

Positional Number System Positional Number System A number is represented by a string of digits where each digit position has an associated weight. The weight is based on the radix of the number system. Some common radices: Decimal.

More information

The Binary Number System

The Binary Number System The Binary Number System Robert B. Heckendorn University of Idaho August 24, 2017 Numbers are said to be represented by a place-value system, where the value of a symbol depends on where it is... its place.

More information

5/17/2009. Digitizing Discrete Information. Ordering Symbols. Analog vs. Digital

5/17/2009. Digitizing Discrete Information. Ordering Symbols. Analog vs. Digital Chapter 8: Bits and the "Why" of Bytes: Representing Information Digitally Digitizing Discrete Information Fluency with Information Technology Third Edition by Lawrence Snyder Copyright 2008 Pearson Education,

More information

CSE-1520R Test #1. The exam is closed book, closed notes, and no aids such as calculators, cellphones, etc.

CSE-1520R Test #1. The exam is closed book, closed notes, and no aids such as calculators, cellphones, etc. 9 February 2011 CSE-1520R Test #1 [B4] p. 1 of 8 CSE-1520R Test #1 Sur / Last Name: Given / First Name: Student ID: Instructor: Parke Godfrey Exam Duration: 45 minutes Term: Winter 2011 The exam is closed

More information

PureScan - ML1. Configuration Guide. Wireless Linear Imager Wireless Laser scanner - 1 -

PureScan - ML1. Configuration Guide. Wireless Linear Imager Wireless Laser scanner - 1 - PureScan - ML1 Wireless Linear Imager Wireless Laser scanner Configuration Guide - 1 - Table of Contents Chapter 1 System Information 1.1 About this manual 3 1.2 How to set up the parameter 3 Chapter 2

More information

This is great when speed is important and relatively few words are necessary, but Max would be a terrible language for writing a text editor.

This is great when speed is important and relatively few words are necessary, but Max would be a terrible language for writing a text editor. Dealing With ASCII ASCII, of course, is the numeric representation of letters used in most computers. In ASCII, there is a number for each character in a message. Max does not use ACSII very much. In the

More information

CSE-1520R Test #1. The exam is closed book, closed notes, and no aids such as calculators, cellphones, etc.

CSE-1520R Test #1. The exam is closed book, closed notes, and no aids such as calculators, cellphones, etc. 9 February 2011 CSE-1520R Test #1 [7F] w/ answers p. 1 of 8 CSE-1520R Test #1 Sur / Last Name: Given / First Name: Student ID: Instructor: Parke Godfrey Exam Duration: 45 minutes Term: Winter 2011 The

More information

Source coding and compression

Source coding and compression Computer Mathematics Week 5 Source coding and compression College of Information Science and Engineering Ritsumeikan University last week binary representations of signed numbers sign-magnitude, biased

More information

Lecture (09) x86 programming 8

Lecture (09) x86 programming 8 Lecture (09) x86 programming 8 By: Dr. Ahmed ElShafee 1 Basic Input Output System BIOS BIOS refers to a set of procedures or functions that enable the programmer have access to the hardware of the computer.

More information

void mouseclicked() { // Called when the mouse is pressed and released // at the same mouse position }

void mouseclicked() { // Called when the mouse is pressed and released // at the same mouse position } Review Commenting your code Random numbers and printing messages mousex, mousey void setup() & void draw() framerate(), loop(), noloop() Arcs, curves, bézier curves, beginshape/endshape Example Sketches

More information

CSE 30 Spring 2007 Final Exam

CSE 30 Spring 2007 Final Exam Login: cs30x Student ID Name Signature CSE 30 Spring 2007 Final Exam 1. Number Systems (25 points) 2. Binary Addition/Condition Code Bits/Overflow Detection (12 points) 3. Branching (19 points) 4. Bit

More information

Introduction to Decision Structures. Boolean & If Statements. Different Types of Decisions. Boolean Logic. Relational Operators

Introduction to Decision Structures. Boolean & If Statements. Different Types of Decisions. Boolean Logic. Relational Operators Boolean & If Statements Introduction to Decision Structures Chapter 4 Fall 2015, CSUS Chapter 4.1 Introduction to Decision Structures Different Types of Decisions A decision structure allows a program

More information

n NOPn Unary no operation trap U aaa NOP Nonunary no operation trap i

n NOPn Unary no operation trap U aaa NOP Nonunary no operation trap i Instruction set Instruction Mnemonic Instruction Addressing Status Specifier Mode Bits 0000 0000 STOP Stop execution U 0000 0001 RET Return from CALL U 0000 0010 RETTR Return from trap U 0000 0011 MOVSPA

More information

ICS Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2

ICS Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2 ICS 2008 Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2 Data Representations Sizes of C Objects (in Bytes) C Data Type Compaq Alpha Typical 32-bit Intel IA32 int 4 4 4 long int 8 4 4

More information

CPSC 301: Computing in the Life Sciences Lecture Notes 16: Data Representation

CPSC 301: Computing in the Life Sciences Lecture Notes 16: Data Representation CPSC 301: Computing in the Life Sciences Lecture Notes 16: Data Representation George Tsiknis University of British Columbia Department of Computer Science Winter Term 2, 2015-2016 Last updated: 04/04/2016

More information

CSE 30 Fall 2007 Final Exam

CSE 30 Fall 2007 Final Exam Login: cs30x Student ID Name Signature CSE 30 Fall 2007 Final Exam 1. Number Systems (25 points) 2. Binary Addition/Condition Code Bits/Overflow Detection (12 points) 3. Branching (19 points) 4. Bit Operations

More information

FD-011WU. 2D Barcode Reader User Guide V1.6CC

FD-011WU. 2D Barcode Reader User Guide V1.6CC FD-011WU 2D Barcode Reader User Guide V1.6CC Table of Contents 1 Getting Started... 1 1.1 Factory Defaults... 1 2 Communication Interfaces...2 2.1 TTL-232 Interface... 2 2.2 Baud Rate... 3 2.3 Data Bit

More information

Variables and data types

Variables and data types Programming with Python Module 1 Variables and data types Theoretical part Contents 1 Module overview 4 2 Writing computer programs 4 2.1 Computer programs consist of data and instructions......... 4 2.2

More information

ENCM 339 Fall 2017 Lecture Section 01 Lab 3 for the Week of October 2

ENCM 339 Fall 2017 Lecture Section 01 Lab 3 for the Week of October 2 page 1 of 11 ENCM 339 Fall 2017 Lecture Section 01 Lab 3 for the Week of October 2 Steve Norman Department of Electrical & Computer Engineering University of Calgary September 2017 Lab instructions and

More information

Midterm Exam, Fall 2015 Date: October 29th, 2015

Midterm Exam, Fall 2015 Date: October 29th, 2015 Full Name: Midterm Exam, Fall 2015 Date: October 29th, 2015 Instructions: This midterm exam takes 70 minutes. Read through all the problems and complete the easy ones first. This exam is OPEN BOOK. You

More information

Week 1 / Lecture 2 8 March 2017 NWEN 241 C Fundamentals. Alvin Valera. School of Engineering and Computer Science Victoria University of Wellington

Week 1 / Lecture 2 8 March 2017 NWEN 241 C Fundamentals. Alvin Valera. School of Engineering and Computer Science Victoria University of Wellington Week 1 / Lecture 2 8 March 2017 NWEN 241 C Fundamentals Alvin Valera School of Engineering and Computer Science Victoria University of Wellington Admin stuff People Course Coordinator Lecturer Alvin Valera

More information

Lecture 10 Arrays (2) and Strings. UniMAP SEM II - 11/12 DKT121 1

Lecture 10 Arrays (2) and Strings. UniMAP SEM II - 11/12 DKT121 1 Lecture 10 Arrays (2) and Strings UniMAP SEM II - 11/12 DKT121 1 Outline 8.1 Passing Arrays to Function 8.2 Displaying Array in a Function 8.3 How Arrays are passed in a function call 8.4 Introduction

More information

CSE 30 Fall 2012 Final Exam

CSE 30 Fall 2012 Final Exam Login: cs30x Student ID Name Signature By filling in the above and signing my name, I confirm I will complete this exam with the utmost integrity and in accordance with the Policy on Integrity of Scholarship.

More information

Overview of C. Basic Data Types Constants Variables Identifiers Keywords Basic I/O

Overview of C. Basic Data Types Constants Variables Identifiers Keywords Basic I/O Overview of C Basic Data Types Constants Variables Identifiers Keywords Basic I/O NOTE: There are six classes of tokens: identifiers, keywords, constants, string literals, operators, and other separators.

More information

CSE 30 Fall 2013 Final Exam

CSE 30 Fall 2013 Final Exam Login: cs30x Student ID Name Signature By filling in the above and signing my name, I confirm I will complete this exam with the utmost integrity and in accordance with the Policy on Integrity of Scholarship.

More information

Bits, Bytes, and Integers Part 2

Bits, Bytes, and Integers Part 2 Bits, Bytes, and Integers Part 2 15-213: Introduction to Computer Systems 3 rd Lecture, Jan. 23, 2018 Instructors: Franz Franchetti, Seth Copen Goldstein, Brian Railing 1 First Assignment: Data Lab Due:

More information

The following are the data types used in the C programming language:

The following are the data types used in the C programming language: Data Types in C The following are the data types used in the C programming language: Type Definition Size in memory void This particular type is used only in function declaration. boolean It stores false

More information

plc numbers Encoded values; BCD and ASCII Error detection; parity, gray code and checksums

plc numbers Encoded values; BCD and ASCII Error detection; parity, gray code and checksums plc numbers - 3. 3. NUMBERS AND DATA Topics: Number bases; binary, octal,, hexa Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;

More information

Table of Contents Sleep Settings How to Configure the Scanner. 7 Chapter 2 System Setup

Table of Contents Sleep Settings How to Configure the Scanner. 7 Chapter 2 System Setup Table of Contents Chapter 1 System Information 1.1 Setup Scanner with PC 1.2 Setup Scanner with Mobile Device 1.3 Configure ios On-Screen Keyboard 1.4 Memory Mode 3 4 4 5 1.5 Sleep Settings 6 1.6 How to

More information

CSE 30 Winter 2009 Final Exam

CSE 30 Winter 2009 Final Exam Login: cs30x Student ID Name Signature CSE 30 Winter 2009 Final Exam 1. Number Systems / C Compiling Sequence (15 points) 2. Binary Addition/Condition Code Bits/Overflow Detection (12 points) 3. Branching

More information

Midterm CSE 131 Winter 2012

Midterm CSE 131 Winter 2012 Login Name Signature _ Name Student ID Midterm CSE 131 Winter 2012 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 (22 points) (29 points) (25 points) (34 points) (20 points) (18 points) Subtotal (148 points

More information

Byte Ordering. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Byte Ordering. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Byte Ordering Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Memory Model Physical memory DRAM chips can read/write 4, 8, 16 bits DRAM modules

More information

CSE 30 Winter 2014 Final Exam

CSE 30 Winter 2014 Final Exam Signature Login: cs30x Name Student ID By filling in the above and signing my name, I confirm I will complete this exam with the utmost integrity and in accordance with the Policy on Integrity of Scholarship.

More information

CSE 30 Spring 2006 Final Exam

CSE 30 Spring 2006 Final Exam cs30x_ Student ID Name _ Signature CSE 30 Spring 2006 Final Exam 1. Number Systems _ (15 points) 2. Binary Addition/Condition Code Bits/Overflow Detection _ (12 points) 3. Branching _ (18 points) 4. Bit

More information

ASCII Code - The extended ASCII table

ASCII Code - The extended ASCII table ASCII Code - The extended ASCII table ASCII, stands for American Standard Code for Information Interchange. It's a 7-bit character code where every single bit represents a unique character. On this webpage

More information

Goals for this Week. CSC 2400: Computer Systems. Bits, Bytes and Data Types. Binary number system. Finite representations of binary integers

Goals for this Week. CSC 2400: Computer Systems. Bits, Bytes and Data Types. Binary number system. Finite representations of binary integers CSC 2400: Computer Systems Bits, Bytes and Data Types 1 Goals for this Week Binary number system Why binary? Converting between decimal and binary and octal and hexadecimal number systems Finite representations

More information

6.096 Introduction to C++ January (IAP) 2009

6.096 Introduction to C++ January (IAP) 2009 MIT OpenCourseWare http://ocw.mit.edu 6.096 Introduction to C++ January (IAP) 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Welcome to 6.096 Lecture

More information

Data Types Literals, Variables & Constants

Data Types Literals, Variables & Constants C/C++ PROGRAMMING Data Types Literals, Variables & Constants Copyright 2013 Dan McElroy Under the Hood As a DRIVER of an automobile, you may not need to know everything that happens under the hood, although

More information

S-Series Sensor ASCII Protocol v8.1.0

S-Series Sensor ASCII Protocol v8.1.0 S-Series Sensor v8.1.0 Legend: ADR Node/Slave Address TIME STAT Status Byte ERR CTRL Control Byte SP # POS Position DATA TARG Target CHAR VEL Velocity OFF SN CODE PAR # Serial Number Security Code Parameter

More information

CSC 1107: Structured Programming

CSC 1107: Structured Programming CSC 1107: Structured Programming J. Kizito Makerere University e-mail: www: materials: e-learning environment: office: alt. office: jkizito@cis.mak.ac.ug http://serval.ug/~jona http://serval.ug/~jona/materials/csc1107

More information

Final CSE 131 Winter 2010

Final CSE 131 Winter 2010 Student ID Login Name Name Signature _ Final CSE 131 Winter 2010 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 _ (26 points) _ (15 points) _ (36 points) _ (25 points) _

More information

Appendix A Developing a C Program on the UNIX system

Appendix A Developing a C Program on the UNIX system Appendix A Developing a C Program on the UNIX system 1. Key in and save the program using vi - see Appendix B - (or some other editor) - ensure that you give the program file a name ending with.c - to

More information

CSE 30 Fall 2006 Final Exam

CSE 30 Fall 2006 Final Exam cs30x_ Student ID Name _ Signature CSE 30 Fall 2006 Final Exam 1. Number Systems _ (15 points) 2. Binary Addition/Condition Code Bits/Overflow Detection _ (12 points) 3. Branching _ (20 points) 4. Bit

More information

Chapter 1. Hardware. Introduction to Computers and Programming. Chapter 1.2

Chapter 1. Hardware. Introduction to Computers and Programming. Chapter 1.2 Chapter Introduction to Computers and Programming Hardware Chapter.2 Hardware Categories Input Devices Process Devices Output Devices Store Devices /2/27 Sacramento State - CSc A 3 Storage Devices Primary

More information

Chemistry Hour Exam 2

Chemistry Hour Exam 2 Chemistry 838 - Hour Exam 2 Fall 2003 Department of Chemistry Michigan State University East Lansing, MI 48824 Name Student Number Question Points Score 1 15 2 15 3 15 4 15 5 15 6 15 7 15 8 15 9 15 Total

More information

Connecting UniOP to Datalogic Barcode Readers

Connecting UniOP to Datalogic Barcode Readers Connecting UniOP to Datalogic Barcode Readers This Technical Note contains the information needed to connect UniOP to Datalogic Barcode Scanners. Contents 1. Introduction...1 2. Designer setup...1 2.1

More information

Serial I/O. 4: Serial I/O. CET360 Microprocessor Engineering. J. Sumey

Serial I/O. 4: Serial I/O. CET360 Microprocessor Engineering. J. Sumey 4: Serial I/O CET360 Microprocessor Engineering J. Sumey Introduction serial, i.e. bit-at-a-time, interfacing techniques are useful when parallel interfacing limitations become problematic distance limitations

More information

Byte Ordering. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Byte Ordering. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Byte Ordering Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information