Scientific Programming in C VI. Common errors

Size: px
Start display at page:

Download "Scientific Programming in C VI. Common errors"

Transcription

1 Scientific Programming in C VI. Common errors Susi Lehtola 6 November 2012

2 Beginner errors If you re a beginning C programmer, you might often make off-by one errors when you use arrays: #i n c l u de < s t d l i b. h> i n t main ( void ) { i n t i ; i n t N=1000; double p=m a l l o c (N s i z e o f ( double ) ) ; f o r ( i =1; i<=n; i ++) p [ i ]= i ; f r e e ( p ) ; return 0 ; } Here the error is in the array indexing, which in C goes from 0 to N-1, whereas in Fortran (and Matlab) indexing goes from 1 to N. Valgrind is very useful in finding these kinds of errors. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 2/26

3 Beginner errors, cont d Actually, in Fortran you can make the indexing be whatever you like: PROGRAM TEST IMPLICIT NONE INTEGER : : I INTEGER, PARAMETER : : N=100 REAL ( 8 ), DIMENSION ( : ), ALLOCATABLE : : x! A l l o c a t e memory ALLOCATE( x( N: 1))! Set a r r a y e l e m e n t s DO i= N, 1 x ( i )= i END DO DEALLOCATE( x ) END PROGRAM In this program the indices of the x array range from -100 to -1. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 3/26

4 Beginner errors, cont d Of course, you can do the same in C as well just switch to using a pointer that is offset by the number you want: double q=p 1; Now if p ranges from p[0] to p[n-1], then q ranges from q[1] to q[n]. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 4/26

5 Beginner errors, cont d Of course, you can do the same in C as well just switch to using a pointer that is offset by the number you want: double q=p 1; Now if p ranges from p[0] to p[n-1], then q ranges from q[1] to q[n].... but it would just make things a lot more complicated. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 5/26

6 Type errors Another very common beginner s error are type errors: you are using an incorrect datatype for the purpose. integer division 1/2 = 0 1.0f/2 = 0.5f floating point division (single) 1/2.0f = 0.5f 1.0f/2.0f = 0.5f 1.0/2 = /2.0f = 0.5 floating point division (double) 1/2.0 = f/2.0 = /2.0 = 0.5 Division of two integers gives an integer here, a zero. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 6/26

7 Type conversions When there s an int and a float, the int is promoted to a float. When there s an int and a double, or a float and a double, the int (or float) is promoted to a double. You can write the division also as ( double ) 2/1 or 2/( double ) 1 which first casts 2 (or 1) into a double (2.0), and then performs the division. (You can also do both and use (double) 2 / (double) 1). Note that ( double ) (2/1) results in 0.0. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 7/26

8 Type conversions When you want to compute the floating-point division of two integers m and n, it s often easiest just to write m 1.0/ n which will perform the calculation in double precision. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 8/26

9 Loop indices The size t datatype is used whenever you need to handle large numbers (e.g. large indices). With the definitions why is const s i z e t N=1000; s i z e t i ; Scientific Programming in C, fall 2012 Susi Lehtola Common errors 9/26

10 Loop indices The size t datatype is used whenever you need to handle large numbers (e.g. large indices). With the definitions why is OK, const s i z e t N=1000; s i z e t i ; f o r ( i =0; i <N; i ++) a r r [ i ]= i ; Scientific Programming in C, fall 2012 Susi Lehtola Common errors 10/26

11 Loop indices The size t datatype is used whenever you need to handle large numbers (e.g. large indices). With the definitions why is const s i z e t N=1000; s i z e t i ; f o r ( i =0; i <N; i ++) a r r [ i ]= i ; OK, but f o r ( i=n; i >=0; i ) a r r [ i ]= i ; fails? Scientific Programming in C, fall 2012 Susi Lehtola Common errors 11/26

12 Loop indices The size t datatype is used whenever you need to handle large numbers (e.g. large indices). With the definitions why is const s i z e t N=1000; s i z e t i ; f o r ( i =0; i <N; i ++) a r r [ i ]= i ; OK, but f o r ( i=n; i >=0; i ) a r r [ i ]= i ; fails? size t is unsigned, so it can never be negative instead it just rolls over to UINT MAX or ULONG MAX. The breaking condition should read i<n instead. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 12/26

13 Shadowing declarations In ANSI C you can declare variables in a block-structured fashion within a function. For example i n t main ( void ) { i n t x =10; i n t i ; double r =0.0; f o r ( i =1; i <x ; i ++) { } i n t a=3; i n t x=a i ; r+=x x ; x+=r ; } return 0 ; Scientific Programming in C, fall 2012 Susi Lehtola Common errors 13/26

14 Shadowing declarations, cont d Here the original variable x is shadowed by the local variable x inside the for loop. The incrementation of x performed in the loop only affects the local variable. Once the incrementation has taken place, the program proceeds to the closing brace, and the local variables a and x vanish from the scope. After this, the program checks if i is less than the value x, which now is the original one. Since shadowing declarations can cause bugs that can be hard to solve, I strongly suggest using the -Wshadow flag in gcc. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 14/26

15 Truncation errors Since practically everything is done using floating-point arithmetic, the results depend on the order of summation. When you aim for high accuracy, then you need to adjust the summation order. As you remember, the machine epsilon ɛ is defined as the smallest number for which 1 + ɛ > 1 Thus, when you are computing sums such as n=1 1 n 2 = π if you use the simplest ordering, the first term is 1, meaning that the last term that has any significance is with N = ɛ 1/ (double precision). Scientific Programming in C, fall 2012 Susi Lehtola Common errors 15/26

16 Truncation errors, cont d What happens if you reverse the summation order? Scientific Programming in C, fall 2012 Susi Lehtola Common errors 16/26

17 Truncation errors, cont d What happens if you reverse the summation order? In this case, the N+1:th term is unnegligible compared to the partial result of the sum. Thus, the sum can be extended further in n, and a more accurate result can be obtained even if the individual terms are small, their summed up contribution may be large. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 17/26

18 Truncation errors, cont d Sum up Sum down Scientific Programming in C, fall 2012 Susi Lehtola Common errors 18/26

19 Truncation errors, cont d Note that if you use the trivial order of summation you will get a finite value for, i.e., the divergent sum n=1 1 n = since the logarithmic divergence of the upper limit is lost in the precision. The sum will always converge to a finite value, independent of the method you use to sum the elements the value of the sum will just depend on the details of the calculation. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 19/26

20 Loss of significance If you have alternating sums, you may also end up with loss of significance. For instance, when calculating the sum ( 1) n n n=1 = log you end up cancelling a lot of the significant digits, since you re substracting numbers of similar magnitude and then summing them all up together. Here the proper way is to compute the even and the odd series separately, since they have the opposite signs, and finally add up the two results together. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 20/26

21 Loss of significance If you have alternating sums, you may also end up with loss of significance. For instance, when calculating the sum ( 1) n n n=1 = log you end up cancelling a lot of the significant digits, since you re substracting numbers of similar magnitude and then summing them all up together. Here the proper way is to compute the even and the odd series separately, since they have the opposite signs, and finally add up the two results together. These examples are somewhat arbitrary, since often one simply doesn t know the form of the function one is integrating, and so ordering the integration correctly might be impossible. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 21/26

22 Loss of significance, cont d 10 terms Simple summation : e 01 S e p a r a t e d summation : e terms Simple summation : e 01 S e p a r a t e d summation : e terms Simple summation : e 01 S e p a r a t e d summation : e terms Simple summation : e 01 S e p a r a t e d summation : e terms Simple summation : e 01 S e p a r a t e d summation : e terms Simple summation : e 01 S e p a r a t e d summation : e 01 Scientific Programming in C, fall 2012 Susi Lehtola Common errors 22/26

23 Loss of significance, cont d There are much more drastic examples of loss of precision. For instance, the function f (x) = e x 1 has the limit f (x) 0 when x 0. However, when one computes double f ( double x ) { return exp ( x ) 1.0; } one will run into problems when x is small. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 23/26

24 Loss of significance, cont d Because e x 1 + x x x the function will always evaluate to 0 when x ɛ. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 24/26

25 Loss of significance, cont d Because e x 1 + x x x the function will always evaluate to 0 when x ɛ. The proper way to implement the function is to use the Taylor series around x = 0. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 25/26

26 Loss of significance, cont d Because e x 1 + x x x the function will always evaluate to 0 when x ɛ. The proper way to implement the function is to use the Taylor series around x = 0. In my experience, this is a skill you need quite often. Scientific Programming in C, fall 2012 Susi Lehtola Common errors 26/26

Scientific Programming in C IV. Pointers

Scientific Programming in C IV. Pointers Scientific Programming in C IV. Pointers Susi Lehtola 1 November 2012 Pointers The feature at the heart of C are pointers, which are simply pointers to memory addresses. Scientific Programming in C, fall

More information

Scientific Programming in C IX. Debugging

Scientific Programming in C IX. Debugging Scientific Programming in C IX. Debugging Susi Lehtola 13 November 2012 Debugging Quite often you spend an hour to write a code, and then two hours debugging why it doesn t work properly. Scientific Programming

More information

Scientific Programming in C X. More features & Fortran interface

Scientific Programming in C X. More features & Fortran interface Scientific Programming in C X. More features & Fortran interface Susi Lehtola 20 November 2012 typedef typedefs are a way to make shorthand for data types, and possibly also make the code more general

More information

ENGINEERING 1020 Introduction to Computer Programming M A Y 2 6, R E Z A S H A H I D I

ENGINEERING 1020 Introduction to Computer Programming M A Y 2 6, R E Z A S H A H I D I ENGINEERING 1020 Introduction to Computer Programming M A Y 2 6, 2 0 1 0 R E Z A S H A H I D I Today s class Constants Assignment statement Parameters and calling functions Expressions Mixed precision

More information

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming Structured Programming & an Introduction to Error Lecture Objectives Review the basic good habits of programming To understand basic concepts of error and error estimation as it applies to Numerical Methods

More information

Scientific Programming in C XIV. Parallel programming

Scientific Programming in C XIV. Parallel programming Scientific Programming in C XIV. Parallel programming Susi Lehtola 11 December 2012 Introduction The development of microchips will soon reach the fundamental physical limits of operation quantum coherence

More information

Module 2 - Part 2 DATA TYPES AND EXPRESSIONS 1/15/19 CSE 1321 MODULE 2 1

Module 2 - Part 2 DATA TYPES AND EXPRESSIONS 1/15/19 CSE 1321 MODULE 2 1 Module 2 - Part 2 DATA TYPES AND EXPRESSIONS 1/15/19 CSE 1321 MODULE 2 1 Topics 1. Expressions 2. Operator precedence 3. Shorthand operators 4. Data/Type Conversion 1/15/19 CSE 1321 MODULE 2 2 Expressions

More information

Name :. Roll No. :... Invigilator s Signature : INTRODUCTION TO PROGRAMMING. Time Allotted : 3 Hours Full Marks : 70

Name :. Roll No. :... Invigilator s Signature : INTRODUCTION TO PROGRAMMING. Time Allotted : 3 Hours Full Marks : 70 Name :. Roll No. :..... Invigilator s Signature :.. 2011 INTRODUCTION TO PROGRAMMING Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give

More information

UNIT- 3 Introduction to C++

UNIT- 3 Introduction to C++ UNIT- 3 Introduction to C++ C++ Character Sets: Letters A-Z, a-z Digits 0-9 Special Symbols Space + - * / ^ \ ( ) [ ] =!= . $, ; : %! &? _ # = @ White Spaces Blank spaces, horizontal tab, carriage

More information

Expressions and Casting

Expressions and Casting Expressions and Casting C# Programming Rob Miles Data Manipulation We know that programs use data storage (variables) to hold values and statements to process the data The statements are obeyed in sequence

More information

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation Floating Point Arithmetic fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation for example, fixed point number

More information

Programming for Engineers Iteration

Programming for Engineers Iteration Programming for Engineers Iteration ICEN 200 Spring 2018 Prof. Dola Saha 1 Data type conversions Grade average example,-./0 class average = 23450-67 893/0298 Grade and number of students can be integers

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

More information

Lecture 12 Integers. Computer and Network Security 19th of December Computer Science and Engineering Department

Lecture 12 Integers. Computer and Network Security 19th of December Computer Science and Engineering Department Lecture 12 Integers Computer and Network Security 19th of December 2016 Computer Science and Engineering Department CSE Dep, ACS, UPB Lecture 12, Integers 1/40 Outline Data Types Representation Conversions

More information

MATH 353 Engineering mathematics III

MATH 353 Engineering mathematics III MATH 353 Engineering mathematics III Instructor: Francisco-Javier Pancho Sayas Spring 2014 University of Delaware Instructor: Francisco-Javier Pancho Sayas MATH 353 1 / 20 MEET YOUR COMPUTER Instructor:

More information

Basics of Computation. PHY 604:Computational Methods in Physics and Astrophysics II

Basics of Computation. PHY 604:Computational Methods in Physics and Astrophysics II Basics of Computation Basics of Computation Computers store information and allow us to operate on it. That's basically it. Computers have finite memory, so it is not possible to store the infinite range

More information

Independent Representation

Independent Representation Independent Representation 1 Integer magnitude + 1 2 3 4 5 6 7 8 9 0 Float sign sign of exponent mantissa On standard 32 bit machines: INT_MAX = 2147483647 which gives 10 digits of precision, (i.e. the

More information

Computer Programming C++ (wg) CCOs

Computer Programming C++ (wg) CCOs Computer Programming C++ (wg) CCOs I. The student will analyze the different systems, and languages of the computer. (SM 1.4, 3.1, 3.4, 3.6) II. The student will write, compile, link and run a simple C++

More information

Control Flow. COMS W1007 Introduction to Computer Science. Christopher Conway 3 June 2003

Control Flow. COMS W1007 Introduction to Computer Science. Christopher Conway 3 June 2003 Control Flow COMS W1007 Introduction to Computer Science Christopher Conway 3 June 2003 Overflow from Last Time: Why Types? Assembly code is typeless. You can take any 32 bits in memory, say this is an

More information

Objectives. Chapter 2: Basic Elements of C++ Introduction. Objectives (cont d.) A C++ Program (cont d.) A C++ Program

Objectives. Chapter 2: Basic Elements of C++ Introduction. Objectives (cont d.) A C++ Program (cont d.) A C++ Program Objectives Chapter 2: Basic Elements of C++ In this chapter, you will: Become familiar with functions, special symbols, and identifiers in C++ Explore simple data types Discover how a program evaluates

More information

Chapter 2: Basic Elements of C++

Chapter 2: Basic Elements of C++ Chapter 2: Basic Elements of C++ Objectives In this chapter, you will: Become familiar with functions, special symbols, and identifiers in C++ Explore simple data types Discover how a program evaluates

More information

Chapter 2: Basic Elements of C++ Objectives. Objectives (cont d.) A C++ Program. Introduction

Chapter 2: Basic Elements of C++ Objectives. Objectives (cont d.) A C++ Program. Introduction Chapter 2: Basic Elements of C++ C++ Programming: From Problem Analysis to Program Design, Fifth Edition 1 Objectives In this chapter, you will: Become familiar with functions, special symbols, and identifiers

More information

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,...

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,... Chapter 9 Computer Arithmetic Reading: Section 9.1 on pp. 290-296 Computer Representation of Data Groups of two-state devices are used to represent data in a computer. In general, we say the states are

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic Computer Systems, Section 2.4 Abstraction Anything that is not an integer can be thought of as . e.g. 391.1356 Or can be thought of as + /

More information

CS Programming In C

CS Programming In C CS 24000 - Programming In C Week Two: Basic C Program Organization and Data Types Zhiyuan Li Department of Computer Science Purdue University, USA 2 int main() { } return 0; The Simplest C Program C programs

More information

Chapter 2: Using Data

Chapter 2: Using Data Chapter 2: Using Data Declaring Variables Constant Cannot be changed after a program is compiled Variable A named location in computer memory that can hold different values at different points in time

More information

Expressions and Casting. Data Manipulation. Simple Program 11/5/2013

Expressions and Casting. Data Manipulation. Simple Program 11/5/2013 Expressions and Casting C# Programming Rob Miles Data Manipulation We know that programs use data storage (variables) to hold values and statements to process the data The statements are obeyed in sequence

More information

Features of C. Portable Procedural / Modular Structured Language Statically typed Middle level language

Features of C. Portable Procedural / Modular Structured Language Statically typed Middle level language 1 History C is a general-purpose, high-level language that was originally developed by Dennis M. Ritchie to develop the UNIX operating system at Bell Labs. C was originally first implemented on the DEC

More information

General Syntax. Operators. Variables. Arithmetic. Comparison. Assignment. Boolean. Types. Syntax int i; float j = 1.35; int k = (int) j;

General Syntax. Operators. Variables. Arithmetic. Comparison. Assignment. Boolean. Types. Syntax int i; float j = 1.35; int k = (int) j; General Syntax Statements are the basic building block of any C program. They can assign a value to a variable, or make a comparison, or make a function call. They must be terminated by a semicolon. Every

More information

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays C Arrays This handout was written by Nick Parlante and Julie Zelenski. As you recall, a C array is formed by laying out all the elements

More information

CS61B Lecture #14: Integers

CS61B Lecture #14: Integers Announcement: CS61B Lecture #14: Integers Project #0 due Tuesday night. Programming contest SATURDAY! You can still sign up at https://inst.eecs.berkeley.edu/~ctest/contest/register. Test #1 will be Tuesday,

More information

Programming in C++ 5. Integral data types

Programming in C++ 5. Integral data types Programming in C++ 5. Integral data types! Introduction! Type int! Integer multiplication & division! Increment & decrement operators! Associativity & precedence of operators! Some common operators! Long

More information

Computer System and programming in C

Computer System and programming in C 1 Basic Data Types Integral Types Integers are stored in various sizes. They can be signed or unsigned. Example Suppose an integer is represented by a byte (8 bits). Leftmost bit is sign bit. If the sign

More information

Arithmetic type issues

Arithmetic type issues Arithmetic type issues Type combination and promotion ( a 32) = 97 32 = 65 = A Smaller type (char) is promoted to be the same size as the larger type (int) Determined at compile time - based purely on

More information

Machine Computation of the Sine Function

Machine Computation of the Sine Function Machine Computation of the Sine Function Chuck Allison CNS 3320 Numerical Software Engineering Utah Valley State College February 2007 Abstract This note shows how to determine the number of terms to use

More information

Definition: Data Type A data type is a collection of values and the definition of one or more operations on those values.

Definition: Data Type A data type is a collection of values and the definition of one or more operations on those values. Data Types 1 Definition: Data Type A data type is a collection of values and the definition of one or more operations on those values. Base Data Types All the values of the type are ordered and atomic.

More information

6. Control Statements II

6. Control Statements II Visibility Declaration in a block is not visible outside of the block. 6. Control Statements II Visibility, Local Variables, While Statement, Do Statement, Jump Statements main block int main () int i

More information

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

More information

(T) x. Casts. A cast converts the value held in variable x to type T

(T) x. Casts. A cast converts the value held in variable x to type T Several New Things 2 s complement representation of negative integers The data size flag in the conversion specification of printf Recast of &n to unsigned long to get the address 2 3 Casts (T) x A cast

More information

Methods: A Deeper Look

Methods: A Deeper Look 1 2 7 Methods: A Deeper Look OBJECTIVES In this chapter you will learn: How static methods and variables are associated with an entire class rather than specific instances of the class. How to use random-number

More information

Program Fundamentals

Program Fundamentals Program Fundamentals /* HelloWorld.java * The classic Hello, world! program */ class HelloWorld { public static void main (String[ ] args) { System.out.println( Hello, world! ); } } /* HelloWorld.java

More information

CS313D: ADVANCED PROGRAMMING LANGUAGE

CS313D: ADVANCED PROGRAMMING LANGUAGE CS313D: ADVANCED PROGRAMMING LANGUAGE Computer Science department Lecture 2 : C# Language Basics Lecture Contents 2 The C# language First program Variables and constants Input/output Expressions and casting

More information

What Every Programmer Should Know About Floating-Point Arithmetic

What Every Programmer Should Know About Floating-Point Arithmetic What Every Programmer Should Know About Floating-Point Arithmetic Last updated: October 15, 2015 Contents 1 Why don t my numbers add up? 3 2 Basic Answers 3 2.1 Why don t my numbers, like 0.1 + 0.2 add

More information

C Language Part 1 Digital Computer Concept and Practice Copyright 2012 by Jaejin Lee

C Language Part 1 Digital Computer Concept and Practice Copyright 2012 by Jaejin Lee C Language Part 1 (Minor modifications by the instructor) References C for Python Programmers, by Carl Burch, 2011. http://www.toves.org/books/cpy/ The C Programming Language. 2nd ed., Kernighan, Brian,

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Structures and Memory (yaseminb@kth.se) Overview Overview Lecture 11: Structures and Memory Structures Continued Memory Allocation Lecture 11: Structures and Memory Structures Continued Memory

More information

2.1.1 Fixed-Point (or Integer) Arithmetic

2.1.1 Fixed-Point (or Integer) Arithmetic x = approximation to true value x error = x x, relative error = x x. x 2.1.1 Fixed-Point (or Integer) Arithmetic A base 2 (base 10) fixed-point number has a fixed number of binary (decimal) places. 1.

More information

CS61B Lecture #14: Integers. Last modified: Wed Sep 27 15:44: CS61B: Lecture #14 1

CS61B Lecture #14: Integers. Last modified: Wed Sep 27 15:44: CS61B: Lecture #14 1 CS61B Lecture #14: Integers Last modified: Wed Sep 27 15:44:05 2017 CS61B: Lecture #14 1 Integer Types and Literals Type Bits Signed? Literals byte 8 Yes Cast from int: (byte) 3 short 16 Yes None. Cast

More information

Practical Numerical Methods in Physics and Astronomy. Lecture 1 Intro & IEEE Variable Types and Arithmetic

Practical Numerical Methods in Physics and Astronomy. Lecture 1 Intro & IEEE Variable Types and Arithmetic Practical Numerical Methods in Physics and Astronomy Lecture 1 Intro & IEEE Variable Types and Arithmetic Pat Scott Department of Physics, McGill University January 16, 2013 Slides available from http://www.physics.mcgill.ca/

More information

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states).

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). These states are usually labeled 0 and 1. Each item in memory

More information

BASIC ELEMENTS OF A COMPUTER PROGRAM

BASIC ELEMENTS OF A COMPUTER PROGRAM BASIC ELEMENTS OF A COMPUTER PROGRAM CSC128 FUNDAMENTALS OF COMPUTER PROBLEM SOLVING LOGO Contents 1 Identifier 2 3 Rules for naming and declaring data variables Basic data types 4 Arithmetic operators

More information

These are reserved words of the C language. For example int, float, if, else, for, while etc.

These are reserved words of the C language. For example int, float, if, else, for, while etc. Tokens in C Keywords These are reserved words of the C language. For example int, float, if, else, for, while etc. Identifiers An Identifier is a sequence of letters and digits, but must start with a letter.

More information

Expressions and Data Types CSC 121 Spring 2015 Howard Rosenthal

Expressions and Data Types CSC 121 Spring 2015 Howard Rosenthal Expressions and Data Types CSC 121 Spring 2015 Howard Rosenthal Lesson Goals Understand the basic constructs of a Java Program Understand how to use basic identifiers Understand simple Java data types

More information

Homework #3 CS2255 Fall 2012

Homework #3 CS2255 Fall 2012 Homework #3 CS2255 Fall 2012 MULTIPLE CHOICE 1. The, also known as the address operator, returns the memory address of a variable. a. asterisk ( * ) b. ampersand ( & ) c. percent sign (%) d. exclamation

More information

Introduction to C++ Introduction. Structure of a C++ Program. Structure of a C++ Program. C++ widely-used general-purpose programming language

Introduction to C++ Introduction. Structure of a C++ Program. Structure of a C++ Program. C++ widely-used general-purpose programming language Introduction C++ widely-used general-purpose programming language procedural and object-oriented support strong support created by Bjarne Stroustrup starting in 1979 based on C Introduction to C++ also

More information

Chapter 2. Data Representation in Computer Systems

Chapter 2. Data Representation in Computer Systems Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

More information

LLVM code generation and implementation of nested functions for the SimpliC language

LLVM code generation and implementation of nested functions for the SimpliC language LLVM code generation and implementation of nested functions for the SimpliC language Oscar Legetth Lunds University dat12ole@student.lth.se Gustav Svensson Lunds University dat12gs1@student.lth.se Abstract

More information

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems

More information

Lecture 3: C Programm

Lecture 3: C Programm 0 3 E CS 1 Lecture 3: C Programm ing Reading Quiz Note the intimidating red border! 2 A variable is: A. an area in memory that is reserved at run time to hold a value of particular type B. an area in memory

More information

unused unused unused unused unused unused

unused unused unused unused unused unused BCD numbers. In some applications, such as in the financial industry, the errors that can creep in due to converting numbers back and forth between decimal and binary is unacceptable. For these applications

More information

Chapter 4. Operations on Data

Chapter 4. Operations on Data Chapter 4 Operations on Data 1 OBJECTIVES After reading this chapter, the reader should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations

More information

Our Strategy for Learning Fortran 90

Our Strategy for Learning Fortran 90 Our Strategy for Learning Fortran 90 We want to consider some computational problems which build in complexity. evaluating an integral solving nonlinear equations vector/matrix operations fitting data

More information

P.G.TRB - COMPUTER SCIENCE. c) data processing language d) none of the above

P.G.TRB - COMPUTER SCIENCE. c) data processing language d) none of the above P.G.TRB - COMPUTER SCIENCE Total Marks : 50 Time : 30 Minutes 1. C was primarily developed as a a)systems programming language b) general purpose language c) data processing language d) none of the above

More information

Lesson #3. Variables, Operators, and Expressions. 3. Variables, Operators and Expressions - Copyright Denis Hamelin - Ryerson University

Lesson #3. Variables, Operators, and Expressions. 3. Variables, Operators and Expressions - Copyright Denis Hamelin - Ryerson University Lesson #3 Variables, Operators, and Expressions Variables We already know the three main types of variables in C: int, char, and double. There is also the float type which is similar to double with only

More information

QUIZ. 1. Explain the meaning of the angle brackets in the declaration of v below:

QUIZ. 1. Explain the meaning of the angle brackets in the declaration of v below: QUIZ 1. Explain the meaning of the angle brackets in the declaration of v below: This is a template, used for generic programming! QUIZ 2. Why is the vector class called a container? 3. Explain how the

More information

Introduction to C++ with content from

Introduction to C++ with content from Introduction to C++ with content from www.cplusplus.com 2 Introduction C++ widely-used general-purpose programming language procedural and object-oriented support strong support created by Bjarne Stroustrup

More information

Signed umbers. Sign/Magnitude otation

Signed umbers. Sign/Magnitude otation Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,

More information

The C++ Language. Arizona State University 1

The C++ Language. Arizona State University 1 The C++ Language CSE100 Principles of Programming with C++ (based off Chapter 2 slides by Pearson) Ryan Dougherty Arizona State University http://www.public.asu.edu/~redoughe/ Arizona State University

More information

Lecture 3 Tao Wang 1

Lecture 3 Tao Wang 1 Lecture 3 Tao Wang 1 Objectives In this chapter, you will learn about: Arithmetic operations Variables and declaration statements Program input using the cin object Common programming errors C++ for Engineers

More information

Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = (

Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = ( Floating Point Numbers in Java by Michael L. Overton Virtually all modern computers follow the IEEE 2 floating point standard in their representation of floating point numbers. The Java programming language

More information

Review: Exam 1. Your First C++ Program. Declaration Statements. Tells the compiler. Examples of declaration statements

Review: Exam 1. Your First C++ Program. Declaration Statements. Tells the compiler. Examples of declaration statements Review: Exam 1 9/20/06 CS150 Introduction to Computer Science 1 1 Your First C++ Program 1 //*********************************************************** 2 // File name: hello.cpp 3 // Author: Shereen Khoja

More information

Data Type Fall 2014 Jinkyu Jeong

Data Type Fall 2014 Jinkyu Jeong Data Type Fall 2014 Jinkyu Jeong (jinkyu@skku.edu) 1 Syntax Rules Recap. keywords break double if sizeof void case else int static... Identifiers not#me scanf 123th printf _id so_am_i gedd007 Constants

More information

3.5 Floating Point: Overview

3.5 Floating Point: Overview 3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer

More information

LECTURE 0: Introduction and Background

LECTURE 0: Introduction and Background 1 LECTURE 0: Introduction and Background September 10, 2012 1 Computational science The role of computational science has become increasingly significant during the last few decades. It has become the

More information

Variables, Data Types, and Arithmetic Expressions Learning Objectives:

Variables, Data Types, and Arithmetic Expressions Learning Objectives: Variables, Data Types, and Arithmetic Expressions Learning Objectives: Printing more than one variable in one printf() Printing formatting characters in printf Declaring and initializing variables A couple

More information

Number Systems. Both numbers are positive

Number Systems. Both numbers are positive Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

More information

(Refer Slide Time: 02:59)

(Refer Slide Time: 02:59) Numerical Methods and Programming P. B. Sunil Kumar Department of Physics Indian Institute of Technology, Madras Lecture - 7 Error propagation and stability Last class we discussed about the representation

More information

More on Images and Matlab

More on Images and Matlab More on Images and Matlab Prof. Eric Miller elmiller@ece.tufts.edu Fall 2007 EN 74-ECE Image Processing Lecture 3-1 Matlab Data Types Different means of representing numbers depending on what you want

More information

Fixed-Point Math and Other Optimizations

Fixed-Point Math and Other Optimizations Fixed-Point Math and Other Optimizations Embedded Systems 8-1 Fixed Point Math Why and How Floating point is too slow and integers truncate the data Floating point subroutines: slower than native, overhead

More information

Numerical Methods in Physics. Lecture 1 Intro & IEEE Variable Types and Arithmetic

Numerical Methods in Physics. Lecture 1 Intro & IEEE Variable Types and Arithmetic Variable types Numerical Methods in Physics Lecture 1 Intro & IEEE Variable Types and Arithmetic Pat Scott Department of Physics, Imperial College November 1, 2016 Slides available from http://astro.ic.ac.uk/pscott/

More information

CS110: PROGRAMMING LANGUAGE I

CS110: PROGRAMMING LANGUAGE I CS110: PROGRAMMING LANGUAGE I Computer Science Department Lecture 4: Java Basics (II) A java Program 1-2 Class in file.java class keyword braces {, } delimit a class body main Method // indicates a comment.

More information

Assignment 1 (Lexical Analyzer)

Assignment 1 (Lexical Analyzer) Assignment 1 (Lexical Analyzer) Compiler Construction CS4435 (Spring 2015) University of Lahore Maryam Bashir Assigned: Saturday, March 14, 2015. Due: Monday 23rd March 2015 11:59 PM Lexical analysis Lexical

More information

ME 461 C review Session Fall 2009 S. Keres

ME 461 C review Session Fall 2009 S. Keres ME 461 C review Session Fall 2009 S. Keres DISCLAIMER: These notes are in no way intended to be a complete reference for the C programming material you will need for the class. They are intended to help

More information

Numerical Methods in Scientific Computation

Numerical Methods in Scientific Computation Numerical Methods in Scientific Computation Programming and Software Introduction to error analysis 1 Packages vs. Programming Packages MATLAB Excel Mathematica Maple Packages do the work for you Most

More information

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS Pages 792 to 800 Anna Rakitianskaia, University of Pretoria INITIALISING POINTER VARIABLES Pointer variables are declared by putting

More information

Project Compiler. CS031 TA Help Session November 28, 2011

Project Compiler. CS031 TA Help Session November 28, 2011 Project Compiler CS031 TA Help Session November 28, 2011 Motivation Generally, it s easier to program in higher-level languages than in assembly. Our goal is to automate the conversion from a higher-level

More information

Programming Using C Homework 4

Programming Using C Homework 4 Programming Using C Homewk 4 1. In Homewk 3 you computed the histogram of an array, in which each entry represents one value of the array. We can generalize the histogram so that each entry, called a bin,

More information

C++ Programming: From Problem Analysis to Program Design, Third Edition

C++ Programming: From Problem Analysis to Program Design, Third Edition C++ Programming: From Problem Analysis to Program Design, Third Edition Chapter 2: Basic Elements of C++ Objectives (continued) Become familiar with the use of increment and decrement operators Examine

More information

Expressions and Data Types CSC 121 Fall 2015 Howard Rosenthal

Expressions and Data Types CSC 121 Fall 2015 Howard Rosenthal Expressions and Data Types CSC 121 Fall 2015 Howard Rosenthal Lesson Goals Understand the basic constructs of a Java Program Understand how to use basic identifiers Understand simple Java data types and

More information

printf( Please enter another number: ); scanf( %d, &num2);

printf( Please enter another number: ); scanf( %d, &num2); CIT 593 Intro to Computer Systems Lecture #13 (11/1/12) Now that we've looked at how an assembly language program runs on a computer, we're ready to move up a level and start working with more powerful

More information

LESSON 1. A C program is constructed as a sequence of characters. Among the characters that can be used in a program are:

LESSON 1. A C program is constructed as a sequence of characters. Among the characters that can be used in a program are: LESSON 1 FUNDAMENTALS OF C The purpose of this lesson is to explain the fundamental elements of the C programming language. C like other languages has all alphabet and rules for putting together words

More information

Declaration. Fundamental Data Types. Modifying the Basic Types. Basic Data Types. All variables must be declared before being used.

Declaration. Fundamental Data Types. Modifying the Basic Types. Basic Data Types. All variables must be declared before being used. Declaration Fundamental Data Types All variables must be declared before being used. Tells compiler to set aside an appropriate amount of space in memory to hold a value. Enables the compiler to perform

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

AYBUKE BUYUKCAYLI KORAY OZUYAR MUSTAFA SOYLU. Week 21/02/ /02/2007 Lecture Notes: ASCII

AYBUKE BUYUKCAYLI KORAY OZUYAR MUSTAFA SOYLU. Week 21/02/ /02/2007 Lecture Notes: ASCII AYBUKE BUYUKCAYLI KORAY OZUYAR MUSTAFA SOYLU Week 21/02/2007-23/02/2007 Lecture Notes: ASCII 7 bits = 128 characters 8 bits = 256characters Unicode = 16 bits Char Boolean boolean frag; flag = true; flag

More information

1. Describe History of C++? 2. What is Dev. C++? 3. Why Use Dev. C++ instead of C++ DOS IDE?

1. Describe History of C++? 2. What is Dev. C++? 3. Why Use Dev. C++ instead of C++ DOS IDE? 1. Describe History of C++? The C++ programming language has a history going back to 1979, when Bjarne Stroustrup was doing work for his Ph.D. thesis. One of the languages Stroustrup had the opportunity

More information

Advanced Computer Architecture-CS501

Advanced Computer Architecture-CS501 Advanced Computer Architecture Lecture No. 34 Reading Material Vincent P. Heuring & Harry F. Jordan Chapter 6 Computer Systems Design and Architecture 6.1, 6.2 Summary Introduction to ALSU Radix Conversion

More information

Chapter 1. Numeric Artifacts. 1.1 Introduction

Chapter 1. Numeric Artifacts. 1.1 Introduction Chapter 1 Numeric Artifacts 1.1 Introduction Virtually all solutions to problems in electromagnetics require the use of a computer. Even when an analytic or closed form solution is available which is nominally

More information

Arithmetic Operators. Portability: Printing Numbers

Arithmetic Operators. Portability: Printing Numbers Arithmetic Operators Normal binary arithmetic operators: + - * / Modulus or remainder operator: % x%y is the remainder when x is divided by y well defined only when x > 0 and y > 0 Unary operators: - +

More information

Data Types. Every program uses data, either explicitly or implicitly to arrive at a result.

Data Types. Every program uses data, either explicitly or implicitly to arrive at a result. Every program uses data, either explicitly or implicitly to arrive at a result. Data in a program is collected into data structures, and is manipulated by algorithms. Algorithms + Data Structures = Programs

More information

Students received individual feedback throughout year on assignments.

Students received individual feedback throughout year on assignments. ACS108 No exam. Students received individual feedback throughout year on assignments. ACS123 In general, during ACS123 exam session, students have shown satisfactory performance, clear understanding of

More information

Bits, Words, and Integers

Bits, Words, and Integers Computer Science 52 Bits, Words, and Integers Spring Semester, 2017 In this document, we look at how bits are organized into meaningful data. In particular, we will see the details of how integers are

More information