EEE111A/B Microprocessors

Size: px
Start display at page:

Download "EEE111A/B Microprocessors"

Transcription

1 EEE111A/B Microprocessors Revision Notes Lecture 1: What s it all About? Covers the basic principles of digital signals. The intelligence of virtually all communications, control and electronic devices are controlled by microprocessors/microcontrollers (MPU/MCU) see Fig. 2. Lecture 2: Microcontrollers The Central Processing Unit (CPU or MPU) in the standard von Neumann computer communicates via a single Data bus to a memory unit, input and output ports Fig 2. The single memory unit holds both Program and Data binary code. In the Harvard computer, a separate memory unit with separate Data bus is used for each of the Program and Data memories Fig. 3. A microcontroller (MCU) is a microprocessor (MPU) CPU integrated in the one IC with Program memory, Data memory, input and output ports and peripheral functions such as analog to digital converters, counter/timers, serial ports etc Fig. 1. All computing engines spend their time: fetching down instructions from the Program memory or store. executing the instruction. In the case of a Harvard computer, the two activities can happen in parallel with the n th instruction being executed with data from the Data memory (Data or File store) whilst simultaneously the (n + 1) th is being fetched from the Program store Fig. 4. The Fetch unit comprises: a Program counter to point to the cell in the Program store holding the instruction code about to be fetched down. a 2-register pipeline with the (n+1) th instruction code being stored at the top entry point and the n th instruction being held in the bottom exit register. The Execution unit comprises: an ALU to do the number crunching. a Working register to hold one of the ALU operands and maybe outcome from the ALU. Lecture 3: Introduction to the PIC16F84 Microcontroller The Microchip PIC16F84 (Figs. 1, 2& 4) isaharvard architecture microcontroller with: a Program store holding 1,024 (1K) 14-bit instructions Fig. 3. a 13-bit Program counter which can potentially address up to 8,192 (8K) instructions. a 2-deep 14-bit pipeline. an 8-bit ALU which can do the basic logic operations and addition/subtraction. 1

2 an 8-bit Working register. 2-bank Data/File store (Fig. 5) that can hold: 68 8-bit general-purpose registers (GPRs) or Files. 16 special-purpose registers (SPRs) holding, amongst other the Status register. A Status register located at File 3 which holds the Carry flag (bit 0) and the Zero flag (bit 2). The idea of a program as a logic sequence of elementary steps or instructions. Lecture 4: Introduction to the PIC16F84 Software The binary structure (Fig. 1) of a: Direct addressing instruction, such as addwf, comprising a 6-bit operation code, 1-bit destination bit (to specify W or a File as the destination of the outcome) and a 7-bit File address. The 7-bit address specifies a bank in the Data store maximum size being 2 7 = 128 Files. Literal instruction, such as addlw, with an 8-bit op-code and an 8-bit constant. Instructions categories and their effect on the Carry and Zero flags: The three Move instructions Figs. 2, 3& 5: movf which is typically used to copy data from a File to the Working register; e.g. movf h 20,w. movwf which is used to copy data from the Working register back to a File; e.g. movwf h 20. movlw which is used to put a byte constant into the Working register; e.g. movlw h FF. The two Add instructions Figs. 4, 6&7: addwf which is used to add the byte contents of a File to that of the Working register and put the byte outcome either back in the File or in W; e.g. addwf h 20,w. addlw which is used to add a literal to the contents of W; e.g. addlw 01. The concept of a program written in a symbolic manner being translated into machine code. This type of one-to-one language was called assembly language Fig. 8. Lecture 5: More PIC16F84 Instructions A closer look at the Status register as part of the bank of SPRs in the Data store Fig. 1. The bare bones Instruction set to be provided with the Examination paper. Instruction categories and their effect on the Status flags: The non-addition Arithmetic instructions: clrf (CLeaR File) which is used to zero the contents of any specified File; e.g. clrf h 30 zeros the contents of File h 30 Fig. 2. incf (INCrement File) which is used to augment the contents of any specified File and copy the outcome either back to the File or else to the Working register; e.g. incf h 30,f increments the contents of File h 30 Fig. 3. 2

3 decf (DECrement File) which is used to lessen the contents of any specified File and copy the outcome either back to the File or else to the Working register; e.g. decf h 30,f decrements the contents of File h 30. subwf (SUBtract Working register byte from File byte) which used to subtract two byte variables; e.g. subwf h 30,w subtracts the byte in W from the contents of File h 30 and puts it in W Fig. 4. bsf (Bit Set File) allows the programmer to set to 1 any bit in any File; e.g. bsf h 30,7 sets to 1 bit 7 in File h 30 Fig. 5. bcf (Bit Clear File) allows the programmer to set to 0 any bit in any File; e.g. bcf h 30,2 clears to 0 bit 2 in File h 30. Skip and Jump instructions: goto (GO TO) which causes program execution to jump to another part of the program; e.g. goto D_LOOP jumps to the instruction at the labelled instruction D_LOOP Fig. 6. btfsc (Bit Test File and Skip if bit is Clear) permits the programmer to skip over the next instruction if the specified bit in the target File is clear; e.g. btfsc h 30,5 skips if bit 5 in File h 30 is 0 Fig. 7. btfss (Bit Test File and Skip if bit is Set) permits the programmer to skip over the next instruction if the specified bit in the specified File is set; e.g. btfss h 30,3 skips if bit 3 in File h 30 is 1. Program loops using the Conditional Skip and Goto instructions. Lecture 6: Comparison of Numbers and Logic Operations Comparing for magnitude two unsigned numbers by subtracting them and checking the state of the Carry (NOT Borrow) and Zero flags in the Status register Figs. 1 & 2. How to test whether the contents of a File is zero by copying a File to itself and thereby activating the Z flag; e.g. movf h 30,f. Logic operations: ANDing a bit with 0 clears it. ANDing a bit with 1 does not alter it. IORing a bit with 0 does not alter it. IORing a bit with 1 sets it. The Logic instruction category: comf (COMplement File) which is used to invert all bits of any specified File; e.g. comf h 30 inverts (logic NOT) the contents of File h 30 Fig. 3. andwf (AND Working register with File) which is used to logic AND the byte in the specified File with that in the Working register. The outcome can either be put back in the File or else in the Working register; e.g. andwf h 30,f ANDs the contents of File h 30 with W and puts the outcome in File h 30 Fig. 4. andlw (AND Literal byte with the byte in the Working register) which is used to logic AND the constant byte specified with the contents of the Working register; e.g. 3

4 andlw b ANDs the contents of W with the constant b (h FC ) effectively clearing the lower two bits of W. iorwf (Inclusive-OR Working register with File) which is used to logic Inclusive-OR the byte in the specified File with that in the Working register and copy the outcome either back in the File or else in the Working register; e.g. ior h 30,w IORs the contents of File h 30 with W and puts the outcome in W Fig. 5. iorlw (Inclusive-OR Literal byte with the byte in the Working register) which is used to logic Inclusive-OR the constant byte specified with the contents of the Working register; e.g. iorlw b Inclusive-ORs the contents of W with the constant b (h 03 ) effectively setting the lower two bits of W. Lecture 7: Subroutines The advantages and disadvantages of modular programming. The subroutine as the building block of modular programming Fig. 2: The call instruction used to go to the entry instruction. The return instruction used to come back to the caller at the exit point of a subroutine. The purpose of the stack as a storage area to ensure that a subroutine can always return to the caller program no matter from where it is called Fig. 3: To save (push) the contents of the 13-bit Program Counter when a call instruction is executed that is the address of the jumping-off point. To retrieve (pop) the previously saved jumping-off address from the stack when a return instruction is executed. Lecture 8: Ports and Pins The PIC16F84 has two integral Parallel ports which connect to the external world via pins on the IC Fig. 4. Port A has five bits connected to five pins labelled RA4 RA0 corresponding to bits 5 through 0 of File 05. Port B has eight bits connected to pins labelled RB7 RB0 corresponding to bits 7 through 0 of File 06. Any pin can be set up in software to be either an input (can be read by software as the corresponding bit in the port) or an output (can be twiddled by changing the corresponding bit in the port). Each port has a shadow Data Direction register in Bank 1, called a TRIS register. Each bit in a TRIS register controls the configuration of it s corresponding pin, with a 0 for Output and 1 for Input (0 Output; 1 Input). TRISA is located at File h 85 in Bank 1 and controls the function of pins RA4 RA0. TRISB is located at File h 86 in Bank 1 and controls the function of pins RB7 RB0. For example to make pin RA0 an output and the rest of the Port A pins to be an input, we have: 4

5 bsf STATUS,RP0 ; Switch to Bank1 movlw b ; Bit settings for RA0 to be Output movwf TRISA ; Copy to Direction A register bcf STATUS,RP0 ; Back to Bank0 Where a pin is configured as an input, you can read if its state is low (logic 0) or high (logic 1) by checking the corresponding bit in the appropriate port. For example: CHECK btfss PORTA,4 ; Check the state of pin RA4. IF set THEN skip goto CHECK ; ELSE go to CHECK Where a pin is configured as an output, you can write to it making it low (logic 0) or high (logic 1) by clearing or setting the corresponding bit in the appropriate port. For example: PULSE bsf PORTA,0 ; Bring pin RA0 high. bcf PORTA,0 ; Bring pin RA0 low. goto PULSE ; and repeat forever! L A T E X2ε eee111_revision.tex Version S.J. Katzen April 22,

6 Instruction Mnemonic Operation Flags Arithmetic Add W and File addwf f,d (d) <- W + (f) Add Literal and W addlw L W <- #L + W Bit Clear File bit n bcf f,n f n <- 0 Bit Set File bit n bsf f,n f n <- 1 Clear File clrf f (f) <- 00 Increment File incf f,d (d) <- (f) + 1 Decrement File decf f,d (d) <- (f) - 1 Subtract W from File subwf f,d (d) <- (f) - W Movement Move File movf f,d (d) <- (f) Move W to File movwf f W <- (f) Move Literal to W movlw L W <- #L Logic AND W and File andwf f,d (d) <- W (f) AND Literal and W andlw L W <- #L W Complement File comf f (f) <- (f) Inclusive OR W and File iorwf f,d (d) <- W + (f) Inclusive OR Literal and W iorlw L W <- #L + W Skip and Jump Bit Test File, Skip if Clear btfsc f,b b == 0? PC++ : PC Bit Test File, Skip if Set btfss f,b b == 1? PC++ : PC Call (jump to) subroutine call aaa (TOS) <- pc, pc <- aaa Go to address goto aaa pc <- aaa Return from subroutine return pc <- (TOS) : Flag operates normally : Flag not affected aaa : Address of instruction b : Bit b (0 7) in file C : Carry or Borrow, bit 0 in F3 Z : Zero, bit 2 in F3 d : Destination; 0 = W, 1 = file W : Working register L : 8-bit Literal == : Equivalent to ++ : Increment ( ) : Contents of A?S1:S2 : IF A is True THEN DO S1 ELSE DO S2 TOS : Top Of Stack f : File d : File or W pc : Program Counter Z C 6

7 PIC16F83/84 Special-Purpose Register file summary File Name Power-on All other address Reset Resets Bank 0 00h INDF Uses contents of this to address Data memory (not a physical register) 01h TMR0 8-bit real-time clock/counter XXXX XXXX UUUU UUUU 02h PCL 1 Lower-order 8 bits of the Program Counter h STATUS 1 IRP RP1 RP0 TO PD Z DC C XXX 000??UUU 04h FSR Indirect Data memory address pointer 0 XXXX XXXX UUUU UUUU 05h PORTA RA4 RA3 RA2 RA1 RA0 X XXXX U UUUU 06h PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 XXXX XXXX UUUU UUUU 08h EEDATA Data EEPROM Data register XXXX XXXX UUUU UUUU 09h EEADR Data EEPROM Address register XXXX XXXX UUUU UUUU 0Ah PCLATH Write buffer for top 5 PC bits Bh INTCON GIE EEIE T0IE INTE RBIE T0IF INTF RBIF X U Bank 1 80h INDF Uses contents of this to address Data memory (not a physical register) 81h OPTION RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS h PCL 1 Lower-order 8 bits of the Program Counter h STATUS 1 IRP RP1 RP0 TO PD Z DC C XXX 000??UUU 84h FSR Indirect Data memory address pointer 0 XXXX XXXX UUUU UUUU 85h TRISA Port A Direction Register h TRISB Port B Data Direction Register h EECON1 Data EEPROM Data register XXXX XXXX UUUU UUUU 89h EECON2 EEPROM Control register (not a physical register) 8Ah PCLATH Write buffer for top 5 PC bits Bh INTCON GIE EEIE T0IE INTE RBIE T0IF INTF RBIF X U X Not known U Unchanged? Value depends on whether a Watchdog Reset and if in Sleep mode before Reset. Unimplemented; reads as 0. Note 1: Next instruction address if PIC in Sleep mode. 7

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 Semester 2 Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J2 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J1 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

Lecture (04) PIC16F84A (3)

Lecture (04) PIC16F84A (3) Lecture (04) PIC16F84A (3) By: Dr. Ahmed ElShafee ١ Central Processing Unit Central processing unit (CPU) is the brain of a microcontroller responsible for finding and fetching the right instruction which

More information

PIC 16F84A programming (II)

PIC 16F84A programming (II) Lecture (05) PIC 16F84A programming (II) Dr. Ahmed M. ElShafee ١ Introduction to 16F84 ٣ PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Program memory (FLASH) EEPROM RAM PORTA

More information

Assembly Language Instructions

Assembly Language Instructions Assembly Language Instructions Content: Assembly language instructions of PIC16F887. Programming by assembly language. Prepared By- Mohammed Abdul kader Assistant Professor, EEE, IIUC Assembly Language

More information

Instuction set

Instuction set Instuction set http://www.piclist.com/images/www/hobby_elec/e_pic3_1.htm#1 In PIC16 series, RISC(Reduced Instruction Set Computer) is adopted and the number of the instructions to use is 35 kinds. When

More information

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 E4160 Microprocessor & Microcontroller System Learning Outcomes 2 At the end of this topic, students should

More information

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept.

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Embedded Systems Design (630470) Lecture 4 Memory Organization Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Memory Organization: PIC16F84 has two separate memory blocks, for data and for program. EEPROM

More information

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27)

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Lesson 14 Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Name and affiliation of the author: N W K Jayatissa Department of Physics,

More information

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS PIC6F87X 3.0 INSTRUCTION SET SUMMARY Each PIC6F87X instruction is a 4bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of

More information

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features:

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features: 8-bit CMOS EEPROM Microcontroller High Performance RISC CPU Features: Only 35 single word instructions to learn All instructions single cycle (400 ns @ 10 MHz) except for program branches which are two-cycle

More information

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Starting to Program Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Outline Introduction Program Development Process The PIC 16F84A Instruction Set Examples The PIC 16F84A Instruction Encoding Assembler Details

More information

Learning Objectives:

Learning Objectives: Topic 5.2.1 PIC microcontrollers Learning Objectives: At the end of this topic you will be able to; Recall the architecture of a PIC microcontroller, consisting of CPU, clock, data memory, program memory

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design Year: IV DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 Microcontroller based system design Semester : VII UNIT I Introduction to PIC Microcontroller

More information

Week1. EEE305 Microcontroller Key Points

Week1. EEE305 Microcontroller Key Points Week1 Harvard Architecture Fig. 3.2 Separate Program store and Data (File) stores with separate Data and Address buses. Program store Has a 14-bit Data bus and 13-bit Address bus. Thus up to 2 13 (8K)

More information

SOLUTIONS!! DO NOT DISTRIBUTE!!

SOLUTIONS!! DO NOT DISTRIBUTE!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF FEBRUARY MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: Date and Time: Duration: One Hour INSTRUCTIONS TO CANDIDATES:

More information

PIC16F8X 18-pin Flash/EEPROM 8-Bit Microcontrollers

PIC16F8X 18-pin Flash/EEPROM 8-Bit Microcontrollers 18-pin Flash/EEPROM 8-Bit Microcontrollers Devices Included in this Data Sheet: PIC16F83 PIC16F84 PIC16CR83 PIC16CR84 Extended voltage range devices available (PIC16LF8X, PIC16LCR8X) High Performance RISC

More information

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006 CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT Spring 2006 Recitation 01 21.02.2006 CEng336 1 OUTLINE LAB & Recitation Program PIC Architecture Overview PIC Instruction Set PIC Assembly Code Structure 21.02.2006

More information

PIC16F8X. 8-Bit CMOS Flash/EEPROM Microcontrollers PIC16F8X PIC16CR8X. Pin Diagram. Devices Included in this Data Sheet:

PIC16F8X. 8-Bit CMOS Flash/EEPROM Microcontrollers PIC16F8X PIC16CR8X. Pin Diagram. Devices Included in this Data Sheet: This document was created with FrameMaker 404 PIC16F8X 8-Bit CMOS Flash/EEPROM Microcontrollers Devices Included in this Data Sheet: PIC16F83 PIC16CR83 PIC16F84 PIC16CR84 Extended voltage range devices

More information

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work LAB WORK 1 We are studying with PIC16F84A Microcontroller. We are responsible for writing assembly codes for the microcontroller. For the code, we are using MPLAB IDE software. After opening the software,

More information

ME 6405 Introduction to Mechatronics

ME 6405 Introduction to Mechatronics ME 6405 Introduction to Mechatronics Fall 2006 Instructor: Professor Charles Ume Microchip PIC Manufacturer Information: Company: Website: http://www.microchip.com Reasons for success: Became the hobbyist's

More information

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features:

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features: M PIC6F84A 8-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller High Performance RISC CPU Features: Pin Diagrams Only 35 single word instructions to learn All instructions single-cycle except for program branches

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Microcontroller 1. Introduction to PIC microcontroller 2. PIC16F84 3. PIC16F877

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name : Embedded System Class/Sem : BE (ECE) / VII Subject Code

More information

Micro II and Embedded Systems

Micro II and Embedded Systems 16.480/552 Micro II and Embedded Systems Introduction to PIC Microcontroller Revised based on slides from WPI ECE2801 Moving Towards Embedded Hardware Typical components of a PC: x86 family microprocessor

More information

DERTS Design Requirements (1): Microcontroller Architecture & Programming

DERTS Design Requirements (1): Microcontroller Architecture & Programming Lecture (5) DERTS Design Requirements (1): Microcontroller Architecture & Programming Prof. Kasim M. Al-Aubidy Philadelphia University 1 Lecture Outline: Features of microcomputers and microcontrollers.

More information

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Sample Programs Eng. Anis Nazer First Semester 2017-2018 Development cycle (1) Write code (2) Assemble / compile (3) Simulate (4) Download to MCU (5) Test Inputs / Outputs PIC16F84A

More information

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch.

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch. Introduction to microprocessors Feisal Mohammed 3rd January 2001 Additional features 1 Input/Output Ports One of the features that differentiates a microcontroller from a microprocessor is the presence

More information

PIC Discussion. By Eng. Tamar Jomaa

PIC Discussion. By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa Chapter#2 Programming Microcontroller Using Assembly Language Quiz#1 : Time: 10 minutes Marks: 10 Fill in spaces: 1) PIC is abbreviation for 2) Microcontroller with..architecture

More information

ME 475 Lab2 Introduction of PIC and Programming. Instructor: Zhen Wang

ME 475 Lab2 Introduction of PIC and Programming. Instructor: Zhen Wang ME 475 Lab2 Introduction of PIC and Programming Instructor: Zhen Wang 2013.1.25 Outline Lecture Introduction of PIC microcontroller Programming cycle Read CH5 Programming guidelines Read CH6 Sample program

More information

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

Semester 1. Module Code: EEE305J1. Module Title: MICROCONTROLLER SYSTEMS

Semester 1. Module Code: EEE305J1. Module Title: MICROCONTROLLER SYSTEMS UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2004/2005 Semester 1 Module Code: EEE305J1 Module Title: MICROCONTROLLER SYSTEMS Time allowed: 3 Hours Answer as many questions as you can. Not more than

More information

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver OTP 8-Bit CMOS MCU with LIN bus Transceiver Devices included in this Data Sheet: High Performance RISC CPU: Only 35 instructions to learn All single cycle instructions (200 ns), except for program branches

More information

16.317: Microprocessor-Based Systems I Summer 2012

16.317: Microprocessor-Based Systems I Summer 2012 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

16.317: Microprocessor-Based Systems I Spring 2012

16.317: Microprocessor-Based Systems I Spring 2012 16.317: Microprocessor-Based Systems I Spring 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

PIC16F84A. 18-pin Enhanced Flash/EEPROM 8-Bit Microcontroller. Devices Included in this Data Sheet: Pin Diagrams. High Performance RISC CPU Features:

PIC16F84A. 18-pin Enhanced Flash/EEPROM 8-Bit Microcontroller. Devices Included in this Data Sheet: Pin Diagrams. High Performance RISC CPU Features: M PIC6F84A 8-pin Enhanced Flash/EEPROM 8-Bit Microcontroller Devices Included in this Data Sheet: PIC6F84A Extended voltage range device available (PIC6LF84A) High Performance RISC CPU Features: Only 35

More information

Chapter 13. PIC Family Microcontroller

Chapter 13. PIC Family Microcontroller Chapter 13 PIC Family Microcontroller Lesson 15 Instruction Set Most instructions execution Time One instruction cycle If XTAL frequency = 20 MHz, then instruction cycle time is 0.2 s or 200 ns (= 4/20

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution For each of the following complex operations, write a sequence of PIC 16F1829 instructions that performs an equivalent operation. Assume that X, Y, and Z are 16-bit values split into individual bytes as

More information

PIC16C63A/65B/73B/74B

PIC16C63A/65B/73B/74B PI663A/65B/73B/74B 4.0 MEMORY ORGANIATION 4. Program Memory Organization The PI663A/65B/73B/74B has a 3bit program counter capable of addressing an 8K x 4 program memory space. All devices covered by this

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS 2008/9. Semester One

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS 2008/9. Semester One UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS 2008/9 Semester One Module Code: EEE305 CRN: 3712 Title: MICROCONTROLLER SYSTEMS Time Allowed: 3 Hours Use of Dictionaries: English-foreign language dictionaries

More information

ECE Test #1: Name

ECE Test #1: Name ECE 376 - Test #1: Name Closed Book, Closed Notes. Calculators Permitted. September 23, 2016 20 15 10 5 0

More information

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics:

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics: Section 13. Timer0 HIGHLIGHTS This section of the manual contains the following major topics: 13.1 Introduction... 13-2 13.2 Control Register... 13-3 13.3 Operation... 13-4 13.4 Timer0 Interrupt... 13-5

More information

Section 4. Architecture

Section 4. Architecture M Section 4. Architecture HIGHLIGHTS This section of the manual contains the following major topics: 4. Introduction...4-2 4.2 Clocking Scheme/Instruction Cycle...4-5 4.3 Instruction Flow/Pipelining...4-6

More information

PIC16F84A 7.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS

PIC16F84A 7.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS PI6F84A 7.0 INSTRUTION SET SUMMARY Each PI6XX instruction is a 4bit word, divided into an OPODE which specifies the instruction type and one or more operands which further specify the operation of the

More information

PIC16F8X PIC16F8X. 18-pin Flash/EEPROM 8-Bit Microcontrollers

PIC16F8X PIC16F8X. 18-pin Flash/EEPROM 8-Bit Microcontrollers Devices Included in this Data Sheet: PIC6F83 PIC6F84 PIC6CR83 PIC6CR84 Extended voltage range devices available (PIC6LF8X, PIC6LCR8X) High Performance RISC CPU Features: Only 35 single word instrucs to

More information

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Internal Architecture Eng. Anis Nazer First Semester 2017-2018 Review Computer system basic components? CPU? Memory? I/O? buses? Instruction? Program? Instruction set? CISC,

More information

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University PIC ming in C and Assembly Outlines Microprocessor vs. MicroController PIC in depth PIC ming Assembly ming Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University Embedded C

More information

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 2. PIC and Programming

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 2. PIC and Programming Laboratory: Introduction to Mechatronics Instructor TA: Edgar Martinez Soberanes (eem370@mail.usask.ca) 2015-01-12 Lab 2. PIC and Programming Lab Sessions Lab 1. Introduction Read manual and become familiar

More information

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics:

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics: M 11 Section 11. HIGHLIGHTS This section of the manual contains the following major topics: 11.1 Introduction...11-2 11.2 Control Register...11-3 11.3 Operation...11-4 11.4 TMR0 Interrupt...11-5 11.5 Using

More information

Section 31. Instruction Set

Section 31. Instruction Set 31 HIGHLIGHTS Section 31. Instruction Set Instruction Set This section of the manual contains the following major topics: 31.1 Introduction... 31-2 31.2 Data Memory Map... 31-3 31.3 Instruction Formats...

More information

CONNECT TO THE PIC. A Simple Development Board

CONNECT TO THE PIC. A Simple Development Board CONNECT TO THE PIC A Simple Development Board Ok, so you have now got your programmer, and you have a PIC or two. It is all very well knowing how to program the PIC in theory, but the real learning comes

More information

EE6008-Microcontroller Based System Design Department Of EEE/ DCE

EE6008-Microcontroller Based System Design Department Of EEE/ DCE UNIT- II INTERRUPTS AND TIMERS PART A 1. What are the interrupts available in PIC? (Jan 14) Interrupt Source Enabled by Completion Status External interrupt from INT INTE = 1 INTF = 1 TMR0 interrupt T0IE

More information

PIC Architecture & Assembly Language Programming. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

PIC Architecture & Assembly Language Programming. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan PIC Architecture & Assembly Language Programming Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw ALU with working register (WREG) and literal value 2 MOVLW

More information

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 August 13, 2012 Name: ID #: Section: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic

More information

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 6 Experiment 6:Timers Objectives To become familiar with hardware timing

More information

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model)

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model) ELCD SERIES INTRODUCTION ALCD is Serial LCD module which is controlled through Serial communication. Most of existing LCD adopts Parallel communication which needs lots of control lines and complicated

More information

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 18th February 2002 CLR Part V Hardware Interfacing There are several features of computers/microcontrollers which have not

More information

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Philadelphia University Faculty of Engineering Course Title: Embedded Systems (630414) Instructor: Eng. Anis Nazer Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Student Name: Student

More information

PIC Discussion By Eng. Tamar Jomaa

PIC Discussion By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa Outlines 2.6 TMR0 2.7 EEPROM 2.8 Look up table 2.9 Macro 2.6 TMR0 Example#1 Write an assembly program to make a counter using TMR0, the count should increment it s value

More information

Chapter 3: Further Microcontrollers

Chapter 3: Further Microcontrollers Chapter 3: Further Microcontrollers Learning Objectives: At the end of this topic you will be able to: recall and describe the structure of microcontrollers as programmable assemblies of: memory; input

More information

Fortune. Semiconductor Corporation 富晶半導體股份有限公司. 8-bit MCU with 1k program ROM, 64-byte RAM, 1 R2F module and 3 13 LCD driver. TD Rev. 1.

Fortune. Semiconductor Corporation 富晶半導體股份有限公司. 8-bit MCU with 1k program ROM, 64-byte RAM, 1 R2F module and 3 13 LCD driver. TD Rev. 1. Fortune 1 R2F module and 3 13 LCD driver. Data Sheet TD-0410001 Rev. 1.2 This manual contains new product information. Fortune reserves the rights to modify the product specification without further notice.

More information

ME 515 Mechatronics. A microprocessor

ME 515 Mechatronics. A microprocessor ME 515 Mechatronics Microcontroller Based Control of Mechanical Systems Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 081239 (3627) Email: asangar@pdn.ac.lk A microprocessor

More information

Chapter 5 Sections 1 6 Dr. Iyad Jafar

Chapter 5 Sections 1 6 Dr. Iyad Jafar Building Assembler Programs Chapter 5 Sections 1 6 Dr. Iyad Jafar Outline Building Structured Programs Conditional Branching Subroutines Generating Time Delays Dealing with Data Example Programs 2 Building

More information

Chapter 2 Sections 1 8 Dr. Iyad Jafar

Chapter 2 Sections 1 8 Dr. Iyad Jafar Introducing the PIC 16 Series and the 16F84A Chapter 2 Sections 1 8 Dr. Iyad Jafar Outline Overview of the PIC 16 Series An Architecture Overview of the 16F84A The 16F84A Memory Organization Memory Addressing

More information

PTK8756B 8 Bit Micro-controller Data Sheet

PTK8756B 8 Bit Micro-controller Data Sheet PTK8756B 8 Bit Micro-controller DEC 15, 2008 Ver1.1 普泰半導體股份有限公司 PORTEK Technology Corporation 公司地址 : 臺北縣新店市寶橋路 235 巷 120 號 4 樓 聯絡電話 : 886-2-89121055 傳真號碼 : 886-2-89121473 公司網址 : www.portek.com.tw Page1

More information

Input/Output Ports and Interfacing

Input/Output Ports and Interfacing Input/Output Ports and Interfacing ELEC 330 Digital Systems Engineering Dr. Ron Hayne Images Courtesy of Ramesh Gaonkar and Delmar Learning Basic I/O Concepts Peripherals such as LEDs and keypads are essential

More information

PIC16C52. EPROM-Based 8-Bit CMOS Microcontroller PIC16C52. Pin Diagrams. Feature Highlights. High-Performance RISC CPU. Peripheral Features

PIC16C52. EPROM-Based 8-Bit CMOS Microcontroller PIC16C52. Pin Diagrams. Feature Highlights. High-Performance RISC CPU. Peripheral Features This document was created with FrameMaker 404 PIC16C52 EPROM-Based 8-Bit CMOS Microcontroller Feature Highlights Pin Diagrams Program Memory Data Memory I/O PDIP, SOIC 384 25 12 High-Performance RISC CPU

More information

Arithmetic,logic Instruction and Programs

Arithmetic,logic Instruction and Programs Arithmetic,logic Instruction and Programs 1 Define the range of numbers possible in PIC unsigned data Code addition and subtraction instructions for unsigned data Perform addition of BCD Code PIC unsigned

More information

D:\PICstuff\PartCounter\PartCounter.asm

D:\PICstuff\PartCounter\PartCounter.asm 1 ;********************************************************************** 2 ; This file is a basic code template for assembly code generation * 3 ; on the PICmicro PIC16F84A. This file contains the basic

More information

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware:

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: HCMIU - DEE Subject: ERTS RISC MCU Architecture PIC16F877 Hardware 1 Outline Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: Program Memory Data memory organization: banks,

More information

Flow Charts and Assembler Programs

Flow Charts and Assembler Programs Flow Charts and Assembler Programs Flow Charts: A flow chart is a graphical way to display how a program works (i.e. the algorithm). The purpose of a flow chart is to make the program easier to understand.

More information

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!!

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF APRIL MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: MidTerm Date and Time: Thursday April 14th 2005 8AM Duration:

More information

PIC Discussion By Eng. Tamar Jomaa

PIC Discussion By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa 1 Write assembly language instructions to clear the general purpose registers of PIC16F84A microcontroller (don t write the whole program) 2 Islamic university Electrical

More information

PIC16C62X Data Sheet. EPROM-Based 8-Bit CMOS Microcontrollers Microchip Technology Inc. DS30235J

PIC16C62X Data Sheet. EPROM-Based 8-Bit CMOS Microcontrollers Microchip Technology Inc. DS30235J Data Sheet EPROM-Based 8-Bit CMOS Microcontrollers 2003 Microchip Technology Inc. DS30235J Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification

More information

To Our Valued Customers

To Our Valued Customers Devices Included in this Data Sheet: PIC12C671 PIC12C672 PIC12CE673 PIC12CE674 Note: Throughout this data sheet PIC12C67X refers to the PIC12C671, PIC12C672, PIC12CE673 and PIC12CE674. PIC12CE67X refers

More information

PIC10F200/202/204/206 Data Sheet

PIC10F200/202/204/206 Data Sheet Data Sheet 6-Pin, 8-Bit Flash Microcontrollers DS4239A 6-Pin, 8-Bit Flash Microcontrollers Devices Included In ThisData Sheet: PIC0F200 PIC0F202 PIC0F204 PIC0F206 High-Performance RISC CPU: Only 33 single-word

More information

Mod-5: PIC 18 Introduction 1. Module 5

Mod-5: PIC 18 Introduction 1. Module 5 Mod-5: PIC 18 Introduction 1 Module 5 Contents: Overview of PIC 18, memory organisation, CPU, registers, pipelining, instruction format, addressing modes, instruction set, interrupts, interrupt operation,

More information

EEE111A/B Microprocessors

EEE111A/B Microprocessors EEE111A/B Microprocessors Lecture 10: C for Microcontroller Programmers 1 Objectives To understand the differences between a high-level language and assembly language. To review the elements of programming

More information

PART TWO LISTING 8 PROGRAM TK3TUT8 MOVF PORTA,W ANDLW B ADDWF COUNT,F MOVF COUNT,W MOVWF PORTB GOTO LOOP

PART TWO LISTING 8 PROGRAM TK3TUT8 MOVF PORTA,W ANDLW B ADDWF COUNT,F MOVF COUNT,W MOVWF PORTB GOTO LOOP EPE PIC TUTORIAL V2 JOHN BECKER PART TWO Quite simply the easiest low-cost way to learn about using PIC Microcontrollers! EPE PIC TUTORIAL In this part we play with switches, make noises, count times,

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Interrupts and Resets Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu Interrupts An event that will cause the CPU to stop the normal program execution

More information

movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt

movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt movlw 0x20 #endif call scan movlw 0xfd tris PORTB ; select colb (RB1) #ifdef MODE_CH8 movlw 0x04 #endif #ifdef MODE_CH4 movlw 0x30 #endif call scan movf cod, W bz loop2 ; if no buton is pressed, skip subwf

More information

PIC10F200/202/204/206

PIC10F200/202/204/206 6-Pin, 8-Bit Flash Microcontrollers Devices Included In This Data Sheet: PIC0F200 PIC0F202 PIC0F204 PIC0F206 High-Performance RISC CPU: Only 33 Single-Word Instructions to Learn All Single-Cycle Instructions

More information

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER Amey Arvind Madgaonkar 1, Sumit Dhere 2 & Rupesh Ratnakar Kadam 3 1. Block diagram International Journal of Latest Trends in Engineering

More information

GUIDE TO USE OF PIC 16F690 EEProm. The 16F690 PIC has a 256 byte EEProm (mapped to 0x x21FF).

GUIDE TO USE OF PIC 16F690 EEProm. The 16F690 PIC has a 256 byte EEProm (mapped to 0x x21FF). GUIDE TO USE OF PIC 16F690 EEProm The 16F690 PIC has a 256 byte EEProm (mapped to 0x2100..0x21FF). PRESET DATA (WITH PROGRAM CODE) Data can be preset by use of the de operator: Org 0x21XX de de etc. 0x01,0x02

More information

PIC16F Pin, 8-Bit Flash Microcontroller. Processor Features: Microcontroller Features: CMOS Technology: Peripheral Features:

PIC16F Pin, 8-Bit Flash Microcontroller. Processor Features: Microcontroller Features: CMOS Technology: Peripheral Features: 28-Pin, 8-Bit Flash Microcontroller PIC16F570 Processor Features: Interrupt Capability PIC16F570 Operating Speed: - DC 20 MHz Crystal oscillator - DC 200 ns Instruction cycle High Endurance Program and

More information

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS Interfacing to an LCD Module AN587 INTRODUCTION TABLE 1: CONTROL SIGNAL FUNCTIONS This application note interfaces a PIC16CXX device to the Hitachi LM02L LCD character display module. This module is a

More information

These 3 registers contain enable, priority,

These 3 registers contain enable, priority, 8.3.2) Registers Related to Interrupts These registers enable/disable the interrupts, set the priority of the interrupts, and record the status of each interrupt source. RCON INTCON, INTCON2, and INTCON3

More information

Midrange 8b PIC Microcontrollers. ECE Senior Design 14 February 2017

Midrange 8b PIC Microcontrollers. ECE Senior Design 14 February 2017 Midrange 8b PIC Microcontrollers ECE Senior Design 14 February 2017 Harvard vs. Von Neumann Harvard Architecture Program Memory 14-bit Bus CPU 8-bit Bus Data Memory Harvard architecture Separate busses

More information

Section 16. Basic Sychronous Serial Port (BSSP)

Section 16. Basic Sychronous Serial Port (BSSP) M 16 Section 16. Basic Sychronous Serial Port (BSSP) BSSP HIGHLIGHTS This section of the manual contains the following major topics: 16.1 Introduction...16-2 16.2 Control Registers...16-3 16.3 SPI Mode...16-6

More information

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle.

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle. PIC PROGRAMMING You have been introduced to PIC chips and the assembly language used to program them in the past number of lectures. The following is a revision of the ideas and concepts covered to date.

More information

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller Maxim > App Notes > 1-Wire DEVICES BATTERY MANAGEMENT Keywords: 1-wire, PICmicro, Microchip PIC, 1-Wire communication, PIC microcontroller, PICmicro microcontroller, 1 wire communication, PICs, micros,

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 - Microcontroller Based System Design UNIT III PERIPHERALS AND INTERFACING PART A 1. What is an

More information

CENG-336 Introduction to Embedded Systems Development. Timers

CENG-336 Introduction to Embedded Systems Development. Timers CENG-336 Introduction to Embedded Systems Development Timers Definitions A counter counts (possibly asynchronous) input pulses from an external signal A timer counts pulses of a fixed, known frequency

More information

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU:

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU: 14-Pin, 8-Bit CMOS Microcontroller Device included in this Data Sheet: PIC16C505 High-Performance RISC CPU: Only 33 instructions to learn Operating speed: - DC - 20 MHz clock input - DC - 200 ns instruction

More information

PIC Microcontroller Embedded Systems Hadassah College Spring 2012 PIC Microcontroller Dr. Martin Land

PIC Microcontroller Embedded Systems Hadassah College Spring 2012 PIC Microcontroller Dr. Martin Land PIC Microcontroller 1 (MCU) Widely used device from Microchip Technology Sold > 10 billion PIC controllers Several device families Many devices per family Common development environment Widely available

More information

PIC16F870/ /40-Pin, 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram. Microcontroller Core Features:

PIC16F870/ /40-Pin, 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram. Microcontroller Core Features: 28/40-Pin, 8-Bit CMOS FLASH Microcontrollers Devices Included in this Data Sheet: Pin Diagram PIC16F870 PIC16F871 PDIP Microcontroller Core Features: High performance RISC CPU Only 35 single word instructions

More information

PIC16F /40-Pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features:

PIC16F /40-Pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features: 28/40-Pin 8-Bit CMOS FLASH Microcontrollers Devices Included in this Data Sheet: PIC16F870 PIC16F871 Microcontroller Core Features: High-performance RISC CPU Only 35 single word instructions to learn All

More information

Arithmetic and Logic Instructions. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Arithmetic and Logic Instructions. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Arithmetic and Logic Instructions Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Find the sum of the values from 40H to 43H. Put the sum in filereg locations

More information

Performance & Applications

Performance & Applications EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 15th March 2002 CLR Part VI Performance & Applications It is possible to predict the execution time of code, on the basis

More information

PIC16C433 Data Sheet. 8-Bit CMOS Microcontroller with LIN bus Transceiver Microchip Technology Inc. Advance Information DS41139A

PIC16C433 Data Sheet. 8-Bit CMOS Microcontroller with LIN bus Transceiver Microchip Technology Inc. Advance Information DS41139A Data Sheet 8-Bit CMOS Microcontroller with LIN bus Transceiver 2001 Microchip Technology Inc. Advance Information DS41139A All rights reserved. Copyright 2001, Microchip Technology Incorporated, USA. Information

More information