# Context Free Grammars. CS154 Chris Pollett Mar 1, 2006.

Size: px
Start display at page:

Transcription

1 Context Free Grammars CS154 Chris Pollett Mar 1, 2006.

2 Outline Formal Definition Ambiguity Chomsky Normal Form

3 Formal Definitions A context free grammar is a 4-tuple (V, Σ, R, S) where 1. V is a finite set called the variables 2. Σ is a finite set, disjoint from V called the terminals. 3. R is a finite set of rules, with each rule being a pair consisting of a variable and a string of variables and terminals, and 4. S V is a start variable. For a rule A--> w where w is a string over (V Σ), and for other strings u and v, we say uav yields uwv, written uav => uwv. We say u derives v, written u=> * v, if there is a finite sequence: u => u 1 => u 2 => => u k => v.

4 Example Consider the grammar G= (V, Σ, R, <EXPR>) where V is {<EXPR>, <TERM>, <FACTOR>} and Σ is (a, +, x, (, )) and the rules are: <EXPR> --> <EXPR> + <TERM> <TERM> <TERM> --> <TERM> x <FACTOR> <FACTOR> <FACTOR> --> (<EXPR>) a One can verify that <EXPR> => * (a+a) x a.

5 Techniques for Designing CFGs Many CFLs are the union of simpler CFLs. So one can design a CFG for each in turn with start states S 1, S 2, S n.then take the union of the rules and add a new start variable with a rule S--> S 1 S 2 S n. For example, take the language {0 n 1 n n>=0} {1 n 0 n n>=0}. First we could make CFGs for each language separately. Say, S 1 --> 0 S 1 1 ε and S 2 --> 1 S 2 0 ε. Then add the rule S--> S 1 S 2. A CFG for a language that is regular can be had by first make a DFA for the language. For each state q i make a variable R i and for each transition δ(q i,a) = q j make a rule R i --> a R j. Have the start state variable be R 0. Add rules R i --> ε for each final state.

6 More Techniques for Designing CFGs For CFL which contain two substrings which are linked in the sense that a machine for such a language would need to remember information about one on the strings to verify information about the other substring, you might want to consider rules of the form R --> u R v. Here u and v should satisfy the property you are trying to verify.

7 Ambiguity Sometime a grammar can generate string in more than one way. Such a string will have several different parse trees. As the parse tree is supposed to give us the meaning, such a string would have more than one meaning. A string with more than one parse tree with respect to a grammar is said to be ambiguously derived in that grammar. For example, consider <EXPR> --> <EXPR>+ <EXPR> <EXPR> x <EXPR> (<EXPR>) a. Then a + a x a can be derived with two different parse trees.

8 Leftmost Derivations We want to formalize the notion of ambiguity in terms of derivations rather than parse trees as derivations are easier to work with syntactically. We say that a derivation of a string w in a grammar G is a leftmost derivation if at every step the leftmost remaining variable is the one replaced. A string w is derived ambiguously in G if it has two or more different leftmost derivations. A CFG is called ambiguous if it generates some string ambiguously. There are often many different CFGs for the same language. Even though one of these may be ambiguous some other may be unambiguous. We say a language is inherently ambiguous if one can never find an unambiguous CFG for it. One of the problems in the book asks you to prove that {a i b j c k i=j or j=k} is inherently ambiguous.

9 Chomsky Normal Form When working with CFGs it is convenient to have them in some kind of normal form in order to do proofs. Chomsky Normal Form is often used. A CFG is in Chomsky Normal Form if every rule is of the form A-->BC or of the form A-->a, where A,B,C are any variables and a is a terminal. In addition the rule S--> ε is permitted.

10 Conversion to Chomsky Normal Form Any CFL L can be generated by a CFG in Chomsky Normal Form Proof Let G be a CFG for L. First we add a new start variable and rule S 0 -->S. This guarentees the start variable does not occur on the RHS of any rule. Second we remove any ε-rules A--> ε where A is not the start variable. Then for each occurrence of A on the RHS of a rule, say R--> uav, we add a rule R--> uv. We do this for each occurrence of an A. So for R--> uavaw, we would add the rules R-->uvAw, R--> uavw, R--> uvw. If we had the rule R-->A, add the rule R--> ε unless we previously removed the rule R--> ε. Then we repeat the process with R. Next we handle unit rule A--> B. To do this, we delete this rule and then for each rule of the form B--> u, we add then rule A-->u, unless this is a unit rule that was previously removed. We repeat until we eliminate unit rules. Finally, we convert all the remaining rules to the proper form. For any rule A--> u 1 u 2 u k where k>=3 and each ui is a variable or a terminal symbol, we replace the rule with A --> u 1 A 1, A 1 --> u 2 A 2, A k-2 --> u k-1 u k. For any rule with k=2, we replace any nonterminal with a new variable U i and a rule U i --> u i.

### Normal Forms and Parsing. CS154 Chris Pollett Mar 14, 2007.

Normal Forms and Parsing CS154 Chris Pollett Mar 14, 2007. Outline Chomsky Normal Form The CYK Algorithm Greibach Normal Form Chomsky Normal Form To get an efficient parsing algorithm for general CFGs

### Context Free Grammars, Parsing, and Amibuity. CS154 Chris Pollett Feb 28, 2007.

Context Free Grammars, Parsing, and Amibuity CS154 Chris Pollett Feb 28, 2007. Outline JFLAP Intuitions about Compiler Ambiguity Left and Rightmost Derivations Brute Force Parsing JFLAP and the Pumping

### Limits of Computation p.1/?? Limits of Computation p.2/??

Context-Free Grammars (CFG) There are languages, such as {0 n 1 n n 0} that cannot be described (specified) by finite automata or regular expressions. Context-free grammars provide a more powerful mechanism

### Yet More CFLs; Turing Machines. CS154 Chris Pollett Mar 8, 2006.

Yet More CFLs; Turing Machines CS154 Chris Pollett Mar 8, 2006. Outline Algorithms for CFGs Pumping Lemma for CFLs Turing Machines Introduction to Cocke-Younger- Kasami (CYK) algorithm (1960) This is an

### JNTUWORLD. Code No: R

Code No: R09220504 R09 SET-1 B.Tech II Year - II Semester Examinations, April-May, 2012 FORMAL LANGUAGES AND AUTOMATA THEORY (Computer Science and Engineering) Time: 3 hours Max. Marks: 75 Answer any five

### Ambiguous Grammars and Compactification

Ambiguous Grammars and Compactification Mridul Aanjaneya Stanford University July 17, 2012 Mridul Aanjaneya Automata Theory 1/ 44 Midterm Review Mathematical Induction and Pigeonhole Principle Finite Automata

### CS154 Midterm Examination. May 4, 2010, 2:15-3:30PM

CS154 Midterm Examination May 4, 2010, 2:15-3:30PM Directions: Answer all 7 questions on this paper. The exam is open book and open notes. Any materials may be used. Name: I acknowledge and accept the

### CT32 COMPUTER NETWORKS DEC 2015

Q.2 a. Using the principle of mathematical induction, prove that (10 (2n-1) +1) is divisible by 11 for all n N (8) Let P(n): (10 (2n-1) +1) is divisible by 11 For n = 1, the given expression becomes (10

### Closure Properties of CFLs; Introducing TMs. CS154 Chris Pollett Apr 9, 2007.

Closure Properties of CFLs; Introducing TMs CS154 Chris Pollett Apr 9, 2007. Outline Closure Properties of Context Free Languages Algorithms for CFLs Introducing Turing Machines Closure Properties of CFL

### CS525 Winter 2012 \ Class Assignment #2 Preparation

1 CS525 Winter 2012 \ Class Assignment #2 Preparation Ariel Stolerman 2.26) Let be a CFG in Chomsky Normal Form. Following is a proof that for any ( ) of length exactly steps are required for any derivation

### Derivations of a CFG. MACM 300 Formal Languages and Automata. Context-free Grammars. Derivations and parse trees

Derivations of a CFG MACM 300 Formal Languages and Automata Anoop Sarkar http://www.cs.sfu.ca/~anoop strings grow on trees strings grow on Noun strings grow Object strings Verb Object Noun Verb Object

### Normal Forms for CFG s. Eliminating Useless Variables Removing Epsilon Removing Unit Productions Chomsky Normal Form

Normal Forms for CFG s Eliminating Useless Variables Removing Epsilon Removing Unit Productions Chomsky Normal Form 1 Variables That Derive Nothing Consider: S -> AB, A -> aa a, B -> AB Although A derives

### MIT Specifying Languages with Regular Expressions and Context-Free Grammars

MIT 6.035 Specifying Languages with Regular essions and Context-Free Grammars Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology Language Definition Problem How to precisely

### Context-Free Grammars

Context-Free Grammars 1 Informal Comments A context-free grammar is a notation for describing languages. It is more powerful than finite automata or RE s, but still cannot define all possible languages.

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6503 Subject

### Context-Free Grammars and Languages (2015/11)

Chapter 5 Context-Free Grammars and Languages (2015/11) Adriatic Sea shore at Opatija, Croatia Outline 5.0 Introduction 5.1 Context-Free Grammars (CFG s) 5.2 Parse Trees 5.3 Applications of CFG s 5.4 Ambiguity

### Introduction to Syntax Analysis

Compiler Design 1 Introduction to Syntax Analysis Compiler Design 2 Syntax Analysis The syntactic or the structural correctness of a program is checked during the syntax analysis phase of compilation.

### CMPT 755 Compilers. Anoop Sarkar.

CMPT 755 Compilers Anoop Sarkar http://www.cs.sfu.ca/~anoop Parsing source program Lexical Analyzer token next() Parser parse tree Later Stages Lexical Errors Syntax Errors Context-free Grammars Set of

### COP 3402 Systems Software Syntax Analysis (Parser)

COP 3402 Systems Software Syntax Analysis (Parser) Syntax Analysis 1 Outline 1. Definition of Parsing 2. Context Free Grammars 3. Ambiguous/Unambiguous Grammars Syntax Analysis 2 Lexical and Syntax Analysis

### Languages and Compilers

Principles of Software Engineering and Operational Systems Languages and Compilers SDAGE: Level I 2012-13 3. Formal Languages, Grammars and Automata Dr Valery Adzhiev vadzhiev@bournemouth.ac.uk Office:

### Context-Free Languages & Grammars (CFLs & CFGs) Reading: Chapter 5

Context-Free Languages & Grammars (CFLs & CFGs) Reading: Chapter 5 1 Not all languages are regular So what happens to the languages which are not regular? Can we still come up with a language recognizer?

### Compiler Construction

Compiler Construction Exercises 1 Review of some Topics in Formal Languages 1. (a) Prove that two words x, y commute (i.e., satisfy xy = yx) if and only if there exists a word w such that x = w m, y =

### UNIT I PART A PART B

OXFORD ENGINEERING COLLEGE (NAAC ACCREDITED WITH B GRADE) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS YEAR/SEM: III/V STAFF NAME: Dr. Sangeetha Senthilkumar SUB.CODE: CS6503 SUB.NAME:

### Optimizing Finite Automata

Optimizing Finite Automata We can improve the DFA created by MakeDeterministic. Sometimes a DFA will have more states than necessary. For every DFA there is a unique smallest equivalent DFA (fewest states

### MIT Specifying Languages with Regular Expressions and Context-Free Grammars. Martin Rinard Massachusetts Institute of Technology

MIT 6.035 Specifying Languages with Regular essions and Context-Free Grammars Martin Rinard Massachusetts Institute of Technology Language Definition Problem How to precisely define language Layered structure

### Part 5 Program Analysis Principles and Techniques

1 Part 5 Program Analysis Principles and Techniques Front end 2 source code scanner tokens parser il errors Responsibilities: Recognize legal programs Report errors Produce il Preliminary storage map Shape

### Context Free Languages

Context Free Languages COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 2016 Slides by Katya Lebedeva and Ranald Clouston. COMP 2600 Context Free

### CS 181 B&C EXAM #1 NAME. You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

CS 8 B&C EXAM # NAME SPRING 204 UCLA ID You have 90 minutes to complete this exam. You may assume without proof any statement proved in class. Give a simple verbal description of the language recognized

### CMSC 330: Organization of Programming Languages. Context Free Grammars

CMSC 330: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Analyzer Optimizer Code Generator Abstract Syntax Tree Front End Back End Compiler

### Architecture of Compilers, Interpreters. CMSC 330: Organization of Programming Languages. Front End Scanner and Parser. Implementing the Front End

Architecture of Compilers, Interpreters : Organization of Programming Languages ource Analyzer Optimizer Code Generator Context Free Grammars Intermediate Representation Front End Back End Compiler / Interpreter

### CMSC 330: Organization of Programming Languages. Architecture of Compilers, Interpreters

: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Scanner Parser Static Analyzer Intermediate Representation Front End Back End Compiler / Interpreter

### Introduction to Syntax Analysis. The Second Phase of Front-End

Compiler Design IIIT Kalyani, WB 1 Introduction to Syntax Analysis The Second Phase of Front-End Compiler Design IIIT Kalyani, WB 2 Syntax Analysis The syntactic or the structural correctness of a program

### Non-deterministic Finite Automata (NFA)

Non-deterministic Finite Automata (NFA) CAN have transitions on the same input to different states Can include a ε or λ transition (i.e. move to new state without reading input) Often easier to design

### Final Course Review. Reading: Chapters 1-9

Final Course Review Reading: Chapters 1-9 1 Objectives Introduce concepts in automata theory and theory of computation Identify different formal language classes and their relationships Design grammars

### Definition 2.8: A CFG is in Chomsky normal form if every rule. only appear on the left-hand side, we allow the rule S ǫ.

CS533 Class 02b: 1 c P. Heeman, 2017 CNF Pushdown Automata Definition Equivalence Overview CS533 Class 02b: 2 c P. Heeman, 2017 Chomsky Normal Form Definition 2.8: A CFG is in Chomsky normal form if every

### 1. Which of the following regular expressions over {0, 1} denotes the set of all strings not containing 100 as a sub-string?

Multiple choice type questions. Which of the following regular expressions over {, } denotes the set of all strings not containing as a sub-string? 2. DFA has a) *(*)* b) ** c) ** d) *(+)* a) single final

### Finite Automata. Dr. Nadeem Akhtar. Assistant Professor Department of Computer Science & IT The Islamia University of Bahawalpur

Finite Automata Dr. Nadeem Akhtar Assistant Professor Department of Computer Science & IT The Islamia University of Bahawalpur PhD Laboratory IRISA-UBS University of South Brittany European University

### Homework. Context Free Languages. Before We Start. Announcements. Plan for today. Languages. Any questions? Recall. 1st half. 2nd half.

Homework Context Free Languages Homework #2 returned Homework #3 due today Homework #4 Pg 133 -- Exercise 1 (use structural induction) Pg 133 -- Exercise 3 Pg 134 -- Exercise 8b,c,d Pg 135 -- Exercise

### Formal Languages and Compilers Lecture V: Parse Trees and Ambiguous Gr

Formal Languages and Compilers Lecture V: Parse Trees and Ambiguous Grammars Free University of Bozen-Bolzano Faculty of Computer Science POS Building, Room: 2.03 artale@inf.unibz.it http://www.inf.unibz.it/

### CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Analyzer Optimizer Code Generator Abstract Syntax Tree Front End Back End Compiler

### Multiple Choice Questions

Techno India Batanagar Computer Science and Engineering Model Questions Subject Name: Formal Language and Automata Theory Subject Code: CS 402 Multiple Choice Questions 1. The basic limitation of an FSM

### MA513: Formal Languages and Automata Theory Topic: Context-free Grammars (CFG) Lecture Number 18 Date: September 12, 2011

MA53: Formal Languages and Automata Theory Topic: Context-free Grammars (CFG) Lecture Number 8 Date: September 2, 20 xercise: Define a context-free grammar that represents (a simplification of) expressions

### CMSC 330: Organization of Programming Languages. Context Free Grammars

CMSC 330: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Analyzer Optimizer Code Generator Abstract Syntax Tree Front End Back End Compiler

### CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Analyzer Optimizer Code Generator Abstract Syntax Tree Front End Back End Compiler

### CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages Context Free Grammars and Parsing 1 Recall: Architecture of Compilers, Interpreters Source Parser Static Analyzer Intermediate Representation Front End Back

### (a) R=01[((10)*+111)*+0]*1 (b) ((01+10)*00)*. [8+8] 4. (a) Find the left most and right most derivations for the word abba in the grammar

Code No: R05310501 Set No. 1 III B.Tech I Semester Regular Examinations, November 2008 FORMAL LANGUAGES AND AUTOMATA THEORY (Computer Science & Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE

### Context-free grammars (CFGs)

Context-free grammars (CFGs) Roadmap Last time RegExp == DFA Jlex: a tool for generating (Java code for) a lexer/scanner Mainly a collection of regexp, action pairs This time CFGs, the underlying abstraction

### Syntax Analysis Part I

Syntax Analysis Part I Chapter 4: Context-Free Grammars Slides adapted from : Robert van Engelen, Florida State University Position of a Parser in the Compiler Model Source Program Lexical Analyzer Token,

### CMSC 330: Organization of Programming Languages. Context Free Grammars

CMSC 330: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Analyzer Optimizer Code Generator Abstract Syntax Tree Front End Back End Compiler

### ([1-9] 1[0-2]):[0-5][0-9](AM PM)? What does the above match? Matches clock time, may or may not be told if it is AM or PM.

What is the corresponding regex? [2-9]: ([1-9] 1[0-2]):[0-5][0-9](AM PM)? What does the above match? Matches clock time, may or may not be told if it is AM or PM. CS 230 - Spring 2018 4-1 More CFG Notation

### ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών Lecture 5b Syntax Analysis Elias Athanasopoulos eliasathan@cs.ucy.ac.cy Regular Expressions vs Context-Free Grammars Grammar for the regular expression (a b)*abb

### CS 321 Programming Languages and Compilers. VI. Parsing

CS 321 Programming Languages and Compilers VI. Parsing Parsing Calculate grammatical structure of program, like diagramming sentences, where: Tokens = words Programs = sentences For further information,

### Decision Properties for Context-free Languages

Previously: Decision Properties for Context-free Languages CMPU 240 Language Theory and Computation Fall 2018 Context-free languages Pumping Lemma for CFLs Closure properties for CFLs Today: Assignment

### Context-Free Languages and Parse Trees

Context-Free Languages and Parse Trees Mridul Aanjaneya Stanford University July 12, 2012 Mridul Aanjaneya Automata Theory 1/ 41 Context-Free Grammars A context-free grammar is a notation for describing

### 14.1 Encoding for different models of computation

Lecture 14 Decidable languages In the previous lecture we discussed some examples of encoding schemes, through which various objects can be represented by strings over a given alphabet. We will begin this

### NFAs and Myhill-Nerode. CS154 Chris Pollett Feb. 22, 2006.

NFAs and Myhill-Nerode CS154 Chris Pollett Feb. 22, 2006. Outline Bonus Questions Equivalence with Finite Automata Myhill-Nerode Theorem. Bonus Questions These questions are open to anybody. I will only

### 1. (10 points) Draw the state diagram of the DFA that recognizes the language over Σ = {0, 1}

CSE 5 Homework 2 Due: Monday October 6, 27 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in

### Parsing Techniques. CS152. Chris Pollett. Sep. 24, 2008.

Parsing Techniques. CS152. Chris Pollett. Sep. 24, 2008. Outline. Top-down versus Bottom-up Parsing. Recursive Descent Parsing. Left Recursion Removal. Left Factoring. Predictive Parsing. Introduction.

### Homework. Announcements. Before We Start. Languages. Plan for today. Chomsky Normal Form. Final Exam Dates have been announced

Homework Homework #3 returned Homework #4 due today Homework #5 Pg 169 -- Exercise 4 Pg 183 -- Exercise 4c,e,i Pg 184 -- Exercise 10 Pg 184 -- Exercise 12 Pg 185 -- Exercise 17 Due 10 / 17 Announcements

### CSE P 501 Compilers. Parsing & Context-Free Grammars Hal Perkins Winter /15/ Hal Perkins & UW CSE C-1

CSE P 501 Compilers Parsing & Context-Free Grammars Hal Perkins Winter 2008 1/15/2008 2002-08 Hal Perkins & UW CSE C-1 Agenda for Today Parsing overview Context free grammars Ambiguous grammars Reading:

### Principles of Programming Languages COMP251: Syntax and Grammars

Principles of Programming Languages COMP251: Syntax and Grammars Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong, China Fall 2006

### Chapter 4. Lexical and Syntax Analysis. Topics. Compilation. Language Implementation. Issues in Lexical and Syntax Analysis.

Topics Chapter 4 Lexical and Syntax Analysis Introduction Lexical Analysis Syntax Analysis Recursive -Descent Parsing Bottom-Up parsing 2 Language Implementation Compilation There are three possible approaches

### CS5371 Theory of Computation. Lecture 8: Automata Theory VI (PDA, PDA = CFG)

CS5371 Theory of Computation Lecture 8: Automata Theory VI (PDA, PDA = CFG) Objectives Introduce Pushdown Automaton (PDA) Show that PDA = CFG In terms of descriptive power Pushdown Automaton (PDA) Roughly

### Parsing: Derivations, Ambiguity, Precedence, Associativity. Lecture 8. Professor Alex Aiken Lecture #5 (Modified by Professor Vijay Ganesh)

Parsing: Derivations, Ambiguity, Precedence, Associativity Lecture 8 (Modified by Professor Vijay Ganesh) 1 Topics covered so far Regular languages and Finite automaton Parser overview Context-free grammars

### Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 11 Ana Bove April 26th 2018 Recap: Regular Languages Decision properties of RL: Is it empty? Does it contain this word? Contains

### Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016 Lecture 15 Ana Bove May 23rd 2016 More on Turing machines; Summary of the course. Overview of today s lecture: Recap: PDA, TM Push-down

### LR Parsing Techniques

LR Parsing Techniques Introduction Bottom-Up Parsing LR Parsing as Handle Pruning Shift-Reduce Parser LR(k) Parsing Model Parsing Table Construction: SLR, LR, LALR 1 Bottom-UP Parsing A bottom-up parser

### CS415 Compilers. Syntax Analysis. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers Syntax Analysis These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University Limits of Regular Languages Advantages of Regular Expressions

### Where We Are. CMSC 330: Organization of Programming Languages. This Lecture. Programming Languages. Motivation for Grammars

CMSC 330: Organization of Programming Languages Context Free Grammars Where We Are Programming languages Ruby OCaml Implementing programming languages Scanner Uses regular expressions Finite automata Parser

### 2.2 Syntax Definition

42 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR sequence of "three-address" instructions; a more complete example appears in Fig. 2.2. This form of intermediate code takes its name from instructions

### A Simple Syntax-Directed Translator

Chapter 2 A Simple Syntax-Directed Translator 1-1 Introduction The analysis phase of a compiler breaks up a source program into constituent pieces and produces an internal representation for it, called

### 1. [5 points each] True or False. If the question is currently open, write O or Open.

University of Nevada, Las Vegas Computer Science 456/656 Spring 2018 Practice for the Final on May 9, 2018 The entire examination is 775 points. The real final will be much shorter. Name: No books, notes,

Downloaded from http://himadri.cmsdu.org Page 1 LR Parsing We first understand Context Free Grammars. Consider the input string: x+2*y When scanned by a scanner, it produces the following stream of tokens:

### Models of Computation II: Grammars and Pushdown Automata

Models of Computation II: Grammars and Pushdown Automata COMP1600 / COMP6260 Dirk Pattinson Australian National University Semester 2, 2018 Catch Up / Drop in Lab Session 1 Monday 1100-1200 at Room 2.41

### Properties of Regular Expressions and Finite Automata

Properties of Regular Expressions and Finite Automata Some token patterns can t be defined as regular expressions or finite automata. Consider the set of balanced brackets of the form [[[ ]]]. This set

### Natural Language Processing

Natural Language Processing Anoop Sarkar http://www.cs.sfu.ca/~anoop 9/18/18 1 Ambiguity An input is ambiguous with respect to a CFG if it can be derived with two different parse trees A parser needs a

### Reflection in the Chomsky Hierarchy

Reflection in the Chomsky Hierarchy Henk Barendregt Venanzio Capretta Dexter Kozen 1 Introduction We investigate which classes of formal languages in the Chomsky hierarchy are reflexive, that is, contain

### CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages Lecture 5: Syntax Analysis (Parsing) Zheng (Eddy) Zhang Rutgers University January 31, 2018 Class Information Homework 1 is being graded now. The sample solution

### Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and

Computer Language Theory Chapter 4: Decidability 1 Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and

### Context-Free Grammars

CFG2: Ambiguity Context-Free Grammars CMPT 379: Compilers Instructor: Anoop Sarkar anoopsarkar.github.io/compilers-class Ambiguity - / - / ( ) - / / - 16-06-22 2 Ambiguity Grammar is ambiguous if more

### Regular Expressions. Agenda for Today. Grammar for a Tiny Language. Programming Language Specifications

Agenda for Today Regular Expressions CSE 413, Autumn 2005 Programming Languages Basic concepts of formal grammars Regular expressions Lexical specification of programming languages Using finite automata

### 3. Syntax Analysis. Andrea Polini. Formal Languages and Compilers Master in Computer Science University of Camerino

3. Syntax Analysis Andrea Polini Formal Languages and Compilers Master in Computer Science University of Camerino (Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 1 / 54 Syntax Analysis: the

### Theory of Computation

Theory of Computation For Computer Science & Information Technology By www.thegateacademy.com Syllabus Syllabus for Theory of Computation Regular Expressions and Finite Automata, Context-Free Grammar s

### DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR, PERAMBALUR DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR, PERAMBALUR-621113 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Third Year CSE( Sem:V) CS2303- THEORY OF COMPUTATION PART B-16

### CSE302: Compiler Design

CSE302: Compiler Design Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University February 20, 2007 Outline Recap

### QUESTION BANK. Formal Languages and Automata Theory(10CS56)

QUESTION BANK Formal Languages and Automata Theory(10CS56) Chapter 1 1. Define the following terms & explain with examples. i) Grammar ii) Language 2. Mention the difference between DFA, NFA and εnfa.

### Context Free Languages and Pushdown Automata

Context Free Languages and Pushdown Automata COMP2600 Formal Methods for Software Engineering Ranald Clouston Australian National University Semester 2, 2013 COMP 2600 Context Free Languages and Pushdown

### Outline. Parser overview Context-free grammars (CFG s) Derivations Syntax-Directed Translation

Outline Introduction to Parsing (adapted from CS 164 at Berkeley) Parser overview Context-free grammars (CFG s) Derivations Syntax-Directed ranslation he Functionality of the Parser Input: sequence of

### CSEP 501 Compilers. Languages, Automata, Regular Expressions & Scanners Hal Perkins Winter /8/ Hal Perkins & UW CSE B-1

CSEP 501 Compilers Languages, Automata, Regular Expressions & Scanners Hal Perkins Winter 2008 1/8/2008 2002-08 Hal Perkins & UW CSE B-1 Agenda Basic concepts of formal grammars (review) Regular expressions

### Defining syntax using CFGs

Defining syntax using CFGs Roadmap Last time Defined context-free grammar This time CFGs for specifying a language s syntax Language membership List grammars Resolving ambiguity CFG Review G = (N,Σ,P,S)

### Lecture 8: Context Free Grammars

Lecture 8: Context Free s Dr Kieran T. Herley Department of Computer Science University College Cork 2017-2018 KH (12/10/17) Lecture 8: Context Free s 2017-2018 1 / 1 Specifying Non-Regular Languages Recall

### CS Lecture 2. The Front End. Lecture 2 Lexical Analysis

CS 1622 Lecture 2 Lexical Analysis CS 1622 Lecture 2 1 Lecture 2 Review of last lecture and finish up overview The first compiler phase: lexical analysis Reading: Chapter 2 in text (by 1/18) CS 1622 Lecture

### programming languages need to be precise a regular expression is one of the following: tokens are the building blocks of programs

Chapter 2 :: Programming Language Syntax Programming Language Pragmatics Michael L. Scott Introduction programming languages need to be precise natural languages less so both form (syntax) and meaning

### Introduction to Parsing. Lecture 8

Introduction to Parsing Lecture 8 Adapted from slides by G. Necula Outline Limitations of regular languages Parser overview Context-free grammars (CFG s) Derivations Languages and Automata Formal languages

### Formal Languages and Grammars. Chapter 2: Sections 2.1 and 2.2

Formal Languages and Grammars Chapter 2: Sections 2.1 and 2.2 Formal Languages Basis for the design and implementation of programming languages Alphabet: finite set Σ of symbols String: finite sequence

### The CKY Parsing Algorithm and PCFGs. COMP-599 Oct 12, 2016

The CKY Parsing Algorithm and PCFGs COMP-599 Oct 12, 2016 Outline CYK parsing PCFGs Probabilistic CYK parsing 2 CFGs and Constituent Trees Rules/productions: S VP this VP V V is rules jumps rocks Trees:

### Skyup's Media. PART-B 2) Construct a Mealy machine which is equivalent to the Moore machine given in table.

Code No: XXXXX JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year I Semester Examinations (Common to CSE and IT) Note: This question paper contains two parts A and B. Part A is compulsory

### CS 315 Programming Languages Syntax. Parser. (Alternatively hand-built) (Alternatively hand-built)

Programming languages must be precise Remember instructions This is unlike natural languages CS 315 Programming Languages Syntax Precision is required for syntax think of this as the format of the language