Chapter 5: Data compression. Chapter 5 outline

Size: px
Start display at page:

Download "Chapter 5: Data compression. Chapter 5 outline"

Transcription

1 Chapter 5: Data compression Chapter 5 outline 2 balls weighing problem Examples of codes Kraft inequality Optimal codes + bounds Kraft inequality for uniquely decodable codes Huffman codes Shannon-Fano-Elias coding

2 You are given 2 balls, all equal in weight except for one that is either heavier or lighter. You are also given a two-pan balance to use. In each use of the balance you may put any number of the 2 balls on the left pan, and the same number on the right pan, and push a button to initiate the weighing; there are three possible outcomes: either the weights are equal, or the balls on the left are heavier, or the balls on the left are lighter. Your task is to design a strategy to determine which is the odd ball and whether it is heavier or lighter than the others in as few uses of the balance as possible. While thinking about this problem, you may find it helpful to consider the following questions: (a) How can one measure information? (b) When you have identified the odd ball and whether it is heavy or light, how much information have you gained? (c) Once you have designed a strategy, draw a tree showing, for each of the possible outcomes of a weighing, what weighing you perform next. At each node in the tree, how much information have the outcomes so far given you, and how much information remains to be gained? (d) How much information is gained when you learn (i) the state of a flipped coin; (ii) the states of two flipped coins; (iii) the outcome when a four-sided die is rolled? (e) How much information is gained on the first step of the weighing problem if 6 balls are weighed against the other 6? How much is gained if 4 are weighed against 4 on the first step, leaving out 4 balls? 2 balls weighing: lighter or heavier Total information contained? Each weighing gives you how much information (ideally)? Number of weighings needed? Strategy?

3 weigh weigh weigh weigh Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left [Mackay textbook pg. 69] Examples of codes What is X? What is D? What is D*? What is H(X)? What is L(C)? Decode

4 Examples of codes Examples of codes Meaning in lay terms? All codes TABLE 5. Classes of Codes Nonsingular, But Not Uniquely Decodable, X Singular Uniquely Decodable But Not Instantaneous Instantaneous 2 4 Nonsingular codes Uniquely decodable codes Instantaneous codes

5 Code trees A C D B Kraft inequality Want short, prefix codes. Kraft inequality quantifies tradeoff.

6 Code tree for Kraft inequality 8 DATA COMPRESSION Root FIGURE 5.2. Code tree for the Kraft inequality. by a leaf on the tree. The path from the root traces out the symbols of the codeword. A binary example of such a tree is shown in Figure 5.2. The prefix condition on the codewords implies that no codeword is an ancestor of any other codeword on the tree. Hence, each codeword eliminates its descendants as possible codewords. University Press longest 2. On-screen viewing permitted. permitted. Let lmax Copyright be thecambridge length of the codeword ofprinting thenotset of codewords. You can buy this book for pounds or $5. See for links. Consider all nodes of the tree at level lmax. Some of them are codewords, 96 some are descendants of codewords, and some are neither. A codeword 5 Symbol Codes at level li has D lmax li descendants at level lmax. Each of these descendant sets must be disjoint. Also, the total number of nodes in these sets must be less than or equal to D lmax. Hence, summing over all the codewords, we have Figure 5.. The symbol coding li budget. The cost 2 of each D lmax D lmax (5.7) codeword (with length l) is or D li, The total symbol code budget Kraft inequality and code budgets l indicated by the size of the box it is written in. The total budget available when making a uniquely decodeable code is. You can think of this diagram as showing a codeword supermarket, with the codewords arranged in aisles by their length, and the cost of each codeword indicated by the size of its box on the shelf. If the cost of the codewords that you take exceeds the budget then your code will not be uniquely decodeable. (5.8) which is the Kraft inequality. Conversely, given any set of codeword lengths l, l2,..., lm that sat isfy the Kraft inequality, we can always construct a tree like the one in

7 i= and = { 2, 4, 8, 8 }, PX The total chieve as much compression as possible = l(ai ). Prefix be represented and consider thecodes code can C. The entropy of X is.75 bits, and the expected + obtained where on,binary trees. Complete prefix L(C, X)I = ofby a Asymbol code C for ensemble X islength L(C }gth X. X) of this code is also.75 bits. The sequence of symbols C : codes correspond to + binary trees x = (acdbac) is encoded as. C is a prefix code ng codewords: c (x) = with no unused branches. C is an L(C, X) P (x) l(x). (5.5) ample 5.. Let= and is therefore uniquely decodeable. Notice that the codeword lengths incomplete code. a c(ai ) pi h(pi ) li x AX AX = { a, satisfy b, c, li = d log }, 2 (/pi ), or equivalently, pi = 2 li i. (5.) (5.7) /2 a and PX = { /2, /4, /8, /8 },. write this quantity as Example 5.. Consider the fixed length code for the same ensemble X, C 4. /4 b 2. 2 I and consider the code X isexpected.75 bits, and L(C the 4expected length, X) is 2 bits. C. The entropy of The /8 c. L(C,X) pi li code is also.75 bits. (5.6) The sequence of symbols length L(C, X)= of this /8. d i= + Example 5.2. Consider C. The expected length L(C, X) is.25 bits, which 5 5 x = (acdbac) is encoded as c (x) =. C is a prefix code is less than H(X). But the code is not uniquely decodeable. The sex. and is therefore uniquely decodeable. Notice that the codeword lengths quence C : as, which can also be decoded li.x = (acdbac) encodes satisfy l(5.2) = 2(cabdca). ai c(ai ) pliias i = log2 (/pi ), or equivalently, C4 C5 ai c(ai ) pi h(pi ) li AX = { a, b, c, d a }, 4 (5.7) ample 5.. Consider the fixed length code for the same ensemble X, C. Example 5.. Consider the code C. The expected length L(C a 6, X) of this 6. 4 /8, /8 }, /2 and PX = { /2, /4,C a : b 4 The sequence of symbols x = (acdbac) is encoded as The expected length L(C 4, X) is 2 bits. code is.75 bits. b / b he code C. The entropy of X is.75 bits, the expected c and 4c+ (x) =. /8 c. c X) of this code is also.75 bits. Thedsequence symbols of 4Is CL(C ample 5.2. Consider C5. The expected length is.25it bits, is/8not,which because both c(b). c(a) = is adprefix d code? 5, X) 6 a prefix of s encoded as c+ (x) =. C is a prefix code. (5.) and c(c). decodeable. The seis less decodeable. than H(X). Butthat thethecode is notlengths uniquely re uniquely Notice codeword li. quence x = (acdbac) encodes as, which can also be decoded 2 (/pi ), or equivalently, pi = 2 C6 : C4 C5 as (cabdca). t, any encoded a codeword 2 indicated. by the of each /4 box on sizebof its the2. shelf.2 If the /8.thatyou costc of the codewords /8. then your the taked exceeds budget code will not be uniquely decodeable. C4 C5 a b c d Kraft inequality and code budgets C6 : ai c(ai ) pi h(pi ) li a b c d / /4 /8 /8 ider the C4. a must befixed easylength to code for the same ensemble CX, C length L(C4, X) is 2 bits. the code C. The expected b 6, ample Consider length L(C X) of this 6 ion as 5.. possible. as is.75 bits.length TheL(C sequence of symbols x = (acdbac) cis encoded ider code C5. The expected, X) is.25 bits, which d + (x) =. 5 c (X). But the code is not uniquely decodeable. The se decoded cdbac) encodes as, which can also be Is C is a prefix ofcboth c(b) 6 a+prefix code? It is not, because c(a)= 6: ed code C, no and c(c). code? It is not, because c(a) = is a prefix of both c(b) fy the end of a can be a prefix if there exists a or example, is ider the code C6. The expected length L(C6, X) of this its. The sequence of symbols x = (acdbac) is encoded as (5.4). eable code. ai c(ai ) pi a b c d /2 /4 /8 /8 h(pi ) li 2 ai c(ai ) a b c d a prefix of any Kraft inequality example ndition codes. What about L = {2;2;;;;}? What about L = {2;2;2;;;}? we constrain our nctuating code, o right without codeword is imeable. pi C4h(pi ) /2. /4 2. /8. /8. li 2 C6 Figure 5.2. Selections of codewords made by codes C, C, C4 and C6 from section 5.. [Mackay textbook, Ch.5]

8 Extended Kraft inequality Kraft inequality for uniquely decodable codes

9 Optimal codes Optimal code = prefix code that minimizes the expected codeword length. Solution to: Bounds on optimal code length

10 Block coding Entropy rate and code length

11 The wrong distribution Design code for source distribution q(x) but true distribution is p(x). Can we quantify the loss in the expected length of the `wrong code? Shannon code

12 Shannon code example Shannon code competitive optimality

13 Shannon-Fano-Elias coding Cumulative distribution function (CDF) of X F(x) F(x) F(x) F(x ) p(x) Performance? 2 x x ( ) Shannon-Fano-Elias for dyadic distribution x p(x) F (x) F (x) F (x) in Binary l(x) = log + Codeword p(x) What is L(C)? What is H(X)?

14 Shannon-Fano-Elias for general distribution x p(x) F (x) F (x) F (x) in Binary l(x) = log + Codeword p(x) What is L(C)? What is H(X)? Huffman codes Huffman discovered a simple algorithm for constructing optimal (shortest expected length) codes for a given any distribution. Example 5.6. X ={, 2,, 4, 5} with probabilities.25,.25,.2,.5,.5, tively. We expect the optimal binary code for to have the Codeword Length Codeword X Probability H(X), L(C)? Example 5.6. X ={, 2,, 4, 5} with probabilities.25,.25,.2,.5,.5, tively. We expect the optimal binary code for to have the Codeword X Probability

15 Huffman codes Purpose of dummy symbols? Number of dummy symbols? Huffman code of English language a i p i log 2 pi l i c(a i) a b c d e f g h i j.6.7 k l m n o p q.8. 9 r s t u v w x y z a n c s i o e d h y u w v q m r l t b g f p k x j z [Mackay textbook, Ch.5]

16 Huffman codes C is a Huffman code Constructing Huffman codes Huffman code obtained by repeatedly ``merging" the last two symbols, assigning to them the ``last codeword minus the last bit", and reordering the symbols in order to have non-increasing probabilities or weights.

17 Comments on Huffman codes Equivalence of Huffman coding and 2 questions? Huffman coding versus Shannon coding? Strengths? Weaknesses? Rigorous proof of Huffman optimality

Information Theory and Communication

Information Theory and Communication Information Theory and Communication Shannon-Fano-Elias Code and Arithmetic Codes Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/12 Roadmap Examples

More information

COMPSCI 650 Applied Information Theory Feb 2, Lecture 5. Recall the example of Huffman Coding on a binary string from last class:

COMPSCI 650 Applied Information Theory Feb 2, Lecture 5. Recall the example of Huffman Coding on a binary string from last class: COMPSCI 650 Applied Information Theory Feb, 016 Lecture 5 Instructor: Arya Mazumdar Scribe: Larkin Flodin, John Lalor 1 Huffman Coding 1.1 Last Class s Example Recall the example of Huffman Coding on a

More information

ENSC Multimedia Communications Engineering Huffman Coding (1)

ENSC Multimedia Communications Engineering Huffman Coding (1) ENSC 424 - Multimedia Communications Engineering Huffman Coding () Jie Liang Engineering Science Simon Fraser University JieL@sfu.ca J. Liang: SFU ENSC 424 Outline Entropy Coding Prefix code Kraft-McMillan

More information

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 29 Source Coding (Part-4) We have already had 3 classes on source coding

More information

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 26 Source Coding (Part 1) Hello everyone, we will start a new module today

More information

Lecture 15. Error-free variable length schemes: Shannon-Fano code

Lecture 15. Error-free variable length schemes: Shannon-Fano code Lecture 15 Agenda for the lecture Bounds for L(X) Error-free variable length schemes: Shannon-Fano code 15.1 Optimal length nonsingular code While we do not know L(X), it is easy to specify a nonsingular

More information

OUTLINE. Paper Review First Paper The Zero-Error Side Information Problem and Chromatic Numbers, H. S. Witsenhausen Definitions:

OUTLINE. Paper Review First Paper The Zero-Error Side Information Problem and Chromatic Numbers, H. S. Witsenhausen Definitions: OUTLINE Definitions: - Source Code - Expected Length of a source code - Length of a codeword - Variable/fixed length coding - Example: Huffman coding - Lossless coding - Distortion - Worst case length

More information

14 Data Compression by Huffman Encoding

14 Data Compression by Huffman Encoding 4 Data Compression by Huffman Encoding 4. Introduction In order to save on disk storage space, it is useful to be able to compress files (or memory blocks) of data so that they take up less room. However,

More information

Data Compression - Seminar 4

Data Compression - Seminar 4 Data Compression - Seminar 4 October 29, 2013 Problem 1 (Uniquely decodable and instantaneous codes) Let L = p i l 100 i be the expected value of the 100th power of the word lengths associated with an

More information

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding Fundamentals of Multimedia Lecture 5 Lossless Data Compression Variable Length Coding Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Fundamentals of Multimedia 1 Data Compression Compression

More information

Uniquely Decodable. Code 1 Code 2 A 00 0 B 1 1 C D 11 11

Uniquely Decodable. Code 1 Code 2 A 00 0 B 1 1 C D 11 11 Uniquely Detectable Code Uniquely Decodable A code is not uniquely decodable if two symbols have the same codeword, i.e., if C(S i ) = C(S j ) for any i j or the combination of two codewords gives a third

More information

IMAGE COMPRESSION- I. Week VIII Feb /25/2003 Image Compression-I 1

IMAGE COMPRESSION- I. Week VIII Feb /25/2003 Image Compression-I 1 IMAGE COMPRESSION- I Week VIII Feb 25 02/25/2003 Image Compression-I 1 Reading.. Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive,

More information

Chapter 5 VARIABLE-LENGTH CODING Information Theory Results (II)

Chapter 5 VARIABLE-LENGTH CODING Information Theory Results (II) Chapter 5 VARIABLE-LENGTH CODING ---- Information Theory Results (II) 1 Some Fundamental Results Coding an Information Source Consider an information source, represented by a source alphabet S. S = { s,

More information

Lecture 17. Lower bound for variable-length source codes with error. Coding a sequence of symbols: Rates and scheme (Arithmetic code)

Lecture 17. Lower bound for variable-length source codes with error. Coding a sequence of symbols: Rates and scheme (Arithmetic code) Lecture 17 Agenda for the lecture Lower bound for variable-length source codes with error Coding a sequence of symbols: Rates and scheme (Arithmetic code) Introduction to universal codes 17.1 variable-length

More information

Greedy Algorithms. Alexandra Stefan

Greedy Algorithms. Alexandra Stefan Greedy Algorithms Alexandra Stefan 1 Greedy Method for Optimization Problems Greedy: take the action that is best now (out of the current options) it may cause you to miss the optimal solution You build

More information

Move-to-front algorithm

Move-to-front algorithm Up to now, we have looked at codes for a set of symbols in an alphabet. We have also looked at the specific case that the alphabet is a set of integers. We will now study a few compression techniques in

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 11 Coding Strategies and Introduction to Huffman Coding The Fundamental

More information

CMPSCI 240 Reasoning Under Uncertainty Homework 4

CMPSCI 240 Reasoning Under Uncertainty Homework 4 CMPSCI 240 Reasoning Under Uncertainty Homework 4 Prof. Hanna Wallach Assigned: February 24, 2012 Due: March 2, 2012 For this homework, you will be writing a program to construct a Huffman coding scheme.

More information

6. Finding Efficient Compressions; Huffman and Hu-Tucker

6. Finding Efficient Compressions; Huffman and Hu-Tucker 6. Finding Efficient Compressions; Huffman and Hu-Tucker We now address the question: how do we find a code that uses the frequency information about k length patterns efficiently to shorten our message?

More information

Huffman Coding. Version of October 13, Version of October 13, 2014 Huffman Coding 1 / 27

Huffman Coding. Version of October 13, Version of October 13, 2014 Huffman Coding 1 / 27 Huffman Coding Version of October 13, 2014 Version of October 13, 2014 Huffman Coding 1 / 27 Outline Outline Coding and Decoding The optimal source coding problem Huffman coding: A greedy algorithm Correctness

More information

ENSC Multimedia Communications Engineering Topic 4: Huffman Coding 2

ENSC Multimedia Communications Engineering Topic 4: Huffman Coding 2 ENSC 424 - Multimedia Communications Engineering Topic 4: Huffman Coding 2 Jie Liang Engineering Science Simon Fraser University JieL@sfu.ca J. Liang: SFU ENSC 424 1 Outline Canonical Huffman code Huffman

More information

Compressing Data. Konstantin Tretyakov

Compressing Data. Konstantin Tretyakov Compressing Data Konstantin Tretyakov (kt@ut.ee) MTAT.03.238 Advanced April 26, 2012 Claude Elwood Shannon (1916-2001) C. E. Shannon. A mathematical theory of communication. 1948 C. E. Shannon. The mathematical

More information

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017 CS6 Lecture 4 Greedy Algorithms Scribe: Virginia Williams, Sam Kim (26), Mary Wootters (27) Date: May 22, 27 Greedy Algorithms Suppose we want to solve a problem, and we re able to come up with some recursive

More information

Lossless Compression Algorithms

Lossless Compression Algorithms Multimedia Data Compression Part I Chapter 7 Lossless Compression Algorithms 1 Chapter 7 Lossless Compression Algorithms 1. Introduction 2. Basics of Information Theory 3. Lossless Compression Algorithms

More information

Data Compression Techniques

Data Compression Techniques Data Compression Techniques Part 1: Entropy Coding Lecture 1: Introduction and Huffman Coding Juha Kärkkäinen 31.10.2017 1 / 21 Introduction Data compression deals with encoding information in as few bits

More information

16.Greedy algorithms

16.Greedy algorithms 16.Greedy algorithms 16.1 An activity-selection problem Suppose we have a set S = {a 1, a 2,..., a n } of n proposed activities that with to use a resource. Each activity a i has a start time s i and a

More information

6. Finding Efficient Compressions; Huffman and Hu-Tucker Algorithms

6. Finding Efficient Compressions; Huffman and Hu-Tucker Algorithms 6. Finding Efficient Compressions; Huffman and Hu-Tucker Algorithms We now address the question: How do we find a code that uses the frequency information about k length patterns efficiently, to shorten

More information

Chapter 16: Greedy Algorithm

Chapter 16: Greedy Algorithm Chapter 16: Greedy Algorithm 1 About this lecture Introduce Greedy Algorithm Look at some problems solvable by Greedy Algorithm 2 Coin Changing Suppose that in a certain country, the coin dominations consist

More information

David Rappaport School of Computing Queen s University CANADA. Copyright, 1996 Dale Carnegie & Associates, Inc.

David Rappaport School of Computing Queen s University CANADA. Copyright, 1996 Dale Carnegie & Associates, Inc. David Rappaport School of Computing Queen s University CANADA Copyright, 1996 Dale Carnegie & Associates, Inc. Data Compression There are two broad categories of data compression: Lossless Compression

More information

Basics of Information Worksheet

Basics of Information Worksheet Basics of Information Worksheet Concept Inventory: Notes: Measuring information content; entropy Two s complement; modular arithmetic Variable-length encodings; Huffman s algorithm Hamming distance, error

More information

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson zhuyongxin@sjtu.edu.cn 2 Lossless Compression Algorithms 7.1 Introduction 7.2 Basics of Information

More information

Huffman Codes (data compression)

Huffman Codes (data compression) Huffman Codes (data compression) Data compression is an important technique for saving storage Given a file, We can consider it as a string of characters We want to find a compressed file The compressed

More information

Greedy Algorithms and Huffman Coding

Greedy Algorithms and Huffman Coding Greedy Algorithms and Huffman Coding Henry Z. Lo June 10, 2014 1 Greedy Algorithms 1.1 Change making problem Problem 1. You have quarters, dimes, nickels, and pennies. amount, n, provide the least number

More information

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes Greedy Algorithms CLRS Chapters 16.1 16.3 Introduction to greedy algorithms Activity-selection problem Design of data-compression (Huffman) codes (Minimum spanning tree problem) (Shortest-path problem)

More information

Horn Formulae. CS124 Course Notes 8 Spring 2018

Horn Formulae. CS124 Course Notes 8 Spring 2018 CS124 Course Notes 8 Spring 2018 In today s lecture we will be looking a bit more closely at the Greedy approach to designing algorithms. As we will see, sometimes it works, and sometimes even when it

More information

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd 4.8 Huffman Codes These lecture slides are supplied by Mathijs de Weerd Data Compression Q. Given a text that uses 32 symbols (26 different letters, space, and some punctuation characters), how can we

More information

Analysis of Algorithms - Greedy algorithms -

Analysis of Algorithms - Greedy algorithms - Analysis of Algorithms - Greedy algorithms - Andreas Ermedahl MRTC (Mälardalens Real-Time Reseach Center) andreas.ermedahl@mdh.se Autumn 2003 Greedy Algorithms Another paradigm for designing algorithms

More information

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits.

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits. Chapter 10: Trees A tree is a connected simple undirected graph with no simple circuits. Properties: o There is a unique simple path between any 2 of its vertices. o No loops. o No multiple edges. Example

More information

CHAPTER 11 Trees. 294 Chapter 11 Trees. f) This is a tree since it is connected and has no simple circuits.

CHAPTER 11 Trees. 294 Chapter 11 Trees. f) This is a tree since it is connected and has no simple circuits. 294 Chapter 11 Trees SECTION 11.1 Introduction to Trees CHAPTER 11 Trees 2. a) This is a tree since it is connected and has no simple circuits. b) This is a tree since it is connected and has no simple

More information

Algorithms Dr. Haim Levkowitz

Algorithms Dr. Haim Levkowitz 91.503 Algorithms Dr. Haim Levkowitz Fall 2007 Lecture 4 Tuesday, 25 Sep 2007 Design Patterns for Optimization Problems Greedy Algorithms 1 Greedy Algorithms 2 What is Greedy Algorithm? Similar to dynamic

More information

Greedy algorithms part 2, and Huffman code

Greedy algorithms part 2, and Huffman code Greedy algorithms part 2, and Huffman code Two main properties: 1. Greedy choice property: At each decision point, make the choice that is best at the moment. We typically show that if we make a greedy

More information

CSE 421 Greedy: Huffman Codes

CSE 421 Greedy: Huffman Codes CSE 421 Greedy: Huffman Codes Yin Tat Lee 1 Compression Example 100k file, 6 letter alphabet: File Size: ASCII, 8 bits/char: 800kbits 2 3 > 6; 3 bits/char: 300kbits a 45% b 13% c 12% d 16% e 9% f 5% Why?

More information

Comparison Based Sorting Algorithms. Algorithms and Data Structures: Lower Bounds for Sorting. Comparison Based Sorting Algorithms

Comparison Based Sorting Algorithms. Algorithms and Data Structures: Lower Bounds for Sorting. Comparison Based Sorting Algorithms Comparison Based Sorting Algorithms Algorithms and Data Structures: Lower Bounds for Sorting Definition 1 A sorting algorithm is comparison based if comparisons A[i] < A[j], A[i] A[j], A[i] = A[j], A[i]

More information

We ve done. Now. Next

We ve done. Now. Next We ve done Fast Fourier Transform Polynomial Multiplication Now Introduction to the greedy method Activity selection problem How to prove that a greedy algorithm works Huffman coding Matroid theory Next

More information

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression An overview of Compression Multimedia Systems and Applications Data Compression Compression becomes necessary in multimedia because it requires large amounts of storage space and bandwidth Types of Compression

More information

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices.

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices. Trees Trees form the most widely used subclasses of graphs. In CS, we make extensive use of trees. Trees are useful in organizing and relating data in databases, file systems and other applications. Formal

More information

Greedy Algorithms CHAPTER 16

Greedy Algorithms CHAPTER 16 CHAPTER 16 Greedy Algorithms In dynamic programming, the optimal solution is described in a recursive manner, and then is computed ``bottom up''. Dynamic programming is a powerful technique, but it often

More information

Algorithms and Data Structures: Lower Bounds for Sorting. ADS: lect 7 slide 1

Algorithms and Data Structures: Lower Bounds for Sorting. ADS: lect 7 slide 1 Algorithms and Data Structures: Lower Bounds for Sorting ADS: lect 7 slide 1 ADS: lect 7 slide 2 Comparison Based Sorting Algorithms Definition 1 A sorting algorithm is comparison based if comparisons

More information

CHAPTER 1 Encoding Information

CHAPTER 1 Encoding Information MIT 6.02 DRAFT Lecture Notes Spring 2011 Comments, questions or bug reports? Please contact 6.02-staff@mit.edu CHAPTER 1 Encoding Information In this lecture and the next, we ll be looking into compression

More information

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302 Topics VCU, Department of Computer Science CMSC 302 Trees Vojislav Kecman Terminology Trees as Models Some Tree Theorems Applications of Trees Binary Search Tree Decision Tree Tree Traversal Spanning Trees

More information

MCS-375: Algorithms: Analysis and Design Handout #G2 San Skulrattanakulchai Gustavus Adolphus College Oct 21, Huffman Codes

MCS-375: Algorithms: Analysis and Design Handout #G2 San Skulrattanakulchai Gustavus Adolphus College Oct 21, Huffman Codes MCS-375: Algorithms: Analysis and Design Handout #G2 San Skulrattanakulchai Gustavus Adolphus College Oct 21, 2016 Huffman Codes CLRS: Ch 16.3 Ziv-Lempel is the most popular compression algorithm today.

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms Instructor: SharmaThankachan Lecture 10: Greedy Algorithm Slides modified from Dr. Hon, with permission 1 About this lecture Introduce Greedy Algorithm Look at some problems

More information

February 24, :52 World Scientific Book - 9in x 6in soltys alg. Chapter 3. Greedy Algorithms

February 24, :52 World Scientific Book - 9in x 6in soltys alg. Chapter 3. Greedy Algorithms Chapter 3 Greedy Algorithms Greedy algorithms are algorithms prone to instant gratification. Without looking too far ahead, at each step they make a locally optimum choice, with the hope that it will lead

More information

looking ahead to see the optimum

looking ahead to see the optimum ! Make choice based on immediate rewards rather than looking ahead to see the optimum! In many cases this is effective as the look ahead variation can require exponential time as the number of possible

More information

Figure-2.1. Information system with encoder/decoders.

Figure-2.1. Information system with encoder/decoders. 2. Entropy Coding In the section on Information Theory, information system is modeled as the generationtransmission-user triplet, as depicted in fig-1.1, to emphasize the information aspect of the system.

More information

CS473-Algorithms I. Lecture 11. Greedy Algorithms. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 11. Greedy Algorithms. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 11 Greedy Algorithms 1 Activity Selection Problem Input: a set S {1, 2,, n} of n activities s i =Start time of activity i, f i = Finish time of activity i Activity i takes place

More information

Lecture: Analysis of Algorithms (CS )

Lecture: Analysis of Algorithms (CS ) Lecture: Analysis of Algorithms (CS483-001) Amarda Shehu Spring 2017 1 The Fractional Knapsack Problem Huffman Coding 2 Sample Problems to Illustrate The Fractional Knapsack Problem Variable-length (Huffman)

More information

COMP3121/3821/9101/ s1 Assignment 1

COMP3121/3821/9101/ s1 Assignment 1 Sample solutions to assignment 1 1. (a) Describe an O(n log n) algorithm (in the sense of the worst case performance) that, given an array S of n integers and another integer x, determines whether or not

More information

Complete Variable-Length "Fix-Free" Codes

Complete Variable-Length Fix-Free Codes Designs, Codes and Cryptography, 5, 109-114 (1995) 9 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Complete Variable-Length "Fix-Free" Codes DAVID GILLMAN* gillman @ es.toronto.edu

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 04 / 25 / 2018 Instructor: Michael Eckmann Today s Topics Questions? Comments? Balanced Binary Search trees AVL trees / Compression Uses binary trees Balanced

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

PART IV. Given 2 sorted arrays, What is the time complexity of merging them together?

PART IV. Given 2 sorted arrays, What is the time complexity of merging them together? General Questions: PART IV Given 2 sorted arrays, What is the time complexity of merging them together? Array 1: Array 2: Sorted Array: Pointer to 1 st element of the 2 sorted arrays Pointer to the 1 st

More information

ITCT Lecture 6.1: Huffman Codes

ITCT Lecture 6.1: Huffman Codes ITCT Lecture 6.1: Huffman Codes Prof. Ja-Ling Wu Department of Computer Science and Information Engineering National Taiwan University Huffman Encoding 1. Order the symbols according to their probabilities

More information

Multimedia Systems. Part 20. Mahdi Vasighi

Multimedia Systems. Part 20. Mahdi Vasighi Multimedia Systems Part 2 Mahdi Vasighi www.iasbs.ac.ir/~vasighi Department of Computer Science and Information Technology, Institute for dvanced Studies in asic Sciences, Zanjan, Iran rithmetic Coding

More information

3.1 Generating Inverses of Functions 263

3.1 Generating Inverses of Functions 263 3.1 Generating Inverses of Functions FOCUSING QUESTION What is the inverse of a function? LEARNING OUTCOMES I can compare and contrast the key attributes of a function and its inverse when I have the function

More information

Ch. 2: Compression Basics Multimedia Systems

Ch. 2: Compression Basics Multimedia Systems Ch. 2: Compression Basics Multimedia Systems Prof. Thinh Nguyen (Based on Prof. Ben Lee s Slides) Oregon State University School of Electrical Engineering and Computer Science Outline Why compression?

More information

Distributed source coding

Distributed source coding Distributed source coding Suppose that we want to encode two sources (X, Y ) with joint probability mass function p(x, y). If the encoder has access to both X and Y, it is sufficient to use a rate R >

More information

Data Compression. Guest lecture, SGDS Fall 2011

Data Compression. Guest lecture, SGDS Fall 2011 Data Compression Guest lecture, SGDS Fall 2011 1 Basics Lossy/lossless Alphabet compaction Compression is impossible Compression is possible RLE Variable-length codes Undecidable Pigeon-holes Patterns

More information

Text Compression through Huffman Coding. Terminology

Text Compression through Huffman Coding. Terminology Text Compression through Huffman Coding Huffman codes represent a very effective technique for compressing data; they usually produce savings between 20% 90% Preliminary example We are given a 100,000-character

More information

EECS 122: Introduction to Communication Networks Final Exam Solutions

EECS 122: Introduction to Communication Networks Final Exam Solutions EECS 22: Introduction to Communication Networks Final Exam Solutions Problem. (6 points) How long does it take for a 3000-byte IP packet to go from host A to host B in the figure below. Assume the overhead

More information

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms...

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms... Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms.... Q1) Let the keys are 28, 47, 20, 36, 43, 23, 25, 54 and table size is 11 then H(28)=28%11=6; H(47)=47%11=3;

More information

GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS

GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS LEARNING OBJECTIVES In this section, you will: Graph functions using vertical and horizontal shifts. Graph functions using reflections about the x-axis and

More information

Data compression.

Data compression. Data compression anhtt-fit@mail.hut.edu.vn dungct@it-hut.edu.vn Data Compression Data in memory have used fixed length for representation For data transfer (in particular), this method is inefficient.

More information

We will show that the height of a RB tree on n vertices is approximately 2*log n. In class I presented a simple structural proof of this claim:

We will show that the height of a RB tree on n vertices is approximately 2*log n. In class I presented a simple structural proof of this claim: We have seen that the insert operation on a RB takes an amount of time proportional to the number of the levels of the tree (since the additional operations required to do any rebalancing require constant

More information

1 Leaffix Scan, Rootfix Scan, Tree Size, and Depth

1 Leaffix Scan, Rootfix Scan, Tree Size, and Depth Lecture 17 Graph Contraction I: Tree Contraction Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012) Lectured by Kanat Tangwongsan March 20, 2012 In this lecture, we will explore

More information

CAP 5993/CAP 4993 Game Theory. Instructor: Sam Ganzfried

CAP 5993/CAP 4993 Game Theory. Instructor: Sam Ganzfried CAP 5993/CAP 4993 Game Theory Instructor: Sam Ganzfried sganzfri@cis.fiu.edu 1 Announcements HW 1 due today HW 2 out this week (2/2), due 2/14 2 Definition: A two-player game is a zero-sum game if for

More information

Error-Correcting Codes

Error-Correcting Codes Error-Correcting Codes Michael Mo 10770518 6 February 2016 Abstract An introduction to error-correcting codes will be given by discussing a class of error-correcting codes, called linear block codes. The

More information

Binary Trees Case-studies

Binary Trees Case-studies Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Standard reminder to set phones to silent/vibrate mode, please! Today's class: Binary Trees Case-studies We'll look

More information

ECE608 - Chapter 16 answers

ECE608 - Chapter 16 answers ¼ À ÈÌ Ê ½ ÈÊÇ Ä ÅË ½µ ½ º½¹ ¾µ ½ º½¹ µ ½ º¾¹½ µ ½ º¾¹¾ µ ½ º¾¹ µ ½ º ¹ µ ½ º ¹ µ ½ ¹½ ½ ECE68 - Chapter 6 answers () CLR 6.-4 Let S be the set of n activities. The obvious solution of using Greedy-Activity-

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 9 Greedy Technique Copyright 2007 Pearson Addison-Wesley. All rights reserved. Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that

More information

Engineering Mathematics II Lecture 16 Compression

Engineering Mathematics II Lecture 16 Compression 010.141 Engineering Mathematics II Lecture 16 Compression Bob McKay School of Computer Science and Engineering College of Engineering Seoul National University 1 Lossless Compression Outline Huffman &

More information

ALGORITHMS OF INFORMATICS. Volume 3. APPLICATIONS AND DATA MANAGEMENT

ALGORITHMS OF INFORMATICS. Volume 3. APPLICATIONS AND DATA MANAGEMENT ALGORITHMS OF INFORMATICS Volume 3. APPLICATIONS AND DATA MANAGEMENT ELTE EÖTVÖS KIADÓ Budapest, 2006 Editor: Antal Iványi Authors: Ulrich Tamm (Chapter 13), László Szirmay-Kalos (14), János Demetrovics

More information

Source Encoding and Compression

Source Encoding and Compression Source Encoding and Compression Jukka Teuhola Computer Science Department of Information Technology University of Turku Spring 2014 Lecture notes 2 Table of Contents 1. Introduction...3 2. Coding-theoretic

More information

Pierre A. Humblet* Abstract

Pierre A. Humblet* Abstract Revised March 1980 ESL-P-8 0 0 GENERALIZATION OF HUFFMAN CODING TO MINIMIZE THE PROBABILITY OF BUFFER OVERFLOW BY Pierre A. Humblet* Abstract An algorithm is given to find a prefix condition code that

More information

Chapter 7 Lossless Compression Algorithms

Chapter 7 Lossless Compression Algorithms Chapter 7 Lossless Compression Algorithms 7.1 Introduction 7.2 Basics of Information Theory 7.3 Run-Length Coding 7.4 Variable-Length Coding (VLC) 7.5 Dictionary-based Coding 7.6 Arithmetic Coding 7.7

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 018 D/Q Greed SP s DP LP, Flow B&B, Backtrack Metaheuristics P, NP Design and Analysis of Algorithms Lecture 8: Greed Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Optimization

More information

EE 368. Weeks 5 (Notes)

EE 368. Weeks 5 (Notes) EE 368 Weeks 5 (Notes) 1 Chapter 5: Trees Skip pages 273-281, Section 5.6 - If A is the root of a tree and B is the root of a subtree of that tree, then A is B s parent (or father or mother) and B is A

More information

Contents. 3 Vector Quantization The VQ Advantage Formulation Optimality Conditions... 48

Contents. 3 Vector Quantization The VQ Advantage Formulation Optimality Conditions... 48 Contents Part I Prelude 1 Introduction... 3 1.1 Audio Coding... 4 1.2 Basic Idea... 6 1.3 Perceptual Irrelevance... 8 1.4 Statistical Redundancy... 9 1.5 Data Modeling... 9 1.6 Resolution Challenge...

More information

AtCoder World Tour Finals 2019

AtCoder World Tour Finals 2019 AtCoder World Tour Finals 201 writer: rng 58 February 21st, 2018 A: Magic Suppose that the magician moved the treasure in the order y 1 y 2 y K+1. Here y i y i+1 for each i because it doesn t make sense

More information

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 165

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 165 S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 165 5.22. You are given a graph G = (V, E) with positive edge weights, and a minimum spanning tree T = (V, E ) with respect to these weights; you may

More information

Priority Queues. Chapter 9

Priority Queues. Chapter 9 Chapter 9 Priority Queues Sometimes, we need to line up things according to their priorities. Order of deletion from such a structure is determined by the priority of the elements. For example, when assigning

More information

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors 1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors on an EREW PRAM: See solution for the next problem. Omit the step where each processor sequentially computes the AND of

More information

15 July, Huffman Trees. Heaps

15 July, Huffman Trees. Heaps 1 Huffman Trees The Huffman Code: Huffman algorithm uses a binary tree to compress data. It is called the Huffman code, after David Huffman who discovered d it in 1952. Data compression is important in

More information

Optimal Variable Length Codes (Arbitrary Symbol Cost and Equal Code Word Probability)* BEN VARN

Optimal Variable Length Codes (Arbitrary Symbol Cost and Equal Code Word Probability)* BEN VARN INFORMATION AND CONTROL 19, 289-301 (1971) Optimal Variable Length Codes (Arbitrary Symbol Cost and Equal Code Word Probability)* BEN VARN School of Systems and Logistics, Air Force Institute of Technology,

More information

Introduction Slide 1/20. Introduction. Fall Semester. Parallel Computing

Introduction Slide 1/20. Introduction. Fall Semester. Parallel Computing Introduction Slide 1/20 Introduction Fall Semester Introduction Slide 2/20 Topic Outline Programming in C Pointers Input-Output Embarrassingly Parallel Message Passing Interface Projectile motion Fractal

More information

Lecture 13. Types of error-free codes: Nonsingular, Uniquely-decodable and Prefix-free

Lecture 13. Types of error-free codes: Nonsingular, Uniquely-decodable and Prefix-free Lecture 13 Agenda for the lecture Introduction to data compression Fixed- and variable-length codes Types of error-free codes: Nonsingular, Uniquely-decodable and Prefix-free 13.1 The data compression

More information

14.4 Description of Huffman Coding

14.4 Description of Huffman Coding Mastering Algorithms with C By Kyle Loudon Slots : 1 Table of Contents Chapter 14. Data Compression Content 14.4 Description of Huffman Coding One of the oldest and most elegant forms of data compression

More information

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I MCA 312: Design and Analysis of Algorithms [Part I : Medium Answer Type Questions] UNIT I 1) What is an Algorithm? What is the need to study Algorithms? 2) Define: a) Time Efficiency b) Space Efficiency

More information

Ch. 2: Compression Basics Multimedia Systems

Ch. 2: Compression Basics Multimedia Systems Ch. 2: Compression Basics Multimedia Systems Prof. Ben Lee School of Electrical Engineering and Computer Science Oregon State University Outline Why compression? Classification Entropy and Information

More information

Intro. To Multimedia Engineering Lossless Compression

Intro. To Multimedia Engineering Lossless Compression Intro. To Multimedia Engineering Lossless Compression Kyoungro Yoon yoonk@konkuk.ac.kr 1/43 Contents Introduction Basics of Information Theory Run-Length Coding Variable-Length Coding (VLC) Dictionary-based

More information