Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls

Size: px
Start display at page:

Download "Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls"

Transcription

1 Announcements HW1 is due on this Friday (Sept 12 th ) Appendix A is very helpful to HW1. Check out system calls on Page A-48. Ask TA (Liquan chen: liquan@ece.rutgers.edu) about homework related questions. 331 W02.1 Fall 2003

2 Review I: Execute Cycle Q1: How does control know which instruction to fetch? Fetch Q2: who does decode? What happens in decode phase? Exec Decode Q3: How do control and datapath interact to finish exec phase? Q4: What does datapath have? 331 W02.2 Fall 2003

3 Review II: word length What does 32-bit architecture mean? 331 W02.3 Fall 2003

4 Hardware/Software Interface Application software System software Instruction set architecture includes everything programmers need to know to make a binary program to work Instruction Arithmetic and Logic Unit (ALU), registers, etc hardware Instruction set architecture (architecture) 331 W02.4 Fall 2003

5 The Instruction Set Architecture software instruction set architecture hardware The interface description separating the software and hardware. 331 W02.5 Fall 2003

6 How Do the Pieces Fit Together? Application Operating System Memory system Compiler Firmware Instr. Set Proc. Datapath & Control Digital Design Circuit Design I/O system Instruction Set Architecture Coordination of many levels of abstraction Under a rapidly changing set of forces Design, measurement, and evaluation 331 W02.6 Fall 2003

7 Assembly Language Language of the machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS arithmetic instructions We ll be working with the MIPS instruction set architecture similar to other architectures developed since the 1980's used by NEC, Nintendo, Silicon Graphics, Sony, 32-bit architecture - 32 bit data line and address line - data and addresses are 32-bit 331 W02.7 Fall 2003

8 MIPS R3000 Instruction Set Architecture Instruction Categories Load/Store Computational Jump and Branch Floating Point - coprocessor Memory Management Special Registers R0 - R31 PC HI LO 3 Instruction Formats: all 32 bits wide OP rs rt rd sa funct OP rs rt immediate OP jump target Q: How many already familiar with MIPS ISA? 331 W02.8 Fall 2003

9 MIPS Arithmetic Instruction MIPS assembly language arithmetic statement add $t0, $s1, $s2 sub $t0, $s1, $s2 Each arithmetic instruction performs only one operation Each arithmetic instruction specifies exactly three operands destination source1 op source2 Those operands are contained in the datapath s register file ($t0, $s1,$s2) Operand order is fixed (destination first) 331 W02.9 Fall 2003

10 Compiling More Complex Statements Assuming variable b is stored in register $s1, c is stored in $s2, d is stored in $s3 and the result is to be left in $s0, and $t0 is a temporary register, what is the assembler equivalent to the C statement h = (b - c) + d 331 W02.10 Fall 2003

11 Registers Registers are Faster than main memory Can hold variables so that - code density improves (since registers are named with fewer bits than a memory location) why is that? Register addresses are indicated by using $ 331 W02.11 Fall 2003

12 MIPS Register File Operands of arithmetic instructions must be from a limited number of special locations contained in the datapath s register file Holds thirty-two 32-bit registers - With two read ports and - One write port src1 addr src2 addr dst addr write data Register File 32 locations 32 bits src1 data src2 data 331 W02.12 Fall 2003

13 Naming Conventions for Registers 0 $zero constant 0 1 $at reserved for assembler 2 $v0 expression evaluation & 3 $v1 function results 4 $a0 arguments 5 $a1 6 $a2 7 $a3 8 $t0 temporary: caller saves... (callee can clobber) 15 $t7 16 $s0 callee saves... (caller can clobber) 23 $s7 24 $t8 temporary (cont d) 25 $t9 26 $k0 reserved for OS kernel 27 $k1 28 $gp pointer to global area 29 $sp stack pointer 30 $fp frame pointer 31 $ra return address 331 W02.13 Fall 2003

14 Registers vs. Memory Arithmetic instructions operands must be registers, only thirty-two registers provided Processor Devices Control Memory Input Datapath Output What about programs with lots of variables? Store variables in the memory Load variables from memory to registers before use; store them back to memory after use. 331 W02.14 Fall 2003

15 Accessing Memory MIPS has two basic data transfer instructions for accessing memory lw $t0, 4($s3) #load word from memory sw $t0, 8($s3) #store word to memory The data transfer instruction must specify where in memory to read from (load) or write to (store) memory address where in the register file to write to (load) or read from (store) register destination (source) The memory address is formed by summing the constant portion of the instruction and the contents of the second register 331 W02.15 Fall 2003

16 Processor Memory Interconnections Memory is viewed as a large, single-dimension array, with an address A memory address is an index into the array read addr/ write addr 32 Processor read data 32write data 32 Memory 2 32 Addressable locations Q: what should be the smallest addressable unit? 331 W02.16 Fall 2003

17 MIPS Data Types Integer: (signed or unsigned) 32 bits Character: 8 bits Floating point numbers: 32 bits Memory addresses (pointers): 32 bits Instructions: 32 bits Bit String: sequence of bits of a particular length 8 bits is a byte 16 bits is a half-word 32 bits (4 bytes) is a word 64 bits is a double-word 331 W02.17 Fall 2003

18 Byte Addresses Since 8-bit bytes are so useful, most architectures address individual bytes in memory memory: 2 32 bytes = 2 30 words Therefore, the memory address of a word must be a multiple of 4 (alignment restriction) Aligned Alignment restriction: requires that objects fall on address that is multiple of their size. Not Aligned 331 W02.18 Fall 2003

19 Addressing Objects: Endianess and Alignment Big Endian: leftmost byte is word address IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA Little Endian: rightmost byte is word address Intel 80x86, DEC Vax, DEC Alpha (Windows NT) msb little endian byte 0 lsb bigendianbyte W02.19 Fall 2003

20 MIPS Memory Addressing The memory address is formed by summing the constant portion of the instruction and the contents of the second (base) register $s3 holds 8 Memory Data Word Address lw $t0, 4($s3) #what? is loaded into $t0 sw $t0, 8($s3) #$t0 is stored where? 331 W02.20 Fall 2003

21 Compiling with Loads and Stores Assuming variable b is stored in $s2 and that the base address of integer array A is in $s3, what is the MIPS assembly code for the C statement A[8] = A[2] - b... A[3] A[2] A[1] A[0]... $s3+12 $s3+8 $s3+4 $s3 331 W02.21 Fall 2003

22 Compiling with a Variable Array Index Assuming A is an integer array whose base is in register $s4, and variables b, c, and i are in $s1, $s2, and $s3, respectively, what is the MIPS assembly code for the C statement c = A[i] - b 331 W02.22 Fall 2003

23 MIPS Instructions, so far Category Instr Op Code Example Meaning Arithmetic add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3 (R format) subtract 0 and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3 Data transfer load word 35 lw $s1, 100($s2) $s1 = Memory($s2+10 0) (I format) store word 43 sw $s1, 100($s2) Memory($s2+10 0) = $s1 331 W02.23 Fall 2003

24 Machine Language - Arithmetic Instruction Instructions, like registers and words of data, are also 32 bits long Example: add $t0, $s1, $s2 registers have numbers $t0=$8, $s1=$17, $s2=$18 Instruction Format: op rs rt rd shamt funct Can you guess what the field names stand for? 331 W02.24 Fall 2003

25 MIPS Instruction Fields op rs rt rd shamt funct 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits op rs rt rd shamt funct 331 W02.25 Fall 2003

26 Machine Language - Load Instruction Consider the load-word and store-word instructions, What would the regularity principle have us do? New principle: Good design demands a compromise Introduce a new type of instruction format I-type for data transfer instructions previous format was R-type for register Example: lw $t0, 24($s2) op rs rt 16 bit number Where's the compromise? 331 W02.26 Fall 2003

27 Memory Address Location Example: lw $t0, 24($s2) Memory 0xf f f f f f f f $s2 = 0x $s2 0x Note that the offset can be positive or negative data 0x c 0x x x word address (hex) 331 W02.27 Fall 2003

28 Machine Language - Store Instruction Example: sw $t0, 24($s2) op rs rt 16 bit number A 16-bit address means access is limited to memory locations within a region of ±2 13 or 8,192 words (±2 15 or 32,768 bytes) of the address in the base register $s2 331 W02.28 Fall 2003

29 Assembling Code Remember the assembler code we compiled last lecture for the C statement A[8] = A[2] - b lw $t0, 8($s3) #load A[2] into $t0 sub $t0, $t0, $s2 #subtract b from A[2] sw $t0, 32($s3) #store result in A[8] Assemble the MIPS object code for these three instructions 331 W02.29 Fall 2003

30 Review: MIPS Data Types Integer: (signed or unsigned) 32 bits Character: 8 bits Floating point numbers: 32 bits Memory addresses (pointers): 32 bits Instructions: 32 bits Bit String: sequence of bits of a particular length 8 bits is a byte 16 bits is a half-word 32 bits (4 bytes) is a word 64 bits is a double-word 331 W02.30 Fall 2003

31 Beyond Numbers Most computers use 8-bit bytes to represent characters with the American Std Code for Info Interchange (ASCII) ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char 0 Null 32 space ` 112 p 1 33! A 97 a 113 q B 98 b 114 r 3 35 # C 99 c 115 s 4 EOT 36 $ D 100 d 116 t 5 37 % E 101 e 117 u 6 ACK 38 & F 102 f 118 v G 103 g 119 w 8 bksp 40 ( H 104 h 120 x 9 tab 41 ) I 105 i 121 y 10 LF 42 * 58 : 74 J 106 j 122 z ; 75 K 107 k 123 { 12 FF 44, 60 < 76 L 108 l / 63? 79 O 111 o 127 DEL So, we need instructions to move bytes around 331 W02.31 Fall 2003

32 Loading and Storing Bytes MIPS provides special instructions to move bytes lb sb $t0, 1($s3) #load byte from memory $t0, 6($s3) #store byte to memory op rs rt 16 bit number What 8 bits get loaded and stored? load byte places the byte from memory in the rightmost 8 bits of the destination register - what happens to the other bits in the register? store byte takes the byte from the rightmost 8 bits of a register and writes it to a byte in memory 331 W02.32 Fall 2003

33 Example of Loading and Storing Bytes Given following code sequence and memory state (contents are given in hexidecimal), what is the state of the memory after executing the code? add $s3, $zero, $zero lb $t0, 1($s3) sb $t0, 6($s3) Memory What value is left in $t0? F F F F F F F F A 0 Data What if the machine was little 8 Endian? 4 0 Word Address (Decimal) 331 W02.33 Fall 2003

34 Review: MIPS Instructions, so far Category Instr Op Code Example Meaning Arithmetic add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3 (R format) subtract 0 and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3 Data load word 35 lw $s1, 100($s2) $s1 = Memory($s2+100) transfer store word 43 sw $s1, 100($s2) Memory($s2+100) = $s1 (I format) load byte 32 lb $s1, 101($s2) $s1 = Memory($s2+101) store byte 40 sb $s1, 101($s2) Memory($s2+101) = $s1 331 W02.34 Fall 2003

35 Review: MIPS R3000 ISA Instruction Categories Load/Store Computational Jump and Branch Floating Point - coprocessor Memory Management Special 3 Instruction Formats: all 32 bits wide Registers R0 - R31 PC HI LO 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits OP rs rt rd shamt funct R format OP rs rt 16 bit number I format OP 26 bit jump target 331 W02.35 Fall 2003

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

More information

Computer Organization MIPS ISA

Computer Organization MIPS ISA CPE 335 Computer Organization MIPS ISA Dr. Iyad Jafar Adapted from Dr. Gheith Abandah Slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE 232 MIPS ISA 1 (vonneumann) Processor Organization

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring MIPS Intro

Math 230 Assembly Programming (AKA Computer Organization) Spring MIPS Intro Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L09.1 Smith Spring 2008 MIPS

More information

Instructions: Language of the Computer

Instructions: Language of the Computer CS359: Computer Architecture Instructions: Language of the Computer Yanyan Shen Department of Computer Science and Engineering 1 The Language a Computer Understands Word a computer understands: instruction

More information

Chapter 1. Computer Abstractions and Technology. Lesson 3: Understanding Performance

Chapter 1. Computer Abstractions and Technology. Lesson 3: Understanding Performance Chapter 1 Computer Abstractions and Technology Lesson 3: Understanding Performance Manufacturing ICs 1.7 Real Stuff: The AMD Opteron X4 Yield: proportion of working dies per wafer Chapter 1 Computer Abstractions

More information

CENG3420 Lecture 03 Review

CENG3420 Lecture 03 Review CENG3420 Lecture 03 Review Bei Yu byu@cse.cuhk.edu.hk 2017 Spring 1 / 38 CISC vs. RISC Complex Instruction Set Computer (CISC) Lots of instructions of variable size, very memory optimal, typically less

More information

Course Administration

Course Administration Fall 2017 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture 2/4 Avinash Kodi Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701 E-mail: kodi@ohio.edu

More information

Chapter 2A Instructions: Language of the Computer

Chapter 2A Instructions: Language of the Computer Chapter 2A Instructions: Language of the Computer Copyright 2009 Elsevier, Inc. All rights reserved. Instruction Set The repertoire of instructions of a computer Different computers have different instruction

More information

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Overview Last Lecture s Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a

More information

Chapter 2: Instructions:

Chapter 2: Instructions: Chapter 2: Instructions: Language of the Computer Computer Architecture CS-3511-2 1 Instructions: To command a computer s hardware you must speak it s language The computer s language is called instruction

More information

Instructions: Language of the Computer

Instructions: Language of the Computer CS359: Computer Architecture Instructions: Language of the Computer Yanyan Shen Department of Computer Science and Engineering 1 The Language a Computer Understands Word a computer understands: instruction

More information

Computer Architecture

Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.2: MIPS ISA -- Instruction Representation Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design,

More information

Chapter 2. Instructions: Language of the Computer. HW#1: 1.3 all, 1.4 all, 1.6.1, , , , , and Due date: one week.

Chapter 2. Instructions: Language of the Computer. HW#1: 1.3 all, 1.4 all, 1.6.1, , , , , and Due date: one week. Chapter 2 Instructions: Language of the Computer HW#1: 1.3 all, 1.4 all, 1.6.1, 1.14.4, 1.14.5, 1.14.6, 1.15.1, and 1.15.4 Due date: one week. Practice: 1.5 all, 1.6 all, 1.10 all, 1.11 all, 1.14 all,

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA CISC 662 Graduate Computer Architecture Lecture 4 - ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization CISC 662 Graduate Computer Architecture Lecture 4 - ISA MIPS ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

MIPS Instruction Set Architecture (1)

MIPS Instruction Set Architecture (1) MIPS Instruction Set Architecture (1) Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 2: Hardware/Software Interface Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Basic computer components How does a microprocessor

More information

Instructions: Language of the Computer

Instructions: Language of the Computer Instructions: Language of the Computer Tuesday 22 September 15 Many slides adapted from: and Design, Patterson & Hennessy 5th Edition, 2014, MK and from Prof. Mary Jane Irwin, PSU Summary Previous Class

More information

MIPS Memory Access Instructions

MIPS Memory Access Instructions MIPS Memory Access Instructions MIPS has two basic data transfer instructions for accessing memory lw $t0, 4($s3) #load word from memory sw $t0, 8($s3) #store word to memory The data is loaded into (lw)

More information

CENG3420 L03: Instruction Set Architecture

CENG3420 L03: Instruction Set Architecture CENG3420 L03: Instruction Set Architecture Bei Yu byu@cse.cuhk.edu.hk (Latest update: January 31, 2018) Spring 2018 1 / 49 Overview Introduction Arithmetic & Logical Instructions Data Transfer Instructions

More information

CSE 141 Computer Architecture Spring Lecture 3 Instruction Set Architecute. Course Schedule. Announcements

CSE 141 Computer Architecture Spring Lecture 3 Instruction Set Architecute. Course Schedule. Announcements CSE141: Introduction to Computer Architecture CSE 141 Computer Architecture Spring 2005 Lecture 3 Instruction Set Architecute Pramod V. Argade April 4, 2005 Instructor: TAs: Pramod V. Argade (p2argade@cs.ucsd.edu)

More information

COMPSCI 313 S Computer Organization. 7 MIPS Instruction Set

COMPSCI 313 S Computer Organization. 7 MIPS Instruction Set COMPSCI 313 S2 2018 Computer Organization 7 MIPS Instruction Set Agenda & Reading MIPS instruction set MIPS I-format instructions MIPS R-format instructions 2 7.1 MIPS Instruction Set MIPS Instruction

More information

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2)

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) ELEC 5200-001/6200-001 Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) Victor P. Nelson, Professor & Asst. Chair Vishwani D. Agrawal, James J. Danaher Professor Department

More information

CS3350B Computer Architecture MIPS Instruction Representation

CS3350B Computer Architecture MIPS Instruction Representation CS3350B Computer Architecture MIPS Instruction Representation Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 15: Midterm 1 Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Basics Midterm to cover Book Sections (inclusive) 1.1 1.5

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept Instructions: Instructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,

More information

Instructions: MIPS arithmetic. MIPS arithmetic. Chapter 3 : MIPS Downloaded from:

Instructions: MIPS arithmetic. MIPS arithmetic. Chapter 3 : MIPS Downloaded from: Instructions: Chapter 3 : MIPS Downloaded from: http://www.cs.umr.edu/~bsiever/cs234/ Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive

More information

CS3350B Computer Architecture MIPS Introduction

CS3350B Computer Architecture MIPS Introduction CS3350B Computer Architecture MIPS Introduction Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada Thursday January

More information

Chapter 3 MIPS Assembly Language. Ó1998 Morgan Kaufmann Publishers 1

Chapter 3 MIPS Assembly Language. Ó1998 Morgan Kaufmann Publishers 1 Chapter 3 MIPS Assembly Language Ó1998 Morgan Kaufmann Publishers 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive

More information

Introduction to the MIPS. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Introduction to the MIPS. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Introduction to the MIPS Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Introduction to the MIPS The Microprocessor without Interlocked Pipeline Stages

More information

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

More information

Computer Architecture Instruction Set Architecture part 2. Mehran Rezaei

Computer Architecture Instruction Set Architecture part 2. Mehran Rezaei Computer Architecture Instruction Set Architecture part 2 Mehran Rezaei Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a MIPS Interpreter

More information

Chapter 2 Instruction: Language of the Computer

Chapter 2 Instruction: Language of the Computer Chapter 2 Instruction: Language of the Computer 1 Table of Contents Ch.1 Introduction Ch. 2 Instruction: Machine Language Ch. 3-4 CPU Implementation Ch. 5 Cache and VM Ch. 6-7 I/O & Multiprocessors Computer

More information

Levels of Programming. Registers

Levels of Programming. Registers Levels of Programming COSC 2021: Computer Organization Instructor: Dr. Amir Asif Department of Computer Science York University Handout # 3: MIPS Instruction Set I Topics: 1. Arithmetic Instructions 2.

More information

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#: Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators

More information

101 Assembly. ENGR 3410 Computer Architecture Mark L. Chang Fall 2009

101 Assembly. ENGR 3410 Computer Architecture Mark L. Chang Fall 2009 101 Assembly ENGR 3410 Computer Architecture Mark L. Chang Fall 2009 What is assembly? 79 Why are we learning assembly now? 80 Assembly Language Readings: Chapter 2 (2.1-2.6, 2.8, 2.9, 2.13, 2.15), Appendix

More information

Architecture I. Computer Systems Laboratory Sungkyunkwan University

Architecture I. Computer Systems Laboratory Sungkyunkwan University MIPS Instruction ti Set Architecture I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Architecture (1) the attributes of a system as seen by the

More information

EEC 581 Computer Architecture Lecture 1 Review MIPS

EEC 581 Computer Architecture Lecture 1 Review MIPS EEC 581 Computer Architecture Lecture 1 Review MIPS 1 Supercomputing: Suddenly Fancy 2 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control

More information

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA.

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA. Today s topics CS/COE1541: Introduction to Computer Architecture MIPS operations and operands MIPS registers Memory view Instruction encoding A Review of MIPS ISA Sangyeun Cho Arithmetic operations Logic

More information

Instruction Set Architecture. "Speaking with the computer"

Instruction Set Architecture. Speaking with the computer Instruction Set Architecture "Speaking with the computer" The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture Digital Design

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept nstructions: nstructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch &

More information

Chapter 3. Instructions:

Chapter 3. Instructions: Chapter 3 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

Lecture 4: MIPS Instruction Set

Lecture 4: MIPS Instruction Set Lecture 4: MIPS Instruction Set No class on Tuesday Today s topic: MIPS instructions Code examples 1 Instruction Set Understanding the language of the hardware is key to understanding the hardware/software

More information

ECE 154A Introduction to. Fall 2012

ECE 154A Introduction to. Fall 2012 ECE 154A Introduction to Computer Architecture Fall 2012 Dmitri Strukov Lecture 4: Arithmetic and Data Transfer Instructions Agenda Review of last lecture Logic and shift instructions Load/store instructionsi

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 2 Instructions: Language of the Computer Fall 2005 Department of Computer Science Kent State University Assembly Language Encodes machine instructions using symbols and numbers

More information

Rechnerstrukturen. Chapter 2. Instructions: Language of the Computer

Rechnerstrukturen. Chapter 2. Instructions: Language of the Computer 182.690 Rechnerstrukturen Chapter 2 Instructions: Language of the Computer Instruction Set The repertoire of instructions of a computer Different computers have different instruction sets But with many

More information

Lecture 2. Instructions: Language of the Computer (Chapter 2 of the textbook)

Lecture 2. Instructions: Language of the Computer (Chapter 2 of the textbook) Lecture 2 Instructions: Language of the Computer (Chapter 2 of the textbook) Instructions: tell computers what to do Chapter 2 Instructions: Language of the Computer 2 Introduction Chapter 2.1 Chapter

More information

CS222: MIPS Instruction Set

CS222: MIPS Instruction Set CS222: MIPS Instruction Set Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Previous Introduction to MIPS Instruction Set MIPS Arithmetic's Register Vs Memory, Registers

More information

Chapter 2. Instructions:

Chapter 2. Instructions: Chapter 2 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

EN164: Design of Computing Systems Lecture 09: Processor / ISA 2

EN164: Design of Computing Systems Lecture 09: Processor / ISA 2 EN164: Design of Computing Systems Lecture 09: Processor / ISA 2 Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the ISA. RISC Goals RISC: Simplify ISA Simplify CPU Design Better CPU Performance Motivated by simplifying

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the machine. Reduced number of cycles needed per instruction.

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

Lecture 5: Instruction Set Architectures II. Take QUIZ 2 before 11:59pm today over Chapter 1 Quiz 1: 100% - 29; 80% - 25; 60% - 17; 40% - 3

Lecture 5: Instruction Set Architectures II. Take QUIZ 2 before 11:59pm today over Chapter 1 Quiz 1: 100% - 29; 80% - 25; 60% - 17; 40% - 3 Lecture 5: Instruction Set Architectures II Announcements Turn in Homework #1 XSPIM tutorials in PAI 5.38 during TA office hours Tue Feb 2: 2-3:30pm Wed Feb 3: 1:30-3pm Thu Feb 4: 3-4:30pm Take QUIZ 2

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 4: MIPS Instructions Adapted from Computer Organization and Design, Patterson & Hennessy, UCB From Last Time Two values enter from the left (A and B) Need

More information

MIPS (SPIM) Assembler Syntax

MIPS (SPIM) Assembler Syntax MIPS (SPIM) Assembler Syntax Comments begin with # Everything from # to the end of the line is ignored Identifiers are a sequence of alphanumeric characters, underbars (_), and dots () that do not begin

More information

All instructions have 3 operands Operand order is fixed (destination first)

All instructions have 3 operands Operand order is fixed (destination first) Instruction Set Architecture for MIPS Processors Overview Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70803 durresi@csc.lsu.edu These slides are available at: http://www.csc.lsu.edu/~durresi/_07/

More information

ECE 486/586. Computer Architecture. Lecture # 7

ECE 486/586. Computer Architecture. Lecture # 7 ECE 486/586 Computer Architecture Lecture # 7 Spring 2015 Portland State University Lecture Topics Instruction Set Principles Instruction Encoding Role of Compilers The MIPS Architecture Reference: Appendix

More information

Computer Architecture. The Language of the Machine

Computer Architecture. The Language of the Machine Computer Architecture The Language of the Machine Instruction Sets Basic ISA Classes, Addressing, Format Administrative Matters Operations, Branching, Calling conventions Break Organization All computers

More information

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes Chapter 2 Instructions: Language of the Computer Adapted by Paulo Lopes Instruction Set The repertoire of instructions of a computer Different computers have different instruction sets But with many aspects

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Instructions: Language of the Computer Operations and Operands of the Computer Hardware Signed and Unsigned Numbers Representing

More information

Instruction Set Architecture

Instruction Set Architecture Computer Architecture Instruction Set Architecture Lynn Choi Korea University Machine Language Programming language High-level programming languages Procedural languages: C, PASCAL, FORTRAN Object-oriented

More information

Instructions: MIPS ISA. Chapter 2 Instructions: Language of the Computer 1

Instructions: MIPS ISA. Chapter 2 Instructions: Language of the Computer 1 Instructions: MIPS ISA Chapter 2 Instructions: Language of the Computer 1 PH Chapter 2 Pt A Instructions: MIPS ISA Based on Text: Patterson Henessey Publisher: Morgan Kaufmann Edited by Y.K. Malaiya for

More information

Instruction Set Principles and Examples. Appendix B

Instruction Set Principles and Examples. Appendix B Instruction Set Principles and Examples Appendix B Outline What is Instruction Set Architecture? Classifying ISA Elements of ISA Programming Registers Type and Size of Operands Addressing Modes Types of

More information

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Procedure Calls A procedure of a subroutine is like an agent which needs certain information to perform a

More information

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions Representing Instructions Instructions are encoded in binary Called machine code MIPS instructions Encoded as 32-bit instruction words Small number of formats encoding operation code (opcode), register

More information

EC 413 Computer Organization

EC 413 Computer Organization EC 413 Computer Organization Review I Prof. Michel A. Kinsy Computing: The Art of Abstraction Application Algorithm Programming Language Operating System/Virtual Machine Instruction Set Architecture (ISA)

More information

Lecture 3 Machine Language. Instructions: Instruction Execution cycle. Speaking computer before voice recognition interfaces

Lecture 3 Machine Language. Instructions: Instruction Execution cycle. Speaking computer before voice recognition interfaces Lecture 3 Machine Language Speaking computer before voice recognition interfaces 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very

More information

2.7 Supporting Procedures in hardware. Why procedures or functions? Procedure calls

2.7 Supporting Procedures in hardware. Why procedures or functions? Procedure calls 2.7 Supporting Procedures in hardware Why procedures or functions? Procedure calls Caller: Callee: Proc save registers save more registers set up parameters do function call procedure set up results get

More information

Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21

Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 2.9 Communication with People: Byte Data & Constants Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 32: space 33:! 34: 35: #...

More information

CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE. Debdeep Mukhopadhyay, CSE, IIT Kharagpur. Instructions and Addressing

CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE. Debdeep Mukhopadhyay, CSE, IIT Kharagpur. Instructions and Addressing CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE Debdeep Mukhopadhyay, CSE, IIT Kharagpur Instructions and Addressing 1 ISA vs. Microarchitecture An ISA or Instruction Set Architecture describes the aspects

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Instructions: Language of the Computer Operations and Operands of the Computer Hardware Signed and Unsigned Numbers Representing

More information

Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) Instruction Set Architecture (ISA)... the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior, as distinct from the organization of the data

More information

Operations, Operands, and Instructions

Operations, Operands, and Instructions Operations, Operands, and Instructions Tom Kelliher, CS 220 Sept. 12, 2011 1 Administrivia Announcements Assignment Read 2.6 2.7. From Last Time Macro-architectural trends; IC fab. Outline 1. Introduction.

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 th The Hardware/Software Interface Edition Chapter 2 Instructions: Language of the Computer 2.1 Introduction Instruction Set The repertoire of instructions of a computer

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

More information

EECS Computer Organization Fall Based on slides by the author and prof. Mary Jane Irwin of PSU.

EECS Computer Organization Fall Based on slides by the author and prof. Mary Jane Irwin of PSU. EECS 2021 Computer Organization Fall 2015 Based on slides by the author and prof. Mary Jane Irwin of PSU. Chapter Summary Stored-program concept Assembly language Number representation Instruction representation

More information

Computer Architecture. MIPS Instruction Set Architecture

Computer Architecture. MIPS Instruction Set Architecture Computer Architecture MIPS Instruction Set Architecture Instruction Set Architecture An Abstract Data Type Objects Registers & Memory Operations Instructions Goal of Instruction Set Architecture Design

More information

MIPS Datapath. MIPS Registers (and the conventions associated with them) MIPS Instruction Types

MIPS Datapath. MIPS Registers (and the conventions associated with them) MIPS Instruction Types 1 Lecture 08 Introduction to the MIPS ISA + Procedure Calls in MIPS Longer instructions = more bits to address registers MIPS Datapath 6 bit opcodes... 2 MIPS Instructions are 32 bits More ways to address

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

Lecture 4: Instruction Set Architecture

Lecture 4: Instruction Set Architecture Lecture 4: Instruction Set Architecture ISA types, register usage, memory addressing, endian and alignment, quantitative evaluation Reading: Textbook (5 th edition) Appendix A Appendix B (4 th edition)

More information

Chapter 2. Instruction Set Architecture (ISA)

Chapter 2. Instruction Set Architecture (ISA) Chapter 2 Instruction Set Architecture (ISA) MIPS arithmetic Design Principle: simplicity favors regularity. Why? Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code:

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Computer Hardware Engineering

Computer Hardware Engineering 2 Course Structure Computer Hardware ngineering IS1200, spring 2015 Lecture 3: Languages Module 4: I/O Systems Module 1: Logic Design L DCÖ1 L DCÖ2 Lab:dicom L7 Module 2: C and Assembly Programming Associate

More information

Five classic components

Five classic components CS/COE0447: Computer Organization and Assembly Language Chapter 2 modified by Bruce Childers original slides by Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood

More information

Orange Coast College. Business Division. Computer Science Department CS 116- Computer Architecture. The Instructions

Orange Coast College. Business Division. Computer Science Department CS 116- Computer Architecture. The Instructions Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Instructions 1 1 Topics: Assembly language, assemblers MIPS R2000 Assembly language Instruction set

More information

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers

More information

ECE369. Chapter 2 ECE369

ECE369. Chapter 2 ECE369 Chapter 2 1 Instruction Set Architecture A very important abstraction interface between hardware and low-level software standardizes instructions, machine language bit patterns, etc. advantage: different

More information

Page 1. Structure of von Nuemann machine. Instruction Set - the type of Instructions

Page 1. Structure of von Nuemann machine. Instruction Set - the type of Instructions Structure of von Nuemann machine Arithmetic and Logic Unit Input Output Equipment Main Memory Program Control Unit 1 1 Instruction Set - the type of Instructions Arithmetic + Logical (ADD, SUB, MULT, DIV,

More information

CS/COE1541: Introduction to Computer Architecture

CS/COE1541: Introduction to Computer Architecture CS/COE1541: Introduction to Computer Architecture Dept. of Computer Science University of Pittsburgh http://www.cs.pitt.edu/~melhem/courses/1541p/index.html 1 Computer Architecture? Application pull Operating

More information

IC220 SlideSet #2: Instructions (Chapter 2)

IC220 SlideSet #2: Instructions (Chapter 2) Chapter Goals IC220 SlideSet #2: Instructions (Chapter 2) Teach a subset of MIPS assembly language Introduce the stored program concept Explain how MIPS instructions are represented in machine language

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 15 April 1, 2009 martha@cs.columbia.edu and the rest of the semester Source code (e.g., *.java, *.c) (software) Compiler MIPS instruction set architecture

More information

Lecture 3: The Instruction Set Architecture (cont.)

Lecture 3: The Instruction Set Architecture (cont.) Lecture 3: The Instruction Set Architecture (cont.) COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Review: Instructions Computers process information

More information

Lecture 3: The Instruction Set Architecture (cont.)

Lecture 3: The Instruction Set Architecture (cont.) Lecture 3: The Instruction Set Architecture (cont.) COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Review: Instructions Computers process information

More information

Computer Organization and Components

Computer Organization and Components 2 Course Structure Computer Organization and Components Module 4: Memory Hierarchy Module 1: Logic Design IS1500, fall 2014 Lecture 4: and F1 DC Ö1 F2 DC Ö2 F7b Lab: dicom F8 Module 2: C and Associate

More information

MIPS%Assembly% E155%

MIPS%Assembly% E155% MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary

More information

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown

More information