Overview of UE 101: Algorithms and Programming

Size: px
Start display at page:

Download "Overview of UE 101: Algorithms and Programming"

Transcription

1 Overview of UE 101: Algorithms and Programming Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. Aug 2, 2017

2 Outline 1 What we study 2 Programs 3 Algorithms 4 Data Structures 5 Logistics for the Course

3 Programs as Recipes If a computer processor is like a kitchen robot, Then... A program is a recipe. 1. Keep a medium sized vessel and a cup. 2. Fill the cup with water. 3. Pour the cup into the vessel. 4. If the vessel is full go to step 5 Else go back to step 2 5. Put the vessel on the burner.... A problem is a dish (like a cake). Study of algorithms helps us to write efficient recipes for specific dishes.

4 What a computer looks like Stack Memory Stack Pointer Heap Memory Instruction Pointer AX Static Data EX Executable Code ALU Kernel Routines Central Processing Unit (CPU) Memory (RAM)

5 How a program runs on the CPU Stack Memory Stack Pointer Instruction Pointer AX EX ALU Heap Memory Static Data Executable Code Kernel Routines max: pushq %rbp movq %rsp, %rbp movl %edi, -20(%rbp) movl %esi, -24(%rbp) movl -20(%rbp), %eax cmpl -24(%rbp), %eax jg.l3 movl -24(%rbp), %eax movl %eax, -4(%rbp) jmp.l4.3: movl -20(%rbp), %eax movl %eax, -4(%rbp).L4: movl -4(%rbp), %eax popq %rbp ret #include <stdio.h> void main() { int a, b; scanf("%d%d", &a, &b); printf("%d\n", max(a,b)); } int max (int x, int y) { int max; if (x <= y) max = y; else max = x; return max; } Central Processing Unit (CPU) Memory (RAM)

6 Executing a program with pen-and-paper #include <stdio.h> void main() { int a, b; scanf("%d%d", &a, &b); printf("%d\n", max(a,b)); } int max (int x, int y) { int max; --> if (x <= y) max = y; else max = x; return max; } x: 10 y: 20 max: 0

7 Executing a program with pen-and-paper #include <stdio.h> void main() { int a, b; scanf("%d%d", &a, &b); printf("%d\n", max(a,b)); } int max (int x, int y) { int max; if (x <= y) max = y; else max = x; --> return max; } x: 10 y: 20 max: 20

8 Things we will study in programming Basic Data Types (char, int, float) Control-Flow (if-then-else, while, switch) Functions and Recursion Memory structures: Arrays, Heap-Allocated objects (lists, trees, graphs)

9 Programs and Algorithms Algorithms are for specific problems (like sort a list, find the shortest path from s to t ) Algorithms are specified in a more abstract language ( psuedocode ) than programs. Algorithms are expected to be correct (terminate on all inputs with the correct answer). Algorithms are implemented by programs.

10 Illustrative example: Max subsequence sum Given an array A of N integers, find the maximum value of A[k] i k j (over all possible 0 i j < N). Example: A: Max subsequence sum of A is:

11 Illustrative example: Max subsequence sum Given an array A of N integers, find the maximum value of A[k] i k j (over all possible 0 i j < N). Example: A: Max subsequence sum of A is: 20. Originates from pattern matching problem; Can also think of choosing a portion of a cake to maximize cherries over olives (1 olive = -1 cherry).

12 Naive algorithm bestsum = 0; for(i = 0 to N-1) for(j = 0 to N-1) { sum := sum A[i] to A[j]; if sum > bestsum bestsum = sum; } return bestsum; Runs time in O(N 3 ) (i.e. proportional to the cube of the number N of elements in the array).

13 A more efficient algorithm Divide given array A into two halves A L and A R. Find max subseq sum for A L and A R separately. Also find max subseq sum in A L ending at N/2 and max subseq sum in A R beginning at N/2. Use these to find max subseq sum of A. A: A L A R Runs in O(N log N) time. Follows a typical Divide-and-Conquer strategy. For large N, this algorithm may run in seconds compared to hours for the naive algorithm.

14 Illustrative Example 2: Computing Fibonacci numbers Fibonacci sequence: Given n, compute Fib(n). 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...

15 A naive algorithm Use recurrence: Fib(0) = 0 Fib(1) = 1 Fib(n+2) = Fib(n+1) + Fib(n) Runs in exponential time: 2 n.

16 A more efficient algorithm Keep track of previous two Fib numbers, and use it to compute current Fib number. Runs in linear time: O(n). Runs in seconds compared to light years for naive algorithm! Uses dynamic programming strategy.

17 Illustrative Example 3: Search Trees Data structures are useful for maintaining data and supporting quick queries on the data. Example: Google may want to store all taken ids, and quickly tell a new user whether her choice of id is available or not. Need to support both quick additions as well as membership queries. Naive algorithm: Store entries in an array. What is the running time of the queries add and is-member?

18 Binary Search Trees Can support add and is-member in O(log N) worst-case time. Add and search is proportional to the height of the tree. Uses idea of keeping the tree balanced, so that height is log N.

19 What we will study in Algo and Data Structures How to estimate the running time of an algorithm. Algorithms for sorting and searching. Algorithms on Graphs. Algorithm design techniques (Greedy, Divide-and-Conquer, Dynamic Programming). Efficient Data Structures (search trees, heaps, etc).

20 Why study programming and algorithms? Programmable processors are ubiquitous Pacemakers for controlling heart rhythm Medical infusion pumps Chemical process control Nuclear reactor Cell phones Programming skill needed in Writing apps Simulating physical/biological/chemical processes Pays to know how to program, how to estimate running time, and how to design an efficient algorithm to solve a problem.

21 Course details Meetings Classes: Mon, Wed 9:30am Tutorial: Thu 11:00am Lab Sessions: Mon-Thu 2-5pm. Attendence compulsary in all components. Course web site: Piazza discussion forum.

22 Course details: Evaluation Evaluation components: Midsem exam: (Weightage: 20%) Final exam (Weightage 40%) Assignments, Lab Exercises, Quizes (Weightage 40%). Misconduct Policy Assignments to be done on your own. No discussions, No copying solutions from the internet or other sources. If you refer to a source, you must mention it in your submission. Credit will be given for approach and your attempt to solve the problem. Misconduct Penalty: Any instance of copying in an assignment will fetch you a 0 in that assignment + one grade reduction.

COMP 210 Example Question Exam 2 (Solutions at the bottom)

COMP 210 Example Question Exam 2 (Solutions at the bottom) _ Problem 1. COMP 210 Example Question Exam 2 (Solutions at the bottom) This question will test your ability to reconstruct C code from the assembled output. On the opposing page, there is asm code for

More information

SYSTEMS PROGRAMMING AND COMPUTER ARCHITECTURE Assignment 5: Assembly and C

SYSTEMS PROGRAMMING AND COMPUTER ARCHITECTURE Assignment 5: Assembly and C Fall Term 2016 SYSTEMS PROGRAMMING AND COMPUTER ARCHITECTURE Assignment 5: Assembly and C Assigned on: 20th Oct 2016 Due by: 27th Oct 2016 Pen & Paper exercise Assembly Code Fragments Consider the following

More information

What is concurrency? Concurrency. What is parallelism? concurrency vs parallelism. Concurrency: (the illusion of) happening at the same time.

What is concurrency? Concurrency. What is parallelism? concurrency vs parallelism. Concurrency: (the illusion of) happening at the same time. What is concurrency? Concurrency Johan Montelius KTH 2017 Concurrency: (the illusion of) happening at the same time. A property of the programing model. Why would we want to do things concurrently? What

More information

You may work with a partner on this quiz; both of you must submit your answers.

You may work with a partner on this quiz; both of you must submit your answers. Instructions: Choose the best answer for each of the following questions. It is possible that several answers are partially correct, but one answer is best. It is also possible that several answers are

More information

Function Calls and Stack

Function Calls and Stack Function Calls and Stack Philipp Koehn 16 April 2018 1 functions Another Example 2 C code with an undefined function int main(void) { int a = 2; int b = do_something(a); urn b; } This can be successfully

More information

Machine Program: Procedure. Zhaoguo Wang

Machine Program: Procedure. Zhaoguo Wang Machine Program: Procedure Zhaoguo Wang Requirements of procedure calls? P() { y = Q(x); y++; 1. Passing control int Q(int i) { int t, z; return z; Requirements of procedure calls? P() { y = Q(x); y++;

More information

Concurrency. Johan Montelius KTH

Concurrency. Johan Montelius KTH Concurrency Johan Montelius KTH 2017 1 / 32 What is concurrency? 2 / 32 What is concurrency? Concurrency: (the illusion of) happening at the same time. 2 / 32 What is concurrency? Concurrency: (the illusion

More information

CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion

CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion Consider the following recursive function: int what ( int x, int y) if (x > y) return what (x-y, y); else if (y > x) return what (x, y-x);

More information

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29 Procedure Calls Young W. Lim 2017-08-21 Mon Young W. Lim Procedure Calls 2017-08-21 Mon 1 / 29 Outline 1 Introduction Based on Stack Background Transferring Control Register Usage Conventions Procedure

More information

C to Assembly SPEED LIMIT LECTURE Performance Engineering of Software Systems. I-Ting Angelina Lee. September 13, 2012

C to Assembly SPEED LIMIT LECTURE Performance Engineering of Software Systems. I-Ting Angelina Lee. September 13, 2012 6.172 Performance Engineering of Software Systems SPEED LIMIT PER ORDER OF 6.172 LECTURE 3 C to Assembly I-Ting Angelina Lee September 13, 2012 2012 Charles E. Leiserson and I-Ting Angelina Lee 1 Bugs

More information

CSE 143. Complexity Analysis. Program Efficiency. Constant Time Statements. Big Oh notation. Analyzing Loops. Constant Time Statements (2) CSE 143 1

CSE 143. Complexity Analysis. Program Efficiency. Constant Time Statements. Big Oh notation. Analyzing Loops. Constant Time Statements (2) CSE 143 1 CSE 1 Complexity Analysis Program Efficiency [Sections 12.1-12., 12., 12.9] Count number of instructions executed by program on inputs of a given size Express run time as a function of the input size Assume

More information

CS , Fall 2004 Exam 1

CS , Fall 2004 Exam 1 Andrew login ID: Full Name: CS 15-213, Fall 2004 Exam 1 Tuesday October 12, 2004 Instructions: Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the front.

More information

Credits and Disclaimers

Credits and Disclaimers Credits and Disclaimers 1 The examples and discussion in the following slides have been adapted from a variety of sources, including: Chapter 3 of Computer Systems 3 nd Edition by Bryant and O'Hallaron

More information

Computer Science Foundation Exam. Dec. 19, 2003 COMPUTER SCIENCE I. Section I A. No Calculators! KEY

Computer Science Foundation Exam. Dec. 19, 2003 COMPUTER SCIENCE I. Section I A. No Calculators! KEY Computer Science Foundation Exam Dec. 19, 2003 COMPUTER SCIENCE I Section I A No Calculators! Name: KEY SSN: Score: 50 In this section of the exam, there are Three (3) problems You must do all of them.

More information

C and Programming Basics

C and Programming Basics Announcements Assignment 1 Will be posted on Wednesday, Jan. 9 Due Wednesday, Jan. 16 Piazza Please sign up if you haven t already https://piazza.com/sfu.ca/spring2019/cmpt125 Lecture notes Posted just

More information

CS 2505 Computer Organization I Test 2. Do not start the test until instructed to do so! printed

CS 2505 Computer Organization I Test 2. Do not start the test until instructed to do so! printed Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted one-page fact sheet. Your fact sheet may contain definitions and examples,

More information

The Compilation Process

The Compilation Process Crash Course in C Lecture 2 Moving from Python to C: The compilation process Differences between Python and C Variable declaration and strong typing The memory model: data vs. address The Compilation Process

More information

void P() {... y = Q(x); print(y); return; } ... int Q(int t) { int v[10];... return v[t]; } Computer Systems: A Programmer s Perspective

void P() {... y = Q(x); print(y); return; } ... int Q(int t) { int v[10];... return v[t]; } Computer Systems: A Programmer s Perspective void P() { y = Q(x); print(y); return;... int Q(int t) { int v[10]; return v[t]; Computer Systems: A Programmer s Perspective %rax %rbx 0x101 0x41 0x7FFFFA8 0x1 0x7FFFFF8 0xB5A9 0x7FFFFF0 0x789ABC 0x7FFFFE8

More information

The Stack & Procedures

The Stack & Procedures The Stack & Procedures CSE 351 Autumn 2017 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan http://xkcd.com/648/

More information

Two Approaches to Algorithms An Example (1) Iteration (2) Recursion

Two Approaches to Algorithms An Example (1) Iteration (2) Recursion 2. Recursion Algorithm Two Approaches to Algorithms (1) Iteration It exploits while-loop, for-loop, repeat-until etc. Classical, conventional, and general approach (2) Recursion Self-function call It exploits

More information

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon Carnegie Mellon Machine-Level Programming III: Procedures 15-213/18-213/14-513/15-513: Introduction to Computer Systems 7 th Lecture, September 18, 2018 Today Procedures Mechanisms Stack Structure Calling

More information

1. A student is testing an implementation of a C function; when compiled with gcc, the following x86-64 assembly code is produced:

1. A student is testing an implementation of a C function; when compiled with gcc, the following x86-64 assembly code is produced: This assignment refers to concepts discussed in sections 2.1.1 2.1.3, 2.1.8, 2.2.1 2.2.6, 3.2, 3.4, and 3.7.1of csapp; see that material for discussions of x86 assembly language and its relationship to

More information

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27 Procedure Calls Young W. Lim 2016-11-05 Sat Young W. Lim Procedure Calls 2016-11-05 Sat 1 / 27 Outline 1 Introduction References Stack Background Transferring Control Register Usage Conventions Procedure

More information

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110 Questions 1 Question 4.1 1: (Solution, p 5) Define the fetch-execute cycle as it relates to a computer processing a program. Your definition should describe the primary purpose of each phase. Question

More information

Credits and Disclaimers

Credits and Disclaimers Credits and Disclaimers 1 The examples and discussion in the following slides have been adapted from a variety of sources, including: Chapter 3 of Computer Systems 3 nd Edition by Bryant and O'Hallaron

More information

How Software Executes

How Software Executes How Software Executes CS-576 Systems Security Instructor: Georgios Portokalidis Overview Introduction Anatomy of a program Basic assembly Anatomy of function calls (and returns) Memory Safety Programming

More information

Complexity. Alexandra Silva.

Complexity. Alexandra Silva. Complexity Alexandra Silva alexandra@cs.ru.nl http://www.cs.ru.nl/~alexandra Institute for Computing and Information Sciences 6th February 2013 Alexandra 6th February 2013 Lesson 1 1 / 39 Introduction

More information

Advanced Algorithms and Data Structures

Advanced Algorithms and Data Structures Advanced Algorithms and Data Structures Prof. Tapio Elomaa Course Basics A new 7 credit unit course Replaces OHJ-2156 Analysis of Algorithms We take things a bit further than OHJ-2156 We will assume familiarity

More information

The von Neumann Machine

The von Neumann Machine The von Neumann Machine 1 1945: John von Neumann Wrote a report on the stored program concept, known as the First Draft of a Report on EDVAC also Alan Turing Konrad Zuse Eckert & Mauchly The basic structure

More information

CS 223: Data Structures and Programming Techniques. Exam 2

CS 223: Data Structures and Programming Techniques. Exam 2 CS 223: Data Structures and Programming Techniques. Exam 2 Instructor: Jim Aspnes Work alone. Do not use any notes or books. You have approximately 75 minutes to complete this exam. Please write your answers

More information

CSE351: Memory, Data, & Addressing I

CSE351: Memory, Data, & Addressing I CSE351: Memory, Data, & Addressing I CSE 351 Spring 2017 Instructor: Ruth Anderson Teaching Assistants: Dylan Johnson Kevin Bi Linxing Preston Jiang Cody Ohlsen Yufang Sun Joshua Curtis http://xkcd.com/138/

More information

Question 1: Number Representation

Question 1: Number Representation Question 1: Number Representation (A) What is the value of the char 0b 1101 1101 in decimal? If x = 0xDD, x = 0x23 = 2 5 +3 = 35 Also accepted unsigned: 0xDD = (16+1)*13 = 221-35 or 221 (B) What is the

More information

CS356: Discussion #15 Review for Final Exam. Marco Paolieri Illustrations from CS:APP3e textbook

CS356: Discussion #15 Review for Final Exam. Marco Paolieri Illustrations from CS:APP3e textbook CS356: Discussion #15 Review for Final Exam Marco Paolieri (paolieri@usc.edu) Illustrations from CS:APP3e textbook Processor Organization Pipeline: Computing Throughput and Delay n 1 2 3 4 5 6 clock (ps)

More information

Structs and Alignment

Structs and Alignment Structs and Alignment CSE 351 Autumn 2016 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun

More information

EXAMINATIONS 2014 TRIMESTER 1 SWEN 430. Compiler Engineering. This examination will be marked out of 180 marks.

EXAMINATIONS 2014 TRIMESTER 1 SWEN 430. Compiler Engineering. This examination will be marked out of 180 marks. T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON EXAMINATIONS 2014 TRIMESTER 1 SWEN 430 Compiler Engineering Time Allowed: THREE HOURS Instructions:

More information

ASSEMBLY III: PROCEDURES. Jo, Heeseung

ASSEMBLY III: PROCEDURES. Jo, Heeseung ASSEMBLY III: PROCEDURES Jo, Heeseung IA-32 STACK (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Princeton University Computer Science 217: Introduction to Programming Systems. Assembly Language: Function Calls

Princeton University Computer Science 217: Introduction to Programming Systems. Assembly Language: Function Calls Princeton University Computer Science 217: Introduction to Programming Systems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems x86-64 solutions Pertinent

More information

15-213/18-243, Summer 2011 Exam 1 Tuesday, June 28, 2011

15-213/18-243, Summer 2011 Exam 1 Tuesday, June 28, 2011 Andrew login ID: Full Name: Section: 15-213/18-243, Summer 2011 Exam 1 Tuesday, June 28, 2011 Instructions: Make sure that your exam is not missing any sheets, then write your Andrew login ID, full name,

More information

Assembly III: Procedures. Jo, Heeseung

Assembly III: Procedures. Jo, Heeseung Assembly III: Procedures Jo, Heeseung IA-32 Stack (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Machine Organization & Assembly Language

Machine Organization & Assembly Language Name: 1 CSE 378 Fall 2010 Machine Organization & Assembly Language Final Exam Solution Write your answers on these pages. Additional pages may be attached (with staple) if necessary. Please ensure that

More information

6.1. CS356 Unit 6. x86 Procedures Basic Stack Frames

6.1. CS356 Unit 6. x86 Procedures Basic Stack Frames 6.1 CS356 Unit 6 x86 Procedures Basic Stack Frames 6.2 Review of Program Counter (Instruc. Pointer) PC/IP is used to fetch an instruction PC/IP contains the address of the next instruction The value in

More information

We made it! Java: Assembly language: OS: Machine code: Computer system:

We made it! Java: Assembly language: OS: Machine code: Computer system: We made it! C: car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp %rbp 0111010000011000

More information

Areas for growth: I love feedback

Areas for growth: I love feedback Assembly part 2 1 Areas for growth: I love feedback Speed, I will go slower. Clarity. I will take time to explain everything on the slides. Feedback. I give more Kahoot questions and explain each answer.

More information

Stack Frame Components. Using the Stack (4) Stack Structure. Updated Stack Structure. Caller Frame Arguments 7+ Return Addr Old %rbp

Stack Frame Components. Using the Stack (4) Stack Structure. Updated Stack Structure. Caller Frame Arguments 7+ Return Addr Old %rbp Stack Frame Components Frame pointer %rbp Stack pointer Caller Frame rguments 7+ Return ddr Old %rbp Saved Registers + Local Variables rgument Build 1 Using the Stack (4) Stack Structure long call_incr()

More information

Do not turn the page until 5:10.

Do not turn the page until 5:10. University of Washington Computer Science & Engineering Autumn 2017 Instructor: Justin Hsia 2017-10-30 Last Name: First Name: Student ID Number: Name of person to your Left Right All work is my own. I

More information

Corrections made in this version not in first posting:

Corrections made in this version not in first posting: 1 Changelog 1 Corrections made in this version not in first posting: 27 Mar 2017: slide 18: mark suspect numbers for 1 accumulator 5 May 2017: slide 7: slower if to can be slower if notes on rotate 2 I

More information

Department of Computer Science Admission Test for PhD Program. Part I Time : 30 min Max Marks: 15

Department of Computer Science Admission Test for PhD Program. Part I Time : 30 min Max Marks: 15 Department of Computer Science Admission Test for PhD Program Part I Time : 30 min Max Marks: 15 Each Q carries 1 marks. ¼ mark will be deducted for every wrong answer. Part II of only those candidates

More information

CS61BL. Lecture 5: Graphs Sorting

CS61BL. Lecture 5: Graphs Sorting CS61BL Lecture 5: Graphs Sorting Graphs Graphs Edge Vertex Graphs (Undirected) Graphs (Directed) Graphs (Multigraph) Graphs (Acyclic) Graphs (Cyclic) Graphs (Connected) Graphs (Disconnected) Graphs (Unweighted)

More information

THE UNIVERSITY OF BRITISH COLUMBIA CPSC 261: MIDTERM 1 February 14, 2017

THE UNIVERSITY OF BRITISH COLUMBIA CPSC 261: MIDTERM 1 February 14, 2017 THE UNIVERSITY OF BRITISH COLUMBIA CPSC 261: MIDTERM 1 February 14, 2017 Last Name: First Name: Signature: UBC Student #: Important notes about this examination 1. You have 70 minutes to write the 6 questions

More information

Recall from Last Time: Big-Oh Notation

Recall from Last Time: Big-Oh Notation CSE 326 Lecture 3: Analysis of Algorithms Today, we will review: Big-Oh, Little-Oh, Omega (Ω), and Theta (Θ): (Fraternities of functions ) Examples of time and space efficiency analysis Covered in Chapter

More information

Machine-level Programs Procedure

Machine-level Programs Procedure Computer Systems Machine-level Programs Procedure Han, Hwansoo Mechanisms in Procedures Passing control To beginning of procedure code Back to return point Passing data Procedure arguments Return value

More information

x86-64 Programming III & The Stack

x86-64 Programming III & The Stack x86-64 Programming III & The Stack CSE 351 Winter 2018 Instructor: Mark Wyse Teaching Assistants: Kevin Bi Parker DeWilde Emily Furst Sarah House Waylon Huang Vinny Palaniappan http://xkcd.com/1652/ Administrative

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam May 19, 2018 Section I A DATA STRUCTURES SOLUTION NO books, notes, or calculators may be used, and you must work entirely on your own. Name: UCFID: NID: Question # Max

More information

Optimization part 1 1

Optimization part 1 1 Optimization part 1 1 Changelog 1 Changes made in this version not seen in first lecture: 29 Feb 2018: loop unrolling performance: remove bogus instruction cache overhead remark 29 Feb 2018: spatial locality

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: February 28, 2018 at 06:32 CS429 Slideset 9: 1 Mechanisms in Procedures

More information

Assignment 11: functions, calling conventions, and the stack

Assignment 11: functions, calling conventions, and the stack Assignment 11: functions, calling conventions, and the stack ECEN 4553 & 5013, CSCI 4555 & 5525 Prof. Jeremy G. Siek December 5, 2008 The goal of this week s assignment is to remove function definitions

More information

CSE351 Autumn 2012 Midterm Exam (5 Nov 2012)

CSE351 Autumn 2012 Midterm Exam (5 Nov 2012) CSE351 Autumn 2012 Midterm Exam (5 Nov 2012) Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate will prove to

More information

Machine/Assembler Language Putting It All Together

Machine/Assembler Language Putting It All Together COMP 40: Machine Structure and Assembly Language Programming Fall 2015 Machine/Assembler Language Putting It All Together Noah Mendelsohn Tufts University Email: noah@cs.tufts.edu Web: http://www.cs.tufts.edu/~noah

More information

Memory layout. int foo() { int b; } int main() { int a; foo(); Program. Stack. Heap. foo: int b main: int a

Memory layout. int foo() { int b; } int main() { int a; foo(); Program. Stack. Heap. foo: int b main: int a Function Pointers Memory layout int foo() { int b; } int main() { int a; foo(); } compile main:.lfb6: pushq %rbp.lcfi2: movq %rsp, %rbp.lcfi3: subq $32, %rsp.lcfi4: movl %edi, -20(%rbp) movq %rsi, -32(%rbp)

More information

Complexity. Alexandra Silva.

Complexity. Alexandra Silva. Complexity Alexandra Silva alexandra@cs.ru.nl http://www.cs.ru.nl/~alexandra Institute for Computing and Information Sciences 22nd April 2014 Alexandra 22nd April 2014 Lesson 1 1 / 47 This is a course

More information

CSCI 2132 Software Development. Lecture 17: Functions and Recursion

CSCI 2132 Software Development. Lecture 17: Functions and Recursion CSCI 2132 Software Development Lecture 17: Functions and Recursion Instructor: Vlado Keselj Faculty of Computer Science Dalhousie University 15-Oct-2018 (17) CSCI 2132 1 Previous Lecture Example: binary

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1: Introduction Staff Lecturer Prof. Michael Carbin mcarbin@mit.edu 253-5881 32-G782 Prof. Martin Rinard rinard@mit.edu 258-6922 32-G828 Rooms MWF 3-370 TH 4-149 Course Secretary Cree Bruins cbruins@csail.mit.edu

More information

AMCAT Automata Coding Sample Questions And Answers

AMCAT Automata Coding Sample Questions And Answers 1) Find the syntax error in the below code without modifying the logic. #include int main() float x = 1.1; switch (x) case 1: printf( Choice is 1 ); default: printf( Invalid choice ); return

More information

CS 261 Fall Machine and Assembly Code. Data Movement and Arithmetic. Mike Lam, Professor

CS 261 Fall Machine and Assembly Code. Data Movement and Arithmetic. Mike Lam, Professor CS 261 Fall 2018 0000000100000f50 55 48 89 e5 48 83 ec 10 48 8d 3d 3b 00 00 00 c7 0000000100000f60 45 fc 00 00 00 00 b0 00 e8 0d 00 00 00 31 c9 89 0000000100000f70 45 f8 89 c8 48 83 c4 10 5d c3 Mike Lam,

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 6

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 6 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 6 LAST TIME: SYSTEM V AMD64 ABI How to implement basic C abstractions in x86-64? C subroutines with arguments, and local/global variables Began

More information

Credits and Disclaimers

Credits and Disclaimers Credits and Disclaimers 1 The examples and discussion in the following slides have been adapted from a variety of sources, including: Chapter 3 of Computer Systems 3 nd Edition by Bryant and O'Hallaron

More information

QUIZ How do we implement run-time constants and. compile-time constants inside classes?

QUIZ How do we implement run-time constants and. compile-time constants inside classes? QUIZ How do we implement run-time constants and compile-time constants inside classes? Compile-time constants in classes The static keyword inside a class means there s only one instance, regardless of

More information

C++ Named Return Value Optimization

C++ Named Return Value Optimization C++ Named Return Value Optimization post. Robert.Schneider@hotmail.de meetup.com/c-user-group-karlsruhe auto create() -> T { T castor /* initialize */; //... return castor; } void use() { T pollux = create();

More information

1 Format. 2 Topics Covered. 2.1 Minimal Spanning Trees. 2.2 Union Find. 2.3 Greedy. CS 124 Quiz 2 Review 3/25/18

1 Format. 2 Topics Covered. 2.1 Minimal Spanning Trees. 2.2 Union Find. 2.3 Greedy. CS 124 Quiz 2 Review 3/25/18 CS 124 Quiz 2 Review 3/25/18 1 Format You will have 83 minutes to complete the exam. The exam may have true/false questions, multiple choice, example/counterexample problems, run-this-algorithm problems,

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 252: Data Structures and Algorithms Lecture 1 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati Time Table D / T 8-8:55 9-9:55 10-10:55

More information

Algorithms with numbers (1) CISC4080, Computer Algorithms CIS, Fordham Univ.! Instructor: X. Zhang Spring 2017

Algorithms with numbers (1) CISC4080, Computer Algorithms CIS, Fordham Univ.! Instructor: X. Zhang Spring 2017 Algorithms with numbers (1) CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang Spring 2017 Acknowledgement The set of slides have used materials from the following resources Slides for

More information

Problem 1. Multiple Choice (choose only one answer)

Problem 1. Multiple Choice (choose only one answer) Practice problems for the Final (Tuesday, May 14 4:30-6:30pm MHP 101). The Final Exam will cover all course material. You will be expected to know the material from the assigned readings in the book, the

More information

Machine-Level Programming III: Procedures

Machine-Level Programming III: Procedures Machine-Level Programming III: Procedures CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides Mechanisms in Procedures Passing control

More information

CSE351 Spring 2018, Midterm Exam April 27, 2018

CSE351 Spring 2018, Midterm Exam April 27, 2018 CSE351 Spring 2018, Midterm Exam April 27, 2018 Please do not turn the page until 11:30. Last Name: First Name: Student ID Number: Name of person to your left: Name of person to your right: Signature indicating:

More information

Changes made in this version not seen in first lecture:

Changes made in this version not seen in first lecture: 1 Changelog 1 Changes made in this version not seen in first lecture: 11 April 2018: loop unrolling v cache blocking (2): corrected second example which just did no loop unrolling or cache blocking before

More information

Memory Allocation I. CSE 351 Autumn Instructor: Justin Hsia

Memory Allocation I. CSE 351 Autumn Instructor: Justin Hsia Memory Allocation I CSE 351 Autumn 2017 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan Administrivia

More information

Final Exam. Spring Semester 2017 KAIST EE209 Programming Structures for Electrical Engineering. Name: Student ID:

Final Exam. Spring Semester 2017 KAIST EE209 Programming Structures for Electrical Engineering. Name: Student ID: Spring Semester 2017 KAIST EE209 Programming Structures for Electrical Engineering Final Exam Name: This exam is open book and notes. Read the questions carefully and focus your answers on what has been

More information

Data Representa/ons: IA32 + x86-64

Data Representa/ons: IA32 + x86-64 X86-64 Instruc/on Set Architecture Instructor: Sanjeev Se(a 1 Data Representa/ons: IA32 + x86-64 Sizes of C Objects (in Bytes) C Data Type Typical 32- bit Intel IA32 x86-64 unsigned 4 4 4 int 4 4 4 long

More information

CS165 Computer Security. Understanding low-level program execution Oct 1 st, 2015

CS165 Computer Security. Understanding low-level program execution Oct 1 st, 2015 CS165 Computer Security Understanding low-level program execution Oct 1 st, 2015 A computer lets you make more mistakes faster than any invention in human history - with the possible exceptions of handguns

More information

Registers. Ray Seyfarth. September 8, Bit Intel Assembly Language c 2011 Ray Seyfarth

Registers. Ray Seyfarth. September 8, Bit Intel Assembly Language c 2011 Ray Seyfarth Registers Ray Seyfarth September 8, 2011 Outline 1 Register basics 2 Moving a constant into a register 3 Moving a value from memory into a register 4 Moving values from a register into memory 5 Moving

More information

UNIT 5B Binary Search

UNIT 5B Binary Search 205/09/30 UNIT 5B Binary Search Course Announcements Written exam next week (Wed. Oct 7 ) Practice exam available on the Resources page Exam reviews: Sunday afternoon; watch Piazza for times and places

More information

Functions. CS10001: Programming & Data Structures. Sudeshna Sarkar Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Functions. CS10001: Programming & Data Structures. Sudeshna Sarkar Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Functions CS10001: Programming & Data Structures Sudeshna Sarkar Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur 1 Recursion A process by which a function calls itself

More information

VE281 Data Structures and Algorithms. Introduction and Asymptotic Algorithm Analysis

VE281 Data Structures and Algorithms. Introduction and Asymptotic Algorithm Analysis VE281 Data Structures and Algorithms Introduction and Asymptotic Algorithm Analysis Time and Location Time: Tuesday 10:00-11:40 am, Thursday 10:00-11:40 am. Location: Dong Xia Yuan 200 2 Instructor Weikang

More information

CSC 252: Computer Organization Spring 2018: Lecture 5

CSC 252: Computer Organization Spring 2018: Lecture 5 CSC 252: Computer Organization Spring 2018: Lecture 5 Instructor: Yuhao Zhu Department of Computer Science University of Rochester Action Items: Assignment 1 is due tomorrow, midnight Assignment 2 is out

More information

Memory, Data, & Addressing I

Memory, Data, & Addressing I Memory, Data, & Addressing I CSE 351 Autumn 2017 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan http://xkcd.com/953/

More information

Introduction to Computer Systems. Exam 1. February 22, This is an open-book exam. Notes are permitted, but not computers.

Introduction to Computer Systems. Exam 1. February 22, This is an open-book exam. Notes are permitted, but not computers. 15-213 Introduction to Computer Systems Exam 1 February 22, 2005 Name: Andrew User ID: Recitation Section: This is an open-book exam. Notes are permitted, but not computers. Write your answer legibly in

More information

Midterm solutions. n f 3 (n) = 3

Midterm solutions. n f 3 (n) = 3 Introduction to Computer Science 1, SE361 DGIST April 20, 2016 Professors Min-Soo Kim and Taesup Moon Midterm solutions Midterm solutions The midterm is a 1.5 hour exam (4:30pm 6:00pm). This is a closed

More information

University of Washington

University of Washington Roadmap C: car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: Computer system: get_mpg: pushq %rbp movq %rsp, %rbp... popq %rbp

More information

Introduction to Computer Science Midterm 3 Fall, Points

Introduction to Computer Science Midterm 3 Fall, Points Introduction to Computer Science Fall, 2001 100 Points Notes 1. Tear off this sheet and use it to keep your answers covered at all times. 2. Turn the exam over and write your name next to the staple. Do

More information

Q1 Q2 Q3 Q4 Q5 Q6 Total

Q1 Q2 Q3 Q4 Q5 Q6 Total Name: SSN: Computer Science Foundation Exam May 5, 006 Computer Science Section 1A Q1 Q Q3 Q4 Q5 Q6 Total KNW KNW KNW ANL,DSN KNW DSN You have to do all the 6 problems in this section of the exam. Partial

More information

CPSC 261 Midterm 1 Tuesday February 9th, 2016

CPSC 261 Midterm 1 Tuesday February 9th, 2016 CPSC 261 Midterm 1 Tuesday February 9th, 2016 [10] 1. Short Answers [2] a. Two CPUs support the same instruction set, and use the same amount of power. CPU A s latency and throughput are both 10% lower

More information

Practice Problems for the Final

Practice Problems for the Final ECE-250 Algorithms and Data Structures (Winter 2012) Practice Problems for the Final Disclaimer: Please do keep in mind that this problem set does not reflect the exact topics or the fractions of each

More information

CSL 201 Data Structures Mid-Semester Exam minutes

CSL 201 Data Structures Mid-Semester Exam minutes CL 201 Data tructures Mid-emester Exam - 120 minutes Name: Roll Number: Please read the following instructions carefully This is a closed book, closed notes exam. Calculators are allowed. However laptops

More information

CSCI-1200 Data Structures Fall 2017 Lecture 7 Order Notation & Basic Recursion

CSCI-1200 Data Structures Fall 2017 Lecture 7 Order Notation & Basic Recursion CSCI-1200 Data Structures Fall 2017 Lecture 7 Order Notation & Basic Recursion Announcements: Test 1 Information Test 1 will be held Monday, Sept 25th, 2017 from 6-7:50pm Students will be randomly assigned

More information

1 Number Representation(10 points)

1 Number Representation(10 points) Name: Sp15 Midterm Q1 1 Number Representation(10 points) 1 NUMBER REPRESENTATION(10 POINTS) Let x=0xe and y=0x7 be integers stored on a machine with a word size of 4bits. Show your work with the following

More information

General Instructions. You can use QtSpim simulator to work on these assignments.

General Instructions. You can use QtSpim simulator to work on these assignments. General Instructions You can use QtSpim simulator to work on these assignments. Only one member of each group has to submit the assignment. Please Make sure that there is no duplicate submission from your

More information

Programming in C - Part 2

Programming in C - Part 2 Programming in C - Part 2 CPSC 457 Mohammad Reza Zakerinasab May 11, 2016 These slides are forked from slides created by Mike Clark Where to find these slides and related source code? http://goo.gl/k1qixb

More information

Systems Programming and Computer Architecture ( )

Systems Programming and Computer Architecture ( ) Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 AS 2016 Compiling C Control Flow 1 8: Compiling C

More information

Do not turn the page until 5:10.

Do not turn the page until 5:10. University of Washington Computer Science & Engineering Autumn 2018 Instructor: Justin Hsia 2018-10-29 Last Name: First Name: Student ID Number: Name of person to your Left Right All work is my own. I

More information

Announcements. 1. Forms to return today after class:

Announcements. 1. Forms to return today after class: Announcements Handouts (3) to pick up 1. Forms to return today after class: Pretest (take during class later) Laptop information form (fill out during class later) Academic honesty form (must sign) 2.

More information