# CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

Size: px
Start display at page:

Transcription

1 CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES This chapter in the book includes: Objectives Study Guide 9.1 Introduction 9.2 Multiplexers 9.3 Three-State Buffers 9.4 Decoders and Encoders 9.5 Read-Only Memories 9.6 Programmable Logic Devices 9.7 Complex Programmable Logic Devices 9.8 Field Programmable Gate Arrays Problems

2 Multiplexers A multiplexer has a group of data inputs and a group of control inputs used to select one of the data inputs and connect it to the output terminal. Z = A I0 + AI1 Figure 9-1: 2-to-1 Multiplexer and Switch Analog

3 8-to-1 MUX equation: Z = A B C I0 + A B CI1 + A BC I2 + A BCI3 AB C I4 + AB CI5 + ABC I6 + ABCI7 (9-2) Figure 9-2: Multiplexers +

4 Figure 9-3: Logic Diagram for 8-to-1 MUX

5 Control Variable A selects one of two 4-bit data words. Figure 9-4: Quad Multiplexer Used to Select Data

6 Figure 9-5: Quad Multiplexer with Bus Inputs and Output

7 F=C Figure 9-6: Gate Circuit with Added Buffer

8 Figure 9-7: Three-State Buffer

9 (a) Figure 9-8: (b) (c) (d) Four Kinds of Three-State Buffers

10 Data Selection Using Three-State Buffers Figure 9-9:

11 F is determined from the following table: S1 S2 Circuit with Two Three-State Buffers Figure 9-10:

12 Figure 9-11: 4-Bit Adder with Four Sources for One Operand

13 Integrated Circuit with Bi-Directional Input/Output Pin Figure 9-12:

14 Decoders The decoder is another commonly used type of integrated circuit. The decoder generates all of the minterms of the three input variables. Exactly one of the output lines will be 1 for each combination of the values of the input variables. Section 9.4 (p. 256)

15 Figure 9-13: 3-to-8 Line Decoder

16 Figure 9-13: 3-to-8 Line Decoder

17 Figure 9-14a: A 4-to-10 Line Decoder

18 A B C D 7442 Figure 9-14b: A 4-to-10 Line Decoder (b) Block diagram

19 Figure 9-14c: A 4-to-10 Line Decoder (c) Truth Table

20 f1(a, b, c, d) = m1 + m2 + m4 f2(a, b, c, d) = m4 + m7 + m9 Rewriting f1 and f2, we have f1 = (m1 m2 m4 ) f2 = (m4 m7 m9 ) Figure 9-15: Realization of a Multiple-Output Circuit Using a Decoder

21 Encoders An encoder performs the inverse function of a decoder. If input yi is 1 and the other inputs are 0, then abc outputs represent a binary number equal to i. For example, if y3 = 1, then abc = 011. If more than one input is 1, the highest numbered input determines the output. An extra output, d, is 1 if any input is 1, otherwise d is 0. This signal is needed to distinguish the case of all 0 inputs from the case where only y0 is 1. Section 9.4 (p. 258)

22 Figure 9-16: 8-to-3 Priority Coder

23 Read-Only Memories A read-only memory (ROM) consists of an array of semiconductor devices that are interconnected to store an array of binary data. Once binary data is stored in the ROM, it can be read out whenever desired, but the data that is stored cannot be changed under normal operating conditions. Section 9.5 (p. 259)

24 (a) Block diagram Figure 9-17: An 8-Word x 4-Bit ROM

25 Read-Only Memory with n Inputs and m Outputs Figure 9-18:

26 Figure 9-19: Basic ROM Structure

27 Figure 9-21: Equivalent OR Gate for F0 Figure 9-20: An 8-Word x 4-Bit ROM

28 Figure 9-22: Hexadecimal to ASCII Code Converter

29 Figure 9-22: Hexadecimal to ASCII Code Converter

30 Figure 9-23: ROM Realization of Code Converter

31 Programmable Logic Devices A programmable logic device (or PLD) is a general name for a digital integrated circuit capable of being programmed to provide a variety of different logic functions. When a digital system is designed using a PLD, changes in the design can easily be made by changing the programming of the PLD without having to change the wiring in the system. Section 9.6 (p. 263)

32 Programmable Logic Arrays A programmable logic array (PLA) performs the same basic function as a ROM. A PLA with n inputs and m outputs can realize m functions of n variables. The internal organization of the PLA is different from that of the ROM in that the decoder is replaced with an AND array which realizes selected product terms of the input variables. The OR array Ors together the product terms needed to form the output functions, so a PLA implements a sum-of-products expression. Section 9.6 (p. 263)

33 Figure 9-24: Programmable Logic Array Structure

34 PLA with Three Inputs, Five Product Terms, and Four Outputs Figure 9-25:

35 Figure 9-26: AND-OR Array Equivalent to Figure 9-25

36 Table 9-1. PLA Table for Figure 9-25

37 PLA Tables The input side of a PLA table defines the product terms generated by the AND array: 0 indicates a complemented variable 1 indicates an uncomplemented variable indicates a missing variable The output side of a PLA table specifies which product terms are ORed together to form the output functions: 0 indicates a product term is not present 1 indicates a product term is present. Unlike a truth table, zero, one, or more rows in a PLA table can be selected at the same time.

38 (a) PLA table Figure 9-27b: PLA Realization of Equations

39 Programmable Array Logic The PAL (programmable array logic) is a special case of the PLA in which the AND array is programmable and the OR array is fixed. Because only the AND array is programmable, the PAL is less expensive than the more general PLA, and the PAL is easier to program. Section 9.6 (p. 263)

40 Buffer logically equivalent to Section 9.6 (p. 266)

41 Section 9.6 (p. 267)

42 Figure 9-28: PAL Segment

43 Figure 9-29: Implementation of a Full Adder Using a PAL

44 Complex Programmable Logic Devices As integrated circuit technology continues to improve, more and more gates can be placed on a single chip. This has allowed the development of complex programmable logic devices (CPLDs). Instead of a single PAL or PLA on a chip, many PALs or PLAs can be placed on a single CPLD chip and interconnected. When storage elements such as flip-flops are also included on the same integrated circuit (IC), a small digital system can be implemented with a single CPLD. Section 9.7 (p. 268)

45 Figure 9-30: Architecture of Xilinx XCR3064XL CPLD (Figure based on figures and text owned by Xilinx, Inc., Courtesy of Xilinx, Inc. Xilinx, Inc All rights reserved.)

46 Signals generated in a PLA can be routed to an I/O pin through a macrocell. Figure 9-31: CPLD Function Block and Macrocell (A Simplified Version of XCR3064XL)

47 Field-Programmable Gate Arrays A field-programmable gate array (FPGA) is an IC that contains an array of identical logic cells with programmable interconnections. The user can program the functions realized by each logic cell and the connections between the cells. The interior of the FPGA consists of an array of logic cells, also called configurable logic blocks (CLBs). The array of CLBs is surrounded by a ring of I/O interface blocks. These I/O blocks connect the CLB signals to IC pins. Section 9.8 (p. 270)

48 Figure 9-32: Layout of a Typical FPGA

49 Simplified Configurable Logic Block (CLB) Figure 9-33:

50 A four-input LUT is essentially a reprogrammable ROM with 16 1-bit words. Figure 9-34: Implementation of a Lookup Table (LUT)

51 Shannon s Expansion Theorem In order to implement a switching function of more than three variables using 3-variable function generators, the function must be decomposed into subfunctions where each subfunction requires only three variables. For example, we can expand a function of the variables a, b, c, and d about the variable a: f (a, b, c, d) = a'f (0, b, c, d) + a f (1, b, c, d) = a'f0 + a f1 (9-6) f (a, b, c, d) = c'd'+ a'b'c + bcd + ac' (9-7) = a'(c'd'+ b c + bcd) + a(c'd'+ bcd + c') = a'(c'd'+ b'c + cd) + a(c'+ bd) = a'f0 + a f1 Section 9.8 (p )

52 Figure 9-35: Function Expansion Using a Karnaugh Map

53 The general form of Shannon s expansion theorem for expanding an n-variable function about the variable xi is f (x1, x2,..., xi 1, xi, xi+1,..., xn) = xi f (x1, x2,..., xi 1, 0, xi+1,..., xn) + xi f (x1, x2,..., xi 1, 1, xi+1,..., xn) = xi f0 + xi f1 (9-8) Where f0 is the (n 1)-variable function obtained by setting xi to 0 in the original function and f1 is the (n 1)-variable function obtained by setting xi to 1 in the original function.

54 Realization of a 5-Variable Function with Function Generators and a MUX Figure 9-36:

55 G(a, b, c, d, e, f) = a'g0 + ag1 G0 = b'g00 + bg01 G1 = b'g10 + bg11 Realization of a 6-Variable Function with Function Generators and a MUX Figure 9-36:

### DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the

### ECE 331 Digital System Design

ECE 331 Digital System Design Tristate Buffers, Read-Only Memories and Programmable Logic Devices (Lecture #17) The slides included herein were taken from the materials accompanying Fundamentals of Logic

### Programmable Logic Devices

Programmable Logic Devices Programmable Logic Devices Fig. (1) General structure of PLDs Programmable Logic Device (PLD): is an integrated circuit with internal logic gates and/or connections that can

### Programmable Logic Devices (PLDs)

Programmable Logic Devices (PLDs) 212: Digital Design I, week 13 PLDs basically store binary information in a volatile/nonvolatile device. Data is specified by designer and physically inserted (Programmed)

### Presentation 4: Programmable Combinational Devices

Presentation 4: Programmable Combinational Devices Asst. Prof Dr. Ahmet ÖZKURT DEUEEE Based on the Presentation by Prof. Kim, Young Ho Dept. of Information Computer Engineering E-mail : yhkim@hyowon.cs.pusan.ac.kr

### Memory and Programmable Logic

Memory and Programmable Logic Memory units allow us to store and/or retrieve information Essentially look-up tables Good for storing data, not for function implementation Programmable logic device (PLD),

### PROGRAMMABLE LOGIC DEVICES

PROGRAMMABLE LOGIC DEVICES Programmable logic devices (PLDs) are used for designing logic circuits. PLDs can be configured by the user to perform specific functions. The different types of PLDs available

### Fig. 6-1 Conventional and Array Logic Symbols for OR Gate

6- (a) Conventional symbol (b) Array logic symbol Fig. 6- Conventional and Array Logic Symbols for OR Gate 2 Prentice Hall, Inc. 6-2 k address lines Read n data input lines emory unit 2 k words n bits

### Introduction to Programmable Logic Devices (Class 7.2 2/28/2013)

Introduction to Programmable Logic Devices (Class 7.2 2/28/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE Today s Topics Complexity issues Implementation

### I 4 I 3 I 2 I 1 I 0 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 T-125. ROM Truth Table (Partial) 1997 by Prentice-Hall, Inc.

997 by Prentice-Hall, Inc. ano & Kime Upper Saddle River, New Jersey 7458 T-5 Inputs Outputs I 4 I 3 I I I A 7 A 6 A 5 A 4 A 3 A A A...... RO Truth Table (Partial) 997 by Prentice-Hall, Inc. ano & Kime

### Code No: 07A3EC03 Set No. 1

Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,

### END-TERM EXAMINATION

(Please Write your Exam Roll No. immediately) END-TERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA-103 Subject: Digital Electronics Time: 3 Hours Maximum

### Programmable Logic Devices UNIT II DIGITAL SYSTEM DESIGN

Programmable Logic Devices UNIT II DIGITAL SYSTEM DESIGN 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 Implementation in Sequential Logic 2 PAL Logic Implementation Design Example: BCD to Gray Code Converter A B

### DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE4220. PROGRAMMABLE LOGIC DEVICES (PLDs)

COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE4220 PROGRAMMABLE LOGIC DEVICES (PLDs) A PLD, or programmable logic device, is an electronic component that is used

### Injntu.com Injntu.com Injntu.com R16

1. a) What are the three methods of obtaining the 2 s complement of a given binary (3M) number? b) What do you mean by K-map? Name it advantages and disadvantages. (3M) c) Distinguish between a half-adder

### Memory and Programmable Logic

Digital Circuit Design and Language Memory and Programmable Logic Chang, Ik Joon Kyunghee University Memory Classification based on functionality ROM : Read-Only Memory RWM : Read-Write Memory RWM NVRWM

### EECS 150 Homework 7 Solutions Fall (a) 4.3 The functions for the 7 segment display decoder given in Section 4.3 are:

Problem 1: CLD2 Problems. (a) 4.3 The functions for the 7 segment display decoder given in Section 4.3 are: C 0 = A + BD + C + BD C 1 = A + CD + CD + B C 2 = A + B + C + D C 3 = BD + CD + BCD + BC C 4

### R10. II B. Tech I Semester, Supplementary Examinations, May

SET - 1 1. a) Convert the following decimal numbers into an equivalent binary numbers. i) 53.625 ii) 4097.188 iii) 167 iv) 0.4475 b) Add the following numbers using 2 s complement method. i) -48 and +31

### LSN 6 Programmable Logic Devices

LSN 6 Programmable Logic Devices Department of Engineering Technology LSN 6 What Are PLDs? Functionless devices in base form Require programming to operate The logic function of the device is programmed

### 1. Mark the correct statement(s)

1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

### MEMORY AND PROGRAMMABLE LOGIC

MEMORY AND PROGRAMMABLE LOGIC Memory is a device where we can store and retrieve information It can execute a read and a write Programmable Logic is a device where we can store and retrieve information

### B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN

B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is ----- Write the first 9 decimal digits in base 3. (c) What is meant by don

### PROGRAMMABLE MODULES SPECIFICATION OF PROGRAMMABLE COMBINATIONAL AND SEQUENTIAL MODULES

PROGRAMMABLE MODULES SPECIFICATION OF PROGRAMMABLE COMBINATIONAL AND SEQUENTIAL MODULES. psa. rom. fpga THE WAY THE MODULES ARE PROGRAMMED NETWORKS OF PROGRAMMABLE MODULES EXAMPLES OF USES Programmable

### Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Lecture 6 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI 1 Contents FPGA Technology Programmable logic Cell (PLC) Mux-based cells Look up table PLA

### Unit 6 1.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2.Programmable Logic

EE 200: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Unit 6.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2. Logic Logic and Computer Design Fundamentals Part Implementation

### Topics. Midterm Finish Chapter 7

Lecture 9 Topics Midterm Finish Chapter 7 ROM (review) Memory device in which permanent binary information is stored. Example: 32 x 8 ROM Five input lines (2 5 = 32) 32 outputs, each representing a memory

### Programmable Logic Devices

Programmable Logic Devices INTRODUCTION A programmable logic device or PLD is an electronic component used to build reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD

### CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii)

CONTENTS Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CHAPTER 1: NUMBER SYSTEM 1.1 Digital Electronics... 1 1.1.1 Introduction... 1 1.1.2 Advantages of Digital Systems...

### HANSABA COLLEGE OF ENGINEERING & TECHNOLOGY (098) SUBJECT: DIGITAL ELECTRONICS ( ) Assignment

Assignment 1. What is multiplexer? With logic circuit and function table explain the working of 4 to 1 line multiplexer. 2. Implement following Boolean function using 8: 1 multiplexer. F(A,B,C,D) = (2,3,5,7,8,9,12,13,14,15)

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

### Chapter 4: Combinational Logic

Chapter 4: Combinational Logic Combinational Circuit Design Analysis Procedure (Find out nature of O/P) Boolean Expression Approach Truth Table Approach Design Procedure Example : BCD to Excess-3 code

### VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS YEAR / SEMESTER: II / III ACADEMIC YEAR: 2015-2016 (ODD

### R07

www..com www..com SET - 1 II B. Tech I Semester Supplementary Examinations May 2013 SWITCHING THEORY AND LOGIC DESIGN (Com. to EEE, EIE, BME, ECC) Time: 3 hours Max. Marks: 80 Answer any FIVE Questions

### QUESTION BANK FOR TEST

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

### ELCT 912: Advanced Embedded Systems

Advanced Embedded Systems Lecture 2: Memory and Programmable Logic Dr. Mohamed Abd El Ghany, Memory Random Access Memory (RAM) Can be read and written Static Random Access Memory (SRAM) Data stored so

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science

### SHRI ANGALAMMAN COLLEGE OF ENGINEERING. (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI

SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI 621 105 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC1201 DIGITAL

### R07. Code No: V0423. II B. Tech II Semester, Supplementary Examinations, April

SET - 1 II B. Tech II Semester, Supplementary Examinations, April - 2012 SWITCHING THEORY AND LOGIC DESIGN (Electronics and Communications Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

### Programmable Logic Devices. Programmable Read Only Memory (PROM) Example

Programmable Logic Devices Programmable Logic Devices (PLDs) are the integrated circuits. They contain an array of AND gates & another array of OR gates. There are three kinds of PLDs based on the type

### R a) Simplify the logic functions from binary to seven segment display code converter (8M) b) Simplify the following using Tabular method

SET - 1 1. a) Convert the decimal number 250.5 to base 3, base 4 b) Write and prove de-morgan laws c) Implement two input EX-OR gate from 2 to 1 multiplexer (3M) d) Write the demerits of PROM (3M) e) What

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

### FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

FPGA for Complex System Implementation National Chiao Tung University Chun-Jen Tsai 04/14/2011 About FPGA FPGA was invented by Ross Freeman in 1989 SRAM-based FPGA properties Standard parts Allowing multi-level

### UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, Random-Access memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable

### Chapter 13 Programmable Logic Device Architectures

Chapter 13 Programmable Logic Device Architectures Chapter 13 Objectives Selected areas covered in this chapter: Describing different categories of digital system devices. Describing different types of

### COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS UNIT I

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS YEAR / SEM: III / V UNIT I NUMBER SYSTEM & BOOLEAN ALGEBRA

### UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PART-A (2 MARKS)

SUBJECT NAME: DIGITAL LOGIC CIRCUITS YEAR / SEM : II / III DEPARTMENT : EEE UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS 1. What is variable mapping? 2. Name the two canonical forms for Boolean algebra.

28 The McGraw-Hill Companies, Inc. All rights reserved. 28 The McGraw-Hill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28

### SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

### A B AB CD Objectives:

Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3

### Basic FPGA Architectures. Actel FPGAs. PLD Technologies: Antifuse. 3 Digital Systems Implementation Programmable Logic Devices

3 Digital Systems Implementation Programmable Logic Devices Basic FPGA Architectures Why Programmable Logic Devices (PLDs)? Low cost, low risk way of implementing digital circuits as application specific

### PLAs & PALs. Programmable Logic Devices (PLDs) PLAs and PALs

PLAs & PALs Programmable Logic Devices (PLDs) PLAs and PALs PLAs&PALs By the late 1970s, standard logic devices were all the rage, and printed circuit boards were loaded with them. To offer the ultimate

### Combinational Logic Circuits

Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical

### Digital Design Using Digilent FPGA Boards -- Verilog / Active-HDL Edition

Digital Design Using Digilent FPGA Boards -- Verilog / Active-HDL Edition Table of Contents 1. Introduction to Digital Logic 1 1.1 Background 1 1.2 Digital Logic 5 1.3 Verilog 8 2. Basic Logic Gates 9

### Hours / 100 Marks Seat No.

17333 13141 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

### INTRODUCTION TO FPGA ARCHITECTURE

3/3/25 INTRODUCTION TO FPGA ARCHITECTURE DIGITAL LOGIC DESIGN (BASIC TECHNIQUES) a b a y 2input Black Box y b Functional Schematic a b y a b y a b y 2 Truth Table (AND) Truth Table (OR) Truth Table (XOR)

### Model EXAM Question Bank

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI Department of Information Technology Model Exam -1 1. List the main difference between PLA and PAL. PLA: Both AND and OR arrays are programmable

### Principles of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system.

Assignment No. 1 1. State advantages of digital system over analog system. 2. Convert following numbers a. (138.56) 10 = (?) 2 = (?) 8 = (?) 16 b. (1110011.011) 2 = (?) 10 = (?) 8 = (?) 16 c. (3004.06)

### Review. EECS Components and Design Techniques for Digital Systems. Lec 03 Field Programmable Gate Arrays

EECS 5 - Components and Design Techniques for Digital Systems Lec 3 Field Programmable Gate Arrays 9-4-7 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~culler

### Lecture 13: Memory and Programmable Logic

Lecture 13: Memory and Programmable Logic Syed M. Mahmud, Ph.D ECE Department Wayne State University Aby K George, ECE Department, Wayne State University Contents Introduction Random Access Memory Memory

### Evolution of Implementation Technologies. ECE 4211/5211 Rapid Prototyping with FPGAs. Gate Array Technology (IBM s) Programmable Logic

ECE 42/52 Rapid Prototyping with FPGAs Dr. Charlie Wang Department of Electrical and Computer Engineering University of Colorado at Colorado Springs Evolution of Implementation Technologies Discrete devices:

### VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY & COMPUTER SCIENCE AND ENGINEERING QUESTION BANK II SEMESTER CS6201- DIGITAL PRINCIPLE AND SYSTEM DESIGN

### Lecture 7. Standard ICs FPGA (Field Programmable Gate Array) VHDL (Very-high-speed integrated circuits. Hardware Description Language)

Standard ICs FPGA (Field Programmable Gate Array) VHDL (Very-high-speed integrated circuits Hardware Description Language) 1 Standard ICs PLD: Programmable Logic Device CPLD: Complex PLD FPGA: Field Programmable

www.vidyarthiplus.com Question Paper Code : 31298 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013. Third Semester Computer Science and Engineering CS 2202/CS 34/EC 1206 A/10144 CS 303/080230012--DIGITAL

### (ii) Simplify and implement the following SOP function using NOR gates:

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EE6301 DIGITAL LOGIC CIRCUITS UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES PART A 1. How can an OR gate be

### SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN

SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN SUBJECT: CSE 2.1.6 DIGITAL LOGIC DESIGN CLASS: 2/4 B.Tech., I SEMESTER, A.Y.2017-18 INSTRUCTOR: Sri A.M.K.KANNA

### DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 3 DLD P VIDYA SAGAR

DLD UNIT III Combinational Circuits (CC), Analysis procedure, Design Procedure, Combinational circuit for different code converters and other problems, Binary Adder- Subtractor, Decimal Adder, Binary Multiplier,

### ELCT 501: Digital System Design

ELCT 501: Digital System Lecture 3: Memory and Programmable Logic (continue) Dr. Mohamed Abd El Ghany, Memory Model 32-bit address space can address up to 4 GB (2 32 ) different memory locations 0x00000000

### CSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map

CSCI 22: Computer Architecture I Instructor: Pranava K. Jha Simplification of Boolean Functions using a Karnaugh Map Q.. Plot the following Boolean function on a Karnaugh map: f(a, b, c, d) = m(, 2, 4,

### D I G I T A L C I R C U I T S E E

D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,

### Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

### SUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3

UNIT - I PART A (2 Marks) 1. Using Demorgan s theorem convert the following Boolean expression to an equivalent expression that has only OR and complement operations. Show the function can be implemented

### EECS150, Fall 2004, Midterm 1, Prof. Culler. Problem 1 (15 points) 1.a. Circle the gate-level circuits that DO NOT implement a Boolean AND function.

Problem 1 (15 points) 1.a. Circle the gate-level circuits that DO NOT implement a Boolean AND function. 1.b. Show that a 2-to-1 MUX is universal (i.e. that any Boolean expression can be implemented with

### COMBINATIONAL LOGIC CIRCUITS

COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic

### Digital Electronics 27. Digital System Design using PLDs

1 Module -27 Digital System Design 1. Introduction 2. Digital System Design 2.1 Standard (Fixed function) ICs based approach 2.2 Programmable ICs based approach 3. Comparison of Digital System Design approaches

### DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY Dept/Sem: II CSE/03 DEPARTMENT OF ECE CS8351 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT I BOOLEAN ALGEBRA AND LOGIC GATES PART A 1. How many

### Section 6. Memory Components Chapter 5.7, 5.8 Physical Implementations Chapter 7 Programmable Processors Chapter 8

Section 6 Memory Components Chapter 5.7, 5.8 Physical Implementations Chapter 7 Programmable Processors Chapter 8 Types of memory Two major types of memory Volatile When power to the device is removed

### Outline. Field Programmable Gate Arrays. Programming Technologies Architectures. Programming Interfaces. Historical perspective

Outline Field Programmable Gate Arrays Historical perspective Programming Technologies Architectures PALs, PLDs,, and CPLDs FPGAs Programmable logic Interconnect network I/O buffers Specialized cores Programming

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK NAME OF THE SUBJECT: EE 2255 DIGITAL LOGIC CIRCUITS

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK NAME OF THE SUBJECT: EE 2255 DIGITAL LOGIC CIRCUITS YEAR / SEM: II / IV UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL

### Review: Chip Design Styles

MPT-50 Introduction to omputer Design SFU, Harbour entre, Spring 007 Lecture 9: Feb. 6, 007 Programmable Logic Devices (PLDs) - Read Only Memory (ROM) - Programmable Array Logic (PAL) - Programmable Logic

### DKT 122/3 DIGITAL SYSTEM 1

Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2) Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits

### FPGA: What? Why? Marco D. Santambrogio

FPGA: What? Why? Marco D. Santambrogio marco.santambrogio@polimi.it 2 Reconfigurable Hardware Reconfigurable computing is intended to fill the gap between hardware and software, achieving potentially much

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

### CS470: Computer Architecture. AMD Quad Core

CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flip-flops Functional bocks: Combinational, Sequential Instruction

### IMPLEMENTATION DESIGN FLOW

IMPLEMENTATION DESIGN FLOW Hà Minh Trần Hạnh Nguyễn Duy Thái Course: Reconfigurable Computing Outline Over view Integra tion Node manipulation LUT-based mapping Design flow Design entry Functional simulation

### CS6201-DIGITAL PRINCIPLE AND SYSTEM DESIGN I YEAR/II SEM PART-B UNIT-I BOOLEAN ALGEBRA AND LOGIC GATES.

CS6201-DIGITAL PRINCIPLE AND SYSTEM DESIGN I YEAR/II SEM PART-B UNIT-I BOOLEAN ALGEBRA AND LOGIC GATES. 1) Simplify the boolean function using tabulation method. F = (0, 1, 2, 8, 10, 11, 14, 15) List all

### VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Academic Year 2018 19 III SEMESTER CS8351-DIGITAL PRINCIPLES AND SYSTEM DESIGN Regulation

### Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs

Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs and an arbitrary truth table Analysis Procedure We

### BHARATHIDASAN ENGINEERING COLLEGE Degree / Branch : B.E./ECE Year / Sem : II/ III Sub.Code / Name : EC6302/DIGITAL ELECTRONICS

BHARATHIDASAN ENGINEERING COLLEGE Degree / Branch : B.E./ECE Year / Sem : II/ III Sub.Code / Name : EC6302/DIGITAL ELECTRONICS FREQUENTLY ASKED QUESTIONS UNIT I MINIMIZATION TECHNIQUES AND LOGIC GATES

### Combinational Circuits

Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables

### Computer Architecture

Computer Architecture Lecture 1: Digital logic circuits The digital computer is a digital system that performs various computational tasks. Digital computers use the binary number system, which has two

### PART B. 3. Minimize the following function using K-map and also verify through tabulation method. F (A, B, C, D) = +d (0, 3, 6, 10).

II B. Tech II Semester Regular Examinations, May/June 2015 SWITCHING THEORY AND LOGIC DESIGN (Com. to EEE, ECE, ECC, EIE.) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A

### 10EC33: DIGITAL ELECTRONICS QUESTION BANK

10EC33: DIGITAL ELECTRONICS Faculty: Dr.Bajarangbali E Examination QuestionS QUESTION BANK 1. Discuss canonical & standard forms of Boolean functions with an example. 2. Convert the following Boolean function

### Ch. 5 : Boolean Algebra &

Ch. 5 : Boolean Algebra & Reduction elektronik@fisika.ui.ac.id Objectives Should able to: Write Boolean equations for combinational logic applications. Utilize Boolean algebra laws and rules for simplifying

### CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey

CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input

### BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book

BUILDING BLOCKS OF A BASIC MICROPROCESSOR Part PowerPoint Format of Lecture 3 of Book Decoder Tri-state device Full adder, full subtractor Arithmetic Logic Unit (ALU) Memories Example showing how to write

### IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### NODIA AND COMPANY. GATE SOLVED PAPER Computer Science Engineering Digital Logic. Copyright By NODIA & COMPANY

No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author. GATE SOLVED PAPER Computer