Lecture 26: Missing data

Size: px
Start display at page:

Download "Lecture 26: Missing data"

Transcription

1 Lecture 26: Missing data Reading: ESL 9.6 STATS 202: Data mining and analysis December 1, / 10

2 Missing data is everywhere Survey data: nonresponse. 2 / 10

3 Missing data is everywhere Survey data: nonresponse. Longitudinal studies and clinical trials: dropout. 2 / 10

4 Missing data is everywhere Survey data: nonresponse. Longitudinal studies and clinical trials: dropout. Recommendation systems: different individuals interact with or express preferences for different items. 2 / 10

5 Missing data is everywhere Survey data: nonresponse. Longitudinal studies and clinical trials: dropout. Recommendation systems: different individuals interact with or express preferences for different items. Data integration: different variables collected by different organizations or in different experiments or trials. 2 / 10

6 Mechanisms for missing data Missing completely at random: Pattern of missingness independent of missing values and the values of any measured variables Example. We run a taste study for 20 different drinks. Each subject was asked to rate only 4 drinks chosen at random. 3 / 10

7 Mechanisms for missing data Missing completely at random: Pattern of missingness independent of missing values and the values of any measured variables Example. We run a taste study for 20 different drinks. Each subject was asked to rate only 4 drinks chosen at random. Missing at random: The pattern of missingness depends on other predictors, but conditional on observed variables, missingness is independent of missing value. Example. In a survey, poor subjects were less likely to answer a question about drug use than wealthy subjects. 3 / 10

8 Mechanisms for missing data Missing completely at random: Pattern of missingness independent of missing values and the values of any measured variables Example. We run a taste study for 20 different drinks. Each subject was asked to rate only 4 drinks chosen at random. Missing at random: The pattern of missingness depends on other predictors, but conditional on observed variables, missingness is independent of missing value. Example. In a survey, poor subjects were less likely to answer a question about drug use than wealthy subjects. Related to observed predictors (income) but not drug use. 3 / 10

9 Mechanisms for missing data Missing completely at random: Pattern of missingness independent of missing values and the values of any measured variables Example. We run a taste study for 20 different drinks. Each subject was asked to rate only 4 drinks chosen at random. Missing at random: The pattern of missingness depends on other predictors, but conditional on observed variables, missingness is independent of missing value. Example. In a survey, poor subjects were less likely to answer a question about drug use than wealthy subjects. Related to observed predictors (income) but not drug use. Missing not at random: The pattern of missingness is related to the missing variable, even after correcting for measured variables. EX 1: High earners less likely to report their income. EX 2: Record time until subjects have an accident but only follow for three years (censoring). 3 / 10

10 Dealing with missing data Categorical case: Treat "missing" as an additional category. 4 / 10

11 Dealing with missing data Categorical case: Treat "missing" as an additional category. Surrogate variables: Tree-based methods like CART can deal with missingness by introducing surrogate variables! 4 / 10

12 Dealing with missing data Categorical case: Treat "missing" as an additional category. Surrogate variables: Tree-based methods like CART can deal with missingness by introducing surrogate variables! Observation deletion: Delete observations with missing values. 4 / 10

13 Dealing with missing data Categorical case: Treat "missing" as an additional category. Surrogate variables: Tree-based methods like CART can deal with missingness by introducing surrogate variables! Observation deletion: Delete observations with missing values. Drawbacks: Reduces dataset size, can bias input feature space, doesn t work at test time. 4 / 10

14 Dealing with missing data Categorical case: Treat "missing" as an additional category. Surrogate variables: Tree-based methods like CART can deal with missingness by introducing surrogate variables! Observation deletion: Delete observations with missing values. Drawbacks: Reduces dataset size, can bias input feature space, doesn t work at test time. Variable deletion: Delete variables with missing values 4 / 10

15 Dealing with missing data Categorical case: Treat "missing" as an additional category. Surrogate variables: Tree-based methods like CART can deal with missingness by introducing surrogate variables! Observation deletion: Delete observations with missing values. Drawbacks: Reduces dataset size, can bias input feature space, doesn t work at test time. Variable deletion: Delete variables with missing values Drawbacks: May be throwing away valuable variable, can bias input feature space. 4 / 10

16 Dealing with missing data Single imputation: We replace each missing value with a single number. 1. Replace with the mean or median of the column. 5 / 10

17 Dealing with missing data Single imputation: We replace each missing value with a single number. 1. Replace with the mean or median of the column. 2. Replace with a random sample from the non-missing values in the column. 5 / 10

18 Dealing with missing data Single imputation: We replace each missing value with a single number. 1. Replace with the mean or median of the column. 2. Replace with a random sample from the non-missing values in the column. 3. Replace missing values in X j with a regression estimate from other predictors, X j. 5 / 10

19 Dealing with missing data Single imputation: We replace each missing value with a single number. 1. Replace with the mean or median of the column. 2. Replace with a random sample from the non-missing values in the column. 3. Replace missing values in X j with a regression estimate from other predictors, X j. Drawbacks: Methods 1 and 2 can give biased coefficients if the data is not missing completely at random. Method 3 does not have bias if the missing variable is predicted well by X j. 5 / 10

20 Dealing with missing data Single imputation: We replace each missing value with a single number. 1. Replace with the mean or median of the column. 2. Replace with a random sample from the non-missing values in the column. 3. Replace missing values in X j with a regression estimate from other predictors, X j. Drawbacks: Methods 1 and 2 can give biased coefficients if the data is not missing completely at random. Method 3 does not have bias if the missing variable is predicted well by X j. Resulting inferences about estimated parameters or predictions do not account for uncertainty in missing values. 5 / 10

21 Dealing with missing data Multiple imputation: Form many imputed datasets by positing a distribution over unobserved variables and repeatedly sampling from that distribution. For example, each sample could be obtained by replacing each missing value in X j with a regression estimate from the other predictors X j, plus some noise. This is repeated several times. Run entire analysis on each dataset, and use multiple results to get a better estimate of uncertainty. If the regression fit of Xj onto X j is good, the standard errors from this method can be unbiased. 6 / 10

22 Missing data in more than one variable Problem: What if some observations have multiple missing values? 7 / 10

23 Missing data in more than one variable Problem: What if some observations have multiple missing values? Iterative multiple imputation: Start with a simple imputation. Then, iterate the following: 1. Update imputation of X 1 given current values of X Update imputation of X 2 given current values of X Update imputation of X p given current values of X p. 7 / 10

24 Missing data in more than one variable Problem: What if some observations have multiple missing values? Iterative multiple imputation: Start with a simple imputation. Then, iterate the following: 1. Update imputation of X 1 given current values of X Update imputation of X 2 given current values of X Update imputation of X p given current values of X p. Model based imputation: Posit a joint model for all variables. Fit this model and infer best values for all missing datapoints. Rarely worth the trouble. 7 / 10

25 Missing data in more than one variable Problem: What if some observations have multiple missing values? Low-rank matrix completion: Motivation: In linear regression, ŷ can be understood as a projection of y onto the space spanned by the columns of X. In a sense, what matters is not X itself but this column space. 8 / 10

26 Missing data in more than one variable Problem: What if some observations have multiple missing values? Low-rank matrix completion: Motivation: In linear regression, ŷ can be understood as a projection of y onto the space spanned by the columns of X. In a sense, what matters is not X itself but this column space. Key observation: If predictor matrix is approximately low-rank (if points lie near a lower-dimensional subspace), then one can approximately recover X and its column space even if many entries are missing. 8 / 10

27 Missing data in more than one variable Problem: What if some observations have multiple missing values? Low-rank matrix completion: Motivation: In linear regression, ŷ can be understood as a projection of y onto the space spanned by the columns of X. In a sense, what matters is not X itself but this column space. Key observation: If predictor matrix is approximately low-rank (if points lie near a lower-dimensional subspace), then one can approximately recover X and its column space even if many entries are missing. Low-rank matrix completion algorithms find a matrix X which is similar to X in its non-missing values, and has a low dimensional column space: min subject to rank(x )=k X X, where X X is the sum of squared differences of the non-missing entries. 8 / 10

28 Missing data in more than one variable Problem: What if some observations have multiple missing values? Matrix completion: This problem can be relaxed to a convex optimization: min X X + λ p σ p, where σ 1,..., σ p are the singular values of X. Here, the penalty λ is inversely related to the rank and can be used as a tuning parameter. i=1 9 / 10

29 Some practical considerations It is important to visualize summaries or plots for the pattern of missingness. 10 / 10

30 Some practical considerations It is important to visualize summaries or plots for the pattern of missingness. If the pattern of missingness is informative, include it as a dummy variable. 10 / 10

31 Some practical considerations It is important to visualize summaries or plots for the pattern of missingness. If the pattern of missingness is informative, include it as a dummy variable. If a variable has too many missing values, you may want to exclude it from your analysis (you can still include a missingness indicator for that variable.) 10 / 10

32 Some practical considerations It is important to visualize summaries or plots for the pattern of missingness. If the pattern of missingness is informative, include it as a dummy variable. If a variable has too many missing values, you may want to exclude it from your analysis (you can still include a missingness indicator for that variable.) If we are using a method that allows it, consider weighting variables according to the rate of missing data. Example. In nearest neighbors, scale each variable and multiply by (100 % missing). 10 / 10

33 Some practical considerations It is important to visualize summaries or plots for the pattern of missingness. If the pattern of missingness is informative, include it as a dummy variable. If a variable has too many missing values, you may want to exclude it from your analysis (you can still include a missingness indicator for that variable.) If we are using a method that allows it, consider weighting variables according to the rate of missing data. Example. In nearest neighbors, scale each variable and multiply by (100 % missing). When imputing, keep in mind that some variables are restricted to be positive or bounded. 10 / 10

34 Some practical considerations It is important to visualize summaries or plots for the pattern of missingness. If the pattern of missingness is informative, include it as a dummy variable. If a variable has too many missing values, you may want to exclude it from your analysis (you can still include a missingness indicator for that variable.) If we are using a method that allows it, consider weighting variables according to the rate of missing data. Example. In nearest neighbors, scale each variable and multiply by (100 % missing). When imputing, keep in mind that some variables are restricted to be positive or bounded. Some variables are well modeled as non-linear functions of other variables. 10 / 10

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017 Machine Learning in the Wild Dealing with Messy Data Rajmonda S. Caceres SDS 293 Smith College October 30, 2017 Analytical Chain: From Data to Actions Data Collection Data Cleaning/ Preparation Analysis

More information

Lecture 13: Model selection and regularization

Lecture 13: Model selection and regularization Lecture 13: Model selection and regularization Reading: Sections 6.1-6.2.1 STATS 202: Data mining and analysis October 23, 2017 1 / 17 What do we know so far In linear regression, adding predictors always

More information

Lecture 16: High-dimensional regression, non-linear regression

Lecture 16: High-dimensional regression, non-linear regression Lecture 16: High-dimensional regression, non-linear regression Reading: Sections 6.4, 7.1 STATS 202: Data mining and analysis November 3, 2017 1 / 17 High-dimensional regression Most of the methods we

More information

Lecture 7: Linear Regression (continued)

Lecture 7: Linear Regression (continued) Lecture 7: Linear Regression (continued) Reading: Chapter 3 STATS 2: Data mining and analysis Jonathan Taylor, 10/8 Slide credits: Sergio Bacallado 1 / 14 Potential issues in linear regression 1. Interactions

More information

Missing Data and Imputation

Missing Data and Imputation Missing Data and Imputation NINA ORWITZ OCTOBER 30 TH, 2017 Outline Types of missing data Simple methods for dealing with missing data Single and multiple imputation R example Missing data is a complex

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup For our analysis goals we would like to do: Y X N (X, 2 I) and then interpret the coefficients

More information

Logistic Regression: Probabilistic Interpretation

Logistic Regression: Probabilistic Interpretation Logistic Regression: Probabilistic Interpretation Approximate 0/1 Loss Logistic Regression Adaboost (z) SVM Solution: Approximate 0/1 loss with convex loss ( surrogate loss) 0-1 z = y w x SVM (hinge),

More information

Lecture 17: Smoothing splines, Local Regression, and GAMs

Lecture 17: Smoothing splines, Local Regression, and GAMs Lecture 17: Smoothing splines, Local Regression, and GAMs Reading: Sections 7.5-7 STATS 202: Data mining and analysis November 6, 2017 1 / 24 Cubic splines Define a set of knots ξ 1 < ξ 2 < < ξ K. We want

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Missing Data. Where did it go?

Missing Data. Where did it go? Missing Data Where did it go? 1 Learning Objectives High-level discussion of some techniques Identify type of missingness Single vs Multiple Imputation My favourite technique 2 Problem Uh data are missing

More information

in this course) ˆ Y =time to event, follow-up curtailed: covered under ˆ Missing at random (MAR) a

in this course) ˆ Y =time to event, follow-up curtailed: covered under ˆ Missing at random (MAR) a Chapter 3 Missing Data 3.1 Types of Missing Data ˆ Missing completely at random (MCAR) ˆ Missing at random (MAR) a ˆ Informative missing (non-ignorable non-response) See 1, 38, 59 for an introduction to

More information

Lecture on Modeling Tools for Clustering & Regression

Lecture on Modeling Tools for Clustering & Regression Lecture on Modeling Tools for Clustering & Regression CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Data Clustering Overview Organizing data into

More information

Topics in Machine Learning-EE 5359 Model Assessment and Selection

Topics in Machine Learning-EE 5359 Model Assessment and Selection Topics in Machine Learning-EE 5359 Model Assessment and Selection Ioannis D. Schizas Electrical Engineering Department University of Texas at Arlington 1 Training and Generalization Training stage: Utilizing

More information

Lecture 9: Support Vector Machines

Lecture 9: Support Vector Machines Lecture 9: Support Vector Machines William Webber (william@williamwebber.com) COMP90042, 2014, Semester 1, Lecture 8 What we ll learn in this lecture Support Vector Machines (SVMs) a highly robust and

More information

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Data preprocessing Feature normalization Missing

More information

Lecture 06 Decision Trees I

Lecture 06 Decision Trees I Lecture 06 Decision Trees I 08 February 2016 Taylor B. Arnold Yale Statistics STAT 365/665 1/33 Problem Set #2 Posted Due February 19th Piazza site https://piazza.com/ 2/33 Last time we starting fitting

More information

CSE446: Linear Regression. Spring 2017

CSE446: Linear Regression. Spring 2017 CSE446: Linear Regression Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Prediction of continuous variables Billionaire says: Wait, that s not what I meant! You say: Chill

More information

Overfitting. Machine Learning CSE546 Carlos Guestrin University of Washington. October 2, Bias-Variance Tradeoff

Overfitting. Machine Learning CSE546 Carlos Guestrin University of Washington. October 2, Bias-Variance Tradeoff Overfitting Machine Learning CSE546 Carlos Guestrin University of Washington October 2, 2013 1 Bias-Variance Tradeoff Choice of hypothesis class introduces learning bias More complex class less bias More

More information

Missing Data. SPIDA 2012 Part 6 Mixed Models with R:

Missing Data. SPIDA 2012 Part 6 Mixed Models with R: The best solution to the missing data problem is not to have any. Stef van Buuren, developer of mice SPIDA 2012 Part 6 Mixed Models with R: Missing Data Georges Monette 1 May 2012 Email: georges@yorku.ca

More information

Epidemiological analysis PhD-course in epidemiology

Epidemiological analysis PhD-course in epidemiology Epidemiological analysis PhD-course in epidemiology Lau Caspar Thygesen Associate professor, PhD 9. oktober 2012 Multivariate tables Agenda today Age standardization Missing data 1 2 3 4 Age standardization

More information

Epidemiological analysis PhD-course in epidemiology. Lau Caspar Thygesen Associate professor, PhD 25 th February 2014

Epidemiological analysis PhD-course in epidemiology. Lau Caspar Thygesen Associate professor, PhD 25 th February 2014 Epidemiological analysis PhD-course in epidemiology Lau Caspar Thygesen Associate professor, PhD 25 th February 2014 Age standardization Incidence and prevalence are strongly agedependent Risks rising

More information

Machine Learning: An Applied Econometric Approach Online Appendix

Machine Learning: An Applied Econometric Approach Online Appendix Machine Learning: An Applied Econometric Approach Online Appendix Sendhil Mullainathan mullain@fas.harvard.edu Jann Spiess jspiess@fas.harvard.edu April 2017 A How We Predict In this section, we detail

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

CS 229 Final Project - Using machine learning to enhance a collaborative filtering recommendation system for Yelp

CS 229 Final Project - Using machine learning to enhance a collaborative filtering recommendation system for Yelp CS 229 Final Project - Using machine learning to enhance a collaborative filtering recommendation system for Yelp Chris Guthrie Abstract In this paper I present my investigation of machine learning as

More information

3 Nonlinear Regression

3 Nonlinear Regression 3 Linear models are often insufficient to capture the real-world phenomena. That is, the relation between the inputs and the outputs we want to be able to predict are not linear. As a consequence, nonlinear

More information

Dimensionality Reduction, including by Feature Selection.

Dimensionality Reduction, including by Feature Selection. Dimensionality Reduction, including by Feature Selection www.cs.wisc.edu/~dpage/cs760 Goals for the lecture you should understand the following concepts filtering-based feature selection information gain

More information

Assignment 4 (Sol.) Introduction to Data Analytics Prof. Nandan Sudarsanam & Prof. B. Ravindran

Assignment 4 (Sol.) Introduction to Data Analytics Prof. Nandan Sudarsanam & Prof. B. Ravindran Assignment 4 (Sol.) Introduction to Data Analytics Prof. andan Sudarsanam & Prof. B. Ravindran 1. Which among the following techniques can be used to aid decision making when those decisions depend upon

More information

Missing Data Missing Data Methods in ML Multiple Imputation

Missing Data Missing Data Methods in ML Multiple Imputation Missing Data Missing Data Methods in ML Multiple Imputation PRE 905: Multivariate Analysis Lecture 11: April 22, 2014 PRE 905: Lecture 11 Missing Data Methods Today s Lecture The basics of missing data:

More information

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Performance Estimation and Regularization Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Bias- Variance Tradeoff Fundamental to machine learning approaches Bias- Variance Tradeoff Error due to Bias:

More information

CSC 411: Lecture 02: Linear Regression

CSC 411: Lecture 02: Linear Regression CSC 411: Lecture 02: Linear Regression Raquel Urtasun & Rich Zemel University of Toronto Sep 16, 2015 Urtasun & Zemel (UofT) CSC 411: 02-Regression Sep 16, 2015 1 / 16 Today Linear regression problem continuous

More information

Nonparametric Regression

Nonparametric Regression Nonparametric Regression John Fox Department of Sociology McMaster University 1280 Main Street West Hamilton, Ontario Canada L8S 4M4 jfox@mcmaster.ca February 2004 Abstract Nonparametric regression analysis

More information

Handling Data with Three Types of Missing Values:

Handling Data with Three Types of Missing Values: Handling Data with Three Types of Missing Values: A Simulation Study Jennifer Boyko Advisor: Ofer Harel Department of Statistics University of Connecticut Storrs, CT May 21, 2013 Jennifer Boyko Handling

More information

Outlier Pursuit: Robust PCA and Collaborative Filtering

Outlier Pursuit: Robust PCA and Collaborative Filtering Outlier Pursuit: Robust PCA and Collaborative Filtering Huan Xu Dept. of Mechanical Engineering & Dept. of Mathematics National University of Singapore Joint w/ Constantine Caramanis, Yudong Chen, Sujay

More information

3 Nonlinear Regression

3 Nonlinear Regression CSC 4 / CSC D / CSC C 3 Sometimes linear models are not sufficient to capture the real-world phenomena, and thus nonlinear models are necessary. In regression, all such models will have the same basic

More information

Missing Data and Imputation

Missing Data and Imputation Missing Data and Imputation Hoff Chapter 7, GH Chapter 25 April 21, 2017 Bednets and Malaria Y:presence or absence of parasites in a blood smear AGE: age of child BEDNET: bed net use (exposure) GREEN:greenness

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Model selection and validation 1: Cross-validation

Model selection and validation 1: Cross-validation Model selection and validation 1: Cross-validation Ryan Tibshirani Data Mining: 36-462/36-662 March 26 2013 Optional reading: ISL 2.2, 5.1, ESL 7.4, 7.10 1 Reminder: modern regression techniques Over the

More information

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods + CS78: Machine Learning and Data Mining Complexity & Nearest Neighbor Methods Prof. Erik Sudderth Some materials courtesy Alex Ihler & Sameer Singh Machine Learning Complexity and Overfitting Nearest

More information

Detecting Burnscar from Hyperspectral Imagery via Sparse Representation with Low-Rank Interference

Detecting Burnscar from Hyperspectral Imagery via Sparse Representation with Low-Rank Interference Detecting Burnscar from Hyperspectral Imagery via Sparse Representation with Low-Rank Interference Minh Dao 1, Xiang Xiang 1, Bulent Ayhan 2, Chiman Kwan 2, Trac D. Tran 1 Johns Hopkins Univeristy, 3400

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

EE 511 Linear Regression

EE 511 Linear Regression EE 511 Linear Regression Instructor: Hanna Hajishirzi hannaneh@washington.edu Slides adapted from Ali Farhadi, Mari Ostendorf, Pedro Domingos, Carlos Guestrin, and Luke Zettelmoyer, Announcements Hw1 due

More information

An MM Algorithm for Multicategory Vertex Discriminant Analysis

An MM Algorithm for Multicategory Vertex Discriminant Analysis An MM Algorithm for Multicategory Vertex Discriminant Analysis Tong Tong Wu Department of Epidemiology and Biostatistics University of Maryland, College Park May 22, 2008 Joint work with Professor Kenneth

More information

Missing data analysis. University College London, 2015

Missing data analysis. University College London, 2015 Missing data analysis University College London, 2015 Contents 1. Introduction 2. Missing-data mechanisms 3. Missing-data methods that discard data 4. Simple approaches that retain all the data 5. RIBG

More information

HANDLING MISSING DATA

HANDLING MISSING DATA GSO international workshop Mathematic, biostatistics and epidemiology of cancer Modeling and simulation of clinical trials Gregory GUERNEC 1, Valerie GARES 1,2 1 UMR1027 INSERM UNIVERSITY OF TOULOUSE III

More information

Reviewer Profiling Using Sparse Matrix Regression

Reviewer Profiling Using Sparse Matrix Regression Reviewer Profiling Using Sparse Matrix Regression Evangelos E. Papalexakis, Nicholas D. Sidiropoulos, Minos N. Garofalakis Technical University of Crete, ECE department 14 December 2010, OEDM 2010, Sydney,

More information

Sampling PCA, enhancing recovered missing values in large scale matrices. Luis Gabriel De Alba Rivera 80555S

Sampling PCA, enhancing recovered missing values in large scale matrices. Luis Gabriel De Alba Rivera 80555S Sampling PCA, enhancing recovered missing values in large scale matrices. Luis Gabriel De Alba Rivera 80555S May 2, 2009 Introduction Human preferences (the quality tags we put on things) are language

More information

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017 Lecture 27: Review Reading: All chapters in ISLR. STATS 202: Data mining and analysis December 6, 2017 1 / 16 Final exam: Announcements Tuesday, December 12, 8:30-11:30 am, in the following rooms: Last

More information

Multiple Imputation for Missing Data. Benjamin Cooper, MPH Public Health Data & Training Center Institute for Public Health

Multiple Imputation for Missing Data. Benjamin Cooper, MPH Public Health Data & Training Center Institute for Public Health Multiple Imputation for Missing Data Benjamin Cooper, MPH Public Health Data & Training Center Institute for Public Health Outline Missing data mechanisms What is Multiple Imputation? Software Options

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 189 Fall 2015 Introduction to Machine Learning Final Please do not turn over the page before you are instructed to do so. You have 2 hours and 50 minutes. Please write your initials on the top-right

More information

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang Maths for Signals and Systems Linear Algebra in Engineering Some problems by Gilbert Strang Problems. Consider u, v, w to be non-zero vectors in R 7. These vectors span a vector space. What are the possible

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

CPSC 340: Machine Learning and Data Mining. More Linear Classifiers Fall 2017

CPSC 340: Machine Learning and Data Mining. More Linear Classifiers Fall 2017 CPSC 340: Machine Learning and Data Mining More Linear Classifiers Fall 2017 Admin Assignment 3: Due Friday of next week. Midterm: Can view your exam during instructor office hours next week, or after

More information

Minitab 17 commands Prepared by Jeffrey S. Simonoff

Minitab 17 commands Prepared by Jeffrey S. Simonoff Minitab 17 commands Prepared by Jeffrey S. Simonoff Data entry and manipulation To enter data by hand, click on the Worksheet window, and enter the values in as you would in any spreadsheet. To then save

More information

Feature selection. LING 572 Fei Xia

Feature selection. LING 572 Fei Xia Feature selection LING 572 Fei Xia 1 Creating attribute-value table x 1 x 2 f 1 f 2 f K y Choose features: Define feature templates Instantiate the feature templates Dimensionality reduction: feature selection

More information

Clustering algorithms and autoencoders for anomaly detection

Clustering algorithms and autoencoders for anomaly detection Clustering algorithms and autoencoders for anomaly detection Alessia Saggio Lunch Seminars and Journal Clubs Université catholique de Louvain, Belgium 3rd March 2017 a Outline Introduction Clustering algorithms

More information

Special Topic: Missing Values. Missing Can Mean Many Things. Missing Values Common in Real Data

Special Topic: Missing Values. Missing Can Mean Many Things. Missing Values Common in Real Data Special Topic: Missing Values Missing Values Common in Real Data Pneumonia: 6.3% of attribute values are missing one attribute is missing in 61% of cases C-Section: only about 1/2% of attribute values

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

Advanced Digital Signal Processing Adaptive Linear Prediction Filter (Using The RLS Algorithm)

Advanced Digital Signal Processing Adaptive Linear Prediction Filter (Using The RLS Algorithm) Advanced Digital Signal Processing Adaptive Linear Prediction Filter (Using The RLS Algorithm) Erick L. Oberstar 2001 Adaptive Linear Prediction Filter Using the RLS Algorithm A complete analysis/discussion

More information

Comparison of Variational Bayes and Gibbs Sampling in Reconstruction of Missing Values with Probabilistic Principal Component Analysis

Comparison of Variational Bayes and Gibbs Sampling in Reconstruction of Missing Values with Probabilistic Principal Component Analysis Comparison of Variational Bayes and Gibbs Sampling in Reconstruction of Missing Values with Probabilistic Principal Component Analysis Luis Gabriel De Alba Rivera Aalto University School of Science and

More information

Lasso. November 14, 2017

Lasso. November 14, 2017 Lasso November 14, 2017 Contents 1 Case Study: Least Absolute Shrinkage and Selection Operator (LASSO) 1 1.1 The Lasso Estimator.................................... 1 1.2 Computation of the Lasso Solution............................

More information

Supplementary Figure 1. Decoding results broken down for different ROIs

Supplementary Figure 1. Decoding results broken down for different ROIs Supplementary Figure 1 Decoding results broken down for different ROIs Decoding results for areas V1, V2, V3, and V1 V3 combined. (a) Decoded and presented orientations are strongly correlated in areas

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

CSE446: Linear Regression. Spring 2017

CSE446: Linear Regression. Spring 2017 CSE446: Linear Regression Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Prediction of continuous variables Billionaire says: Wait, that s not what I meant! You say: Chill

More information

A Survey on Pre-processing and Post-processing Techniques in Data Mining

A Survey on Pre-processing and Post-processing Techniques in Data Mining , pp. 99-128 http://dx.doi.org/10.14257/ijdta.2014.7.4.09 A Survey on Pre-processing and Post-processing Techniques in Data Mining Divya Tomar and Sonali Agarwal Indian Institute of Information Technology,

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Recommender Systems New Approaches with Netflix Dataset

Recommender Systems New Approaches with Netflix Dataset Recommender Systems New Approaches with Netflix Dataset Robert Bell Yehuda Koren AT&T Labs ICDM 2007 Presented by Matt Rodriguez Outline Overview of Recommender System Approaches which are Content based

More information

Package filling. December 11, 2017

Package filling. December 11, 2017 Type Package Package filling December 11, 2017 Title Matrix Completion, Imputation, and Inpainting Methods Version 0.1.0 Filling in the missing entries of a partially observed data is one of fundamental

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks Instructor: Yizhou Sun yzsun@ccs.neu.edu November 19, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining

More information

Missing Data: What Are You Missing?

Missing Data: What Are You Missing? Missing Data: What Are You Missing? Craig D. Newgard, MD, MPH Jason S. Haukoos, MD, MS Roger J. Lewis, MD, PhD Society for Academic Emergency Medicine Annual Meeting San Francisco, CA May 006 INTRODUCTION

More information

Predict Outcomes and Reveal Relationships in Categorical Data

Predict Outcomes and Reveal Relationships in Categorical Data PASW Categories 18 Specifications Predict Outcomes and Reveal Relationships in Categorical Data Unleash the full potential of your data through predictive analysis, statistical learning, perceptual mapping,

More information

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13 CSE 634 - Data Mining Concepts and Techniques STATISTICAL METHODS Professor- Anita Wasilewska (REGRESSION) Team 13 Contents Linear Regression Logistic Regression Bias and Variance in Regression Model Fit

More information

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20 Data mining Piotr Paszek Classification k-nn Classifier (Piotr Paszek) Data mining k-nn 1 / 20 Plan of the lecture 1 Lazy Learner 2 k-nearest Neighbor Classifier 1 Distance (metric) 2 How to Determine

More information

Bias-Variance Decomposition Error Estimators

Bias-Variance Decomposition Error Estimators Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

Nonparametric Importance Sampling for Big Data

Nonparametric Importance Sampling for Big Data Nonparametric Importance Sampling for Big Data Abigael C. Nachtsheim Research Training Group Spring 2018 Advisor: Dr. Stufken SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES Motivation Goal: build a model

More information

I How does the formulation (5) serve the purpose of the composite parameterization

I How does the formulation (5) serve the purpose of the composite parameterization Supplemental Material to Identifying Alzheimer s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis I How does the formulation (5)

More information

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015 CPSC 340: Machine Learning and Data Mining Robust Regression Fall 2015 Admin Can you see Assignment 1 grades on UBC connect? Auditors, don t worry about it. You should already be working on Assignment

More information

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners Data Mining 3.5 (Instance-Based Learners) Fall 2008 Instructor: Dr. Masoud Yaghini Outline Introduction k-nearest-neighbor Classifiers References Introduction Introduction Lazy vs. eager learning Eager

More information

Bias-Variance Decomposition Error Estimators Cross-Validation

Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

model order p weights The solution to this optimization problem is obtained by solving the linear system

model order p weights The solution to this optimization problem is obtained by solving the linear system CS 189 Introduction to Machine Learning Fall 2017 Note 3 1 Regression and hyperparameters Recall the supervised regression setting in which we attempt to learn a mapping f : R d R from labeled examples

More information

Data Mining and Data Warehousing Classification-Lazy Learners

Data Mining and Data Warehousing Classification-Lazy Learners Motivation Data Mining and Data Warehousing Classification-Lazy Learners Lazy Learners are the most intuitive type of learners and are used in many practical scenarios. The reason of their popularity is

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 3 Parametric Distribu>ons We want model the probability

More information

NONPARAMETRIC REGRESSION TECHNIQUES

NONPARAMETRIC REGRESSION TECHNIQUES NONPARAMETRIC REGRESSION TECHNIQUES C&PE 940, 28 November 2005 Geoff Bohling Assistant Scientist Kansas Geological Survey geoff@kgs.ku.edu 864-2093 Overheads and other resources available at: http://people.ku.edu/~gbohling/cpe940

More information

HMC CS 158, Fall 2017 Problem Set 3 Programming: Regularized Polynomial Regression

HMC CS 158, Fall 2017 Problem Set 3 Programming: Regularized Polynomial Regression HMC CS 158, Fall 2017 Problem Set 3 Programming: Regularized Polynomial Regression Goals: To open up the black-box of scikit-learn and implement regression models. To investigate how adding polynomial

More information

SEMANTIC COMPUTING. Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) TU Dresden, 21 December 2018

SEMANTIC COMPUTING. Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) TU Dresden, 21 December 2018 SEMANTIC COMPUTING Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) Dagmar Gromann International Center For Computational Logic TU Dresden, 21 December 2018 Overview Handling Overfitting Recurrent

More information

CPSC 340: Machine Learning and Data Mining. Kernel Trick Fall 2017

CPSC 340: Machine Learning and Data Mining. Kernel Trick Fall 2017 CPSC 340: Machine Learning and Data Mining Kernel Trick Fall 2017 Admin Assignment 3: Due Friday. Midterm: Can view your exam during instructor office hours or after class this week. Digression: the other

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

A Monotonic Sequence and Subsequence Approach in Missing Data Statistical Analysis

A Monotonic Sequence and Subsequence Approach in Missing Data Statistical Analysis Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 1 (2016), pp. 1131-1140 Research India Publications http://www.ripublication.com A Monotonic Sequence and Subsequence Approach

More information

MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES

MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES UNIVERSITY OF GLASGOW MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES by KHUNESWARI GOPAL PILLAY A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in

More information

OLS Assumptions and Goodness of Fit

OLS Assumptions and Goodness of Fit OLS Assumptions and Goodness of Fit A little warm-up Assume I am a poor free-throw shooter. To win a contest I can choose to attempt one of the two following challenges: A. Make three out of four free

More information

Multiple Imputation with Mplus

Multiple Imputation with Mplus Multiple Imputation with Mplus Tihomir Asparouhov and Bengt Muthén Version 2 September 29, 2010 1 1 Introduction Conducting multiple imputation (MI) can sometimes be quite intricate. In this note we provide

More information

Leveling Up as a Data Scientist. ds/2014/10/level-up-ds.jpg

Leveling Up as a Data Scientist.   ds/2014/10/level-up-ds.jpg Model Optimization Leveling Up as a Data Scientist http://shorelinechurch.org/wp-content/uploa ds/2014/10/level-up-ds.jpg Bias and Variance Error = (expected loss of accuracy) 2 + flexibility of model

More information

Data corruption, correction and imputation methods.

Data corruption, correction and imputation methods. Data corruption, correction and imputation methods. Yerevan 8.2 12.2 2016 Enrico Tucci Istat Outline Data collection methods Duplicated records Data corruption Data correction and imputation Data validation

More information