CS 252 Graduate Computer Architecture. Lecture 11: Multiprocessors-II

Size: px
Start display at page:

Download "CS 252 Graduate Computer Architecture. Lecture 11: Multiprocessors-II"

Transcription

1 CS 252 Graduate Computer Architecture Lecture 11: Multiprocessors-II Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley Recap: Sequential Consistency A Memory Model P P P P P P M A system is sequentially consistent if the result of any execution is the same as if the operations of all the processors were executed in some sequential order, and the operations of each individual processor appear in the order specified by the program Leslie Lamport Sequential Consistency = arbitrary order-preserving interleaving of memory references of sequential programs 10/16/2007 2

2 Recap: Sequential Consistency Sequential consistency imposes more memory ordering constraints than those imposed by uniprocessor program dependencies ( ) What are these in our example? T1: T2: Store (X), 1 (X = 1) Load R 1, (Y) Store (Y), 11 (Y = 11) Store (Y ), R 1 (Y = Y) Load R 2, (X) Store (X ), R 2 (X = X) additional SC requirements 10/16/ Recap: Mutual Exclusion and Locks Want to guarantee only one process is active in a critical section Blocking atomic read-modify-write instructions e.g., Test&Set, Fetch&Add, Swap vs Non-blocking atomic read-modify-write instructions e.g., Compare&Swap, Load-reserve/Store-conditional vs Protocols based on ordinary Loads and Stores 10/16/2007 4

3 Issues in Implementing Sequential Consistency P P P P P P Implementation of SC is complicated by two issues Out-of-order execution capability Load(a); Load(b) yes Load(a); Store(b) yes if a! b Store(a); Load(b) yes if a! b Store(a); Store(b) yes if a! b M Caches Caches can prevent the effect of a store from being seen by other processors SC complications motivates architects to consider weak or relaxed memory models 10/16/ Memory Fences Instructions to sequentialize memory accesses Processors with relaxed or weak memory models (i.e., permit Loads and Stores to different addresses to be reordered) need to provide memory fence instructions to force the serialization of memory accesses Examples of processors with relaxed memory models: Sparc V8 (TSO,PSO): Membar Sparc V9 (RMO): Membar #LoadLoad, Membar #LoadStore Membar #StoreLoad, Membar #StoreStore PowerPC (WO): Sync, EIEIO Memory fences are expensive operations, however, one pays the cost of serialization only when it is required 10/16/2007 6

4 Using Memory Fences Producer tail head Consumer R tail R tail R head R Producer posting Item x: Load R tail, (tail) Store (R tail ), x Membar SS R tail =R tail +1 Store (tail), R tail ensures that tail ptr is not updated before x has been stored ensures that R is not loaded before x has been stored Consumer: Load R head, (head) spin: Load R tail, (tail) if R head ==R tail goto spin Membar LL Load R, (R head ) R head =R head +1 Store (head), R head process(r) 10/16/ Data-Race Free Programs a.k.a. Properly Synchronized Programs Process 1... Acquire(mutex); Release(mutex); Process 2... Acquire(mutex); Release(mutex); Synchronization variables (e.g. mutex) are disjoint from data variables Accesses to writable shared data variables are protected in critical regions " no data races except for locks (Formal definition is elusive) In general, it cannot be proven if a program is data-race free. 10/16/2007 8

5 Fences in Data-Race Free Programs Process 1... Acquire(mutex); membar; membar; Release(mutex); Process 2... Acquire(mutex); membar; membar; Release(mutex); Relaxed memory model allows reordering of instructions by the compiler or the processor as long as the reordering is not done across a fence The processor also should not speculate or prefetch across fences 10/16/ Mutual Exclusion Using Load/Store A protocol based on two shared variables c1 and c2. Initially, both c1 and c2 are 0 (not busy) Process 1... c1=1; L: if c2=1 then go to L c1=0; Process 2... c2=1; L: if c1=1 then go to L c2=0; What is wrong? 10/16/

6 Mutual Exclusion: second attempt To avoid deadlock, let a process give up the reservation (i.e. Process 1 sets c1 to 0) while waiting. Process 1... L: c1=1; if c2=1 then { c1=0; go to L} c1=0 Process 2... L: c2=1; if c1=1 then { c2=0; go to L} c2=0 What can go wrong now? Deadlock is not possible but with a low probability a livelock may occur An unlucky process may never get to enter the critical section " starvation 10/16/ A Protocol for Mutual Exclusion T. Dekker, 1966 A protocol based on 3 shared variables c1, c2 and turn. Initially, both c1 and c2 are 0 (not busy) Process 1... c1=1; turn = 1; L: if c2=1 & turn=1 then go to L c1=0; Process 2... c2=1; turn = 2; L: if c1=1 & turn=2 then go to L c2=0; turn = i ensures that only process i can wait variables c1 and c2 ensure mutual exclusion Solution for n processes was given by Dijkstra and is quite tricky! 10/16/

7 Analysis of Dekker s Algorithm Scenario 1... Process 1 c1=1; turn = 1; L: if c2=1 & turn=1 then go to L c1=0;... Process 2 c2=1; turn = 2; L: if c1=1 & turn=2 then go to L c2=0; Scenario 2... Process 1 c1=1; turn = 1; L: if c2=1 & turn=1 then go to L c1=0;... Process 2 c2=1; turn = 2; L: if c1=1 & turn=2 then go to L c2=0; 10/16/ N-process Mutual Exclusion Lamport s Bakery Algorithm Process i Initially num[j] = 0, for all j Entry Code choosing[i] = 1; num[i] = max(num[0],, num[n-1]) + 1; choosing[i] = 0; for(j = 0; j < N; j++) { while( choosing[j] ); while( num[j] && ( ( num[j] < num[i] ) ( num[j] == num[i] && j < i ) ) ); } Exit Code num[i] = 0; 10/16/

8 CS252 Administrivia Project meetings next week (10/23-25), same schedule as before (M 1-3PM, Tu/Th 9:40-11AM) Schedule on website All in 645 Soda, 20mins/group Hope to see: Project web site At least one initial result (some delta from hello world ) Grasp of related work Midterm review 10/16/ CS252 Midterm 1 Problem 1 Distribution (22 points total) % of students Scores 10/16/

9 CS252 Midterm 1 Problem 2 (19 points total) % of students Score Range 10/16/ % of students CS252 Midterm 1 Problem 3 (19 points total) Score Range 10/16/

10 CS252 Midterm 1 Problem 4 (20 points total) % of students Score Range 10/16/ CS252 Midterm 1 (80 points total) Average: 39.8 Median: % of Students Score Range 10/16/

11 EECS Graduate Grading Guidelines A+, A, A- Quality expected from PhD student B+, B Quality expected from MS student, not PhD <= B- < Quality expected from MS student Class average somewhere in range /16/ Memory Consistency in SMPs CPU-1 CPU-2 A 100 cache-1 A 100 cache-2 CPU-Memory bus A 100 memory Suppose CPU-1 updates A to 200. write-back: memory and cache-2 have stale values write-through: cache-2 has a stale value Do these stale values matter? What is the view of shared memory for programming? 10/16/

12 Write-back Caches & SC T1 is executed prog T1 ST X, 1 ST Y,11 cache-1 writes back Y T2 executed cache-1 writes back X cache-1 X= 1 Y=11 X= 1 Y=11 X= 1 Y=11 X= 1 Y=11 memory X = 0 Y =10 X = Y = X = 0 Y =11 X = Y = X = 0 Y =11 X = Y = X = 1 Y =11 X = Y = cache-2 Y = Y = X = X = Y = Y = X = X = Y = 11 Y = 11 X = 0 X = 0 Y = 11 Y = 11 X = 0 X = 0 prog T2 LD Y, R1 ST Y, R1 LD X, R2 ST X,R2 X= 1 X = 1 Y =11 Y=11 Y =11 Y =11 X = 0 X = 0 X & Y 10/16/2007 Y =11 X = 0 23 cache-2 writes back inconsistent Write-through Caches & SC prog T1 ST X, 1 ST Y,11 cache-1 X= 0 Y=10 memory X = 0 Y =10 X = Y = cache-2 Y = Y = X = 0 X = prog T2 LD Y, R1 ST Y, R1 LD X, R2 ST X,R2 T1 executed X= 1 Y=11 X = 1 Y =11 X = Y = Y = Y = X = 0 X = T2 executed X= 1 Y=11 X = 1 Y =11 X = 0 Y =11 Y = 11 Y = 11 X = 0 X = 0 Write-through caches don t preserve sequential consistency either 10/16/

13 Maintaining Sequential Consistency SC is sufficient for correct producer-consumer and mutual exclusion code (e.g., Dekker) Multiple copies of a location in various caches can cause SC to break down. Hardware support is required such that only one processor at a time has write permission for a location no processor can load a stale copy of the location after a write " cache coherence protocols 10/16/ Cache Coherence Protocols for SC write request: the address is invalidated (updated) in all other caches before (after) the write is performed read request: if a dirty copy is found in some cache, a writeback is performed before the memory is read We will focus on Invalidation protocols as opposed to Update protocols 10/16/

14 Warmup: Parallel I/O Proc. Address (A) Data (D) Cache Memory Bus Physical Memory R/W Either Cache or DMA can be the Bus Master and effect transfers A D R/W Page transfers occur while the Processor is running DMA DISK (DMA stands for Direct Memory Access) 10/16/ Problems with Parallel I/O Proc. Cached portions of page Cache Memory Bus Physical Memory DMA transfers DMA Memory DISK Disk: Physical memory may be stale if Cache copy is dirty Disk Memory: Cache may hold state data and not see memory writes 10/16/

15 Snoopy Cache Goodman 1983 Idea: Have cache watch (or snoop upon) DMA transfers, and then do the right thing Snoopy cache tags are dual-ported Used to drive Memory Bus when Cache is Bus Master Proc. A R/W D Tags and State Data (lines) A R/W Snoopy read port attached to Memory Bus Cache 10/16/ Snoopy Cache Actions for DMA Observed Bus Cycle Cache State Cache Action DMA Read Address not cached Cached, unmodified No action No action Memory Disk Cached, modified Address not cached Cache intervenes No action DMA Write Cached, unmodified Cache purges its copy Disk Memory Cached, modified??? 10/16/

16 Shared Memory Multiprocessor Memory Bus M 1 Snoopy Cache Physical Memory M 2 Snoopy Cache M 3 Snoopy Cache DMA DISKS Use snoopy mechanism to keep all processors view of memory coherent 10/16/ Cache State Transition Diagram The MSI protocol Each cache line has a tag state bits Read miss Read by any processor Address tag Other processor reads P 1 writes back S P 1 intent to write Other processor intent to write M: Modified S: Shared I: Invalid 10/16/ M I P 1 reads or writes Write miss Other processor intent to write Cache state in processor P 1

17 Two Processor Example (Reading and writing the same cache line) P 1 reads P 1 writes P 2 reads P 2 writes P 1 reads P 1 writes P 2 writes P 1 writes P 1 Read miss P 2 reads, P 1 writes back S P 1 intent to write P 2 intent to write M I P 1 reads or writes Write miss P 2 intent to write P 2 Read miss P 1 reads, P 2 writes back S P 2 intent to write P 1 intent to write 10/16/ M I P 2 reads or writes Write miss P 1 intent to write Observation Read miss Read by any processor Other processor reads P 1 writes back S P 1 intent to write Other processor intent to write M I P 1 reads or writes Write miss Other processor intent to write If a line is in the M state then no other cache can have a copy of the line! Memory stays coherent, multiple differing copies cannot exist 10/16/

18 MESI: An Enhanced MSI protocol increased performance for private data Each cache line has a tag state bits P 1 write or read Address tag M Other processor reads P 1 writes back Read miss, shared Read by any processor S P 1 write P 1 intent to write Other processor intent to write M: Modified Exclusive E: Exclusive, unmodified S: Shared I: Invalid 10/16/ E I P 1 read Read miss, not shared Write miss Other processor intent to write Cache state in processor P 1 Optimized Snoop with Level-2 Caches CPU CPU CPU CPU L1 $ L1 $ L1 $ L1 $ L2 $ L2 $ L2 $ L2 $ Snooper Snooper Snooper Snooper Processors often have two-level caches small L1, large L2 (usually both on chip now) Inclusion property: entries in L1 must be in L2 invalidation in L2 " invalidation in L1 Snooping on L2 does not affect CPU-L1 bandwidth What problem could occur? 10/16/

19 Intervention CPU-1 CPU-2 A 200 cache-1 CPU-Memory bus A 100 cache-2 memory (stale data) When a read-miss for A occurs in cache-2, a read request for A is placed on the bus Cache-1 needs to supply & change its state to shared The memory may respond to the request also! Does memory know it has stale data? Cache-1 needs to intervene through memory controller to supply correct data to cache-2 10/16/ False Sharing state blk addr data0 data1... datan A cache block contains more than one word Cache-coherence is done at the block-level and not word-level Suppose M 1 writes word i and M 2 writes word k and both words have the same block address. What can happen? 10/16/

20 Synchronization and Caches: Performance Issues Processor 1 R # 1 L: swap (mutex), R; if <R> then goto L; <critical section> M[mutex] # 0; Processor 2 R # 1 L: swap (mutex), R; if <R> then goto L; <critical section> M[mutex] # 0; Processor 3 R # 1 L: swap (mutex), R; if <R> then goto L; <critical section> M[mutex] # 0; cache mutex=1 cache CPU-Memory Bus cache Cache-coherence protocols will cause mutex to ping-pong between P1 s and P2 s caches. Ping-ponging can be reduced by first reading the mutex location (non-atomically) and executing a swap only if it is found to be zero. 10/16/ Performance Related to Bus Occupancy In general, a read-modify-write instruction requires two memory (bus) operations without intervening memory operations by other processors In a multiprocessor setting, bus needs to be locked for the entire duration of the atomic read and write operation " expensive for simple buses " very expensive for split-transaction buses modern ISAs use load-reserve store-conditional 10/16/

21 Load-reserve & Store-conditional Special register(s) to hold reservation flag and address, and the outcome of store-conditional Load-reserve R, (a): <flag, adr> # <1, a>; R # M[a]; Store-conditional (a), R: if <flag, adr> == <1, a> then cancel other procs reservation on a; M[a] # <R>; status # succeed; else status # fail; If the snooper sees a store transaction to the address in the reserve register, the reserve bit is set to 0 Several processors may reserve a simultaneously These instructions are like ordinary loads and stores with respect to the bus traffic Can implement reservation by using cache hit/miss, no additional hardware required (problems?) 10/16/ Performance: Load-reserve & Store-conditional The total number of memory (bus) transactions is not necessarily reduced, but splitting an atomic instruction into load-reserve & storeconditional: increases bus utilization (and reduces processor stall time), especially in splittransaction buses reduces cache ping-pong effect because processors trying to acquire a semaphore do not have to perform a store each time 10/16/

22 Out-of-Order Loads/Stores & CC snooper Wb-req, Inv-req, Inv-rep CPU load/store buffers Cache pushout (Wb-rep) Memory (I/S/E) (S-rep, E-rep) (S-req, E-req) Blocking caches One request at a time + CC " SC Non-blocking caches Multiple requests (different addresses) concurrently + CC " Relaxed memory models CC ensures that all processors observe the same order of loads and stores to an address CPU/Memory Interface 10/16/

Page 1. Cache Coherence

Page 1. Cache Coherence Page 1 Cache Coherence 1 Page 2 Memory Consistency in SMPs CPU-1 CPU-2 A 100 cache-1 A 100 cache-2 CPU-Memory bus A 100 memory Suppose CPU-1 updates A to 200. write-back: memory and cache-2 have stale

More information

Consistency & Coherence. 4/14/2016 Sec5on 12 Colin Schmidt

Consistency & Coherence. 4/14/2016 Sec5on 12 Colin Schmidt Consistency & Coherence 4/14/2016 Sec5on 12 Colin Schmidt Agenda Brief mo5va5on Consistency vs Coherence Synchroniza5on Fences Mutexs, locks, semaphores Hardware Coherence Snoopy MSI, MESI Power, Frequency,

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Synchronization and Sequential Consistency

CS 152 Computer Architecture and Engineering. Lecture 19: Synchronization and Sequential Consistency CS 152 Computer Architecture and Engineering Lecture 19: Synchronization and Sequential Consistency Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste

More information

Dr. George Michelogiannakis. EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory

Dr. George Michelogiannakis. EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory CS 152 Computer Architecture and Engineering Lecture 18: Snoopy Caches Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory http://inst.eecs.berkeley.edu/~cs152!

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Synchronization and Sequential Consistency

CS 152 Computer Architecture and Engineering. Lecture 19: Synchronization and Sequential Consistency CS 152 Computer Architecture and Engineering Lecture 19: Synchronization and Sequential Consistency Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste

More information

Computer Architecture and Parallel Computing 并行结构与计算. Lecture 6 Coherence Protocols

Computer Architecture and Parallel Computing 并行结构与计算. Lecture 6 Coherence Protocols Computer Architecture and Parallel Computing 并行结构与计算 Lecture 6 Coherence Protocols Peng Liu ( 刘鹏 ) College of Information Science and Electronic Engineering Zhejiang University, Hangzhou 310027, China

More information

Cache Coherence Protocols: Implementation Issues on SMP s. Cache Coherence Issue in I/O

Cache Coherence Protocols: Implementation Issues on SMP s. Cache Coherence Issue in I/O 6.823, L21--1 Cache Coherence Protocols: Implementation Issues on SMP s Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Cache Coherence Issue in I/O 6.823, L21--2 Processor Processor

More information

Symmetric Multiprocessors: Synchronization and Sequential Consistency

Symmetric Multiprocessors: Synchronization and Sequential Consistency Constructive Computer Architecture Symmetric Multiprocessors: Synchronization and Sequential Consistency Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Cache Coherence - Directory Cache Coherence Prof. Michel A. Kinsy Shared Memory Multiprocessor Processor Cores Local Memories Memory Bus P 1 Snoopy Cache Physical Memory P

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Cache Coherence - Snoopy Cache Coherence rof. Michel A. Kinsy Consistency in SMs CU-1 CU-2 A 100 Cache-1 A 100 Cache-2 CU- bus A 100 Consistency in SMs CU-1 CU-2 A 200 Cache-1

More information

Announcements. ECE4750/CS4420 Computer Architecture L17: Memory Model. Edward Suh Computer Systems Laboratory

Announcements. ECE4750/CS4420 Computer Architecture L17: Memory Model. Edward Suh Computer Systems Laboratory ECE4750/CS4420 Computer Architecture L17: Memory Model Edward Suh Computer Systems Laboratory suh@csl.cornell.edu Announcements HW4 / Lab4 1 Overview Symmetric Multi-Processors (SMPs) MIMD processing cores

More information

CS252 Spring 2017 Graduate Computer Architecture. Lecture 12: Cache Coherence

CS252 Spring 2017 Graduate Computer Architecture. Lecture 12: Cache Coherence CS252 Spring 2017 Graduate Computer Architecture Lecture 12: Cache Coherence Lisa Wu, Krste Asanovic http://inst.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 Last Time in Lecture 11 Memory Systems DRAM

More information

CS252 Graduate Computer Architecture Fall 2015 Lecture 14: Synchroniza>on and Memory Models

CS252 Graduate Computer Architecture Fall 2015 Lecture 14: Synchroniza>on and Memory Models CS252 Graduate Computer Architecture Fall 2015 Lecture 14: Synchroniza>on and Memory Models Krste Asanovic krste@eecs.berkeley.edu http://inst.eecs.berkeley.edu/~cs252/fa15 Synchroniza>on The need for

More information

CS252 Spring 2017 Graduate Computer Architecture. Lecture 15: Synchronization and Memory Models Part 2

CS252 Spring 2017 Graduate Computer Architecture. Lecture 15: Synchronization and Memory Models Part 2 CS252 Spring 2017 Graduate Computer Architecture Lecture 15: Synchronization and Memory Models Part 2 Lisa Wu, Krste Asanovic http://inst.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 Project Proposal

More information

Computer Architecture and Engineering CS152 Quiz #5 April 27th, 2016 Professor George Michelogiannakis Name: <ANSWER KEY>

Computer Architecture and Engineering CS152 Quiz #5 April 27th, 2016 Professor George Michelogiannakis Name: <ANSWER KEY> Computer Architecture and Engineering CS152 Quiz #5 April 27th, 2016 Professor George Michelogiannakis Name: This is a closed book, closed notes exam. 80 Minutes 19 pages Notes: Not all questions

More information

Beyond Sequential Consistency: Relaxed Memory Models

Beyond Sequential Consistency: Relaxed Memory Models 1 Beyond Sequential Consistency: Relaxed Memory Models Computer Science and Artificial Intelligence Lab M.I.T. Based on the material prepared by and Krste Asanovic 2 Beyond Sequential Consistency: Relaxed

More information

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 18 Cache Coherence

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 18 Cache Coherence CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 18 Cache Coherence Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley

More information

CMSC Computer Architecture Lecture 15: Memory Consistency and Synchronization. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 15: Memory Consistency and Synchronization. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 15: Memory Consistency and Synchronization Prof. Yanjing Li University of Chicago Administrative Stuff! Lab 5 (multi-core) " Basic requirements: out later today

More information

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 19 Memory Consistency Models

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 19 Memory Consistency Models CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 19 Memory Consistency Models Krste Asanovic Electrical Engineering and Computer Sciences University of California

More information

Lecture 7: Implementing Cache Coherence. Topics: implementation details

Lecture 7: Implementing Cache Coherence. Topics: implementation details Lecture 7: Implementing Cache Coherence Topics: implementation details 1 Implementing Coherence Protocols Correctness and performance are not the only metrics Deadlock: a cycle of resource dependencies,

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Shared-Memory Multi-Processors Shared-Memory Multiprocessors Multiple threads use shared memory (address space) SysV Shared Memory or Threads in software Communication implicit

More information

Cache Coherence and Atomic Operations in Hardware

Cache Coherence and Atomic Operations in Hardware Cache Coherence and Atomic Operations in Hardware Previously, we introduced multi-core parallelism. Today we ll look at 2 things: 1. Cache coherence 2. Instruction support for synchronization. And some

More information

CS5460: Operating Systems

CS5460: Operating Systems CS5460: Operating Systems Lecture 9: Implementing Synchronization (Chapter 6) Multiprocessor Memory Models Uniprocessor memory is simple Every load from a location retrieves the last value stored to that

More information

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types Chapter 5 Multiprocessor Cache Coherence Thread-Level Parallelism 1: read 2: read 3: write??? 1 4 From ILP to TLP Memory System is Coherent If... ILP became inefficient in terms of Power consumption Silicon

More information

Computer Architecture

Computer Architecture 18-447 Computer Architecture CSCI-564 Advanced Computer Architecture Lecture 29: Consistency & Coherence Lecture 20: Consistency and Coherence Bo Wu Prof. Onur Mutlu Colorado Carnegie School Mellon University

More information

ESE 545 Computer Architecture Symmetric Multiprocessors and Snoopy Cache Coherence Protocols CA SMP and cache coherence

ESE 545 Computer Architecture Symmetric Multiprocessors and Snoopy Cache Coherence Protocols CA SMP and cache coherence Computer Architecture ESE 545 Computer Architecture Symmetric Multiprocessors and Snoopy Cache Coherence Protocols 1 Shared Memory Multiprocessor Memory Bus P 1 Snoopy Cache Physical Memory P 2 Snoopy

More information

CSC 631: High-Performance Computer Architecture

CSC 631: High-Performance Computer Architecture CSC 631: High-Performance Computer Architecture Spring 2017 Lecture 10: Memory Part II CSC 631: High-Performance Computer Architecture 1 Two predictable properties of memory references: Temporal Locality:

More information

Computer Architecture. A Quantitative Approach, Fifth Edition. Chapter 5. Multiprocessors and Thread-Level Parallelism

Computer Architecture. A Quantitative Approach, Fifth Edition. Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

Today s Outline: Shared Memory Review. Shared Memory & Concurrency. Concurrency v. Parallelism. Thread-Level Parallelism. CS758: Multicore Programming

Today s Outline: Shared Memory Review. Shared Memory & Concurrency. Concurrency v. Parallelism. Thread-Level Parallelism. CS758: Multicore Programming CS758: Multicore Programming Today s Outline: Shared Memory Review Shared Memory & Concurrency Introduction to Shared Memory Thread-Level Parallelism Shared Memory Prof. David A. Wood University of Wisconsin-Madison

More information

Computer Architecture and Engineering CS152 Quiz #5 May 2th, 2013 Professor Krste Asanović Name: <ANSWER KEY>

Computer Architecture and Engineering CS152 Quiz #5 May 2th, 2013 Professor Krste Asanović Name: <ANSWER KEY> Computer Architecture and Engineering CS152 Quiz #5 May 2th, 2013 Professor Krste Asanović Name: This is a closed book, closed notes exam. 80 Minutes 15 pages Notes: Not all questions are

More information

Lecture 24: Multiprocessing Computer Architecture and Systems Programming ( )

Lecture 24: Multiprocessing Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 24: Multiprocessing Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Most of the rest of this

More information

Parallel Computer Architecture Spring Memory Consistency. Nikos Bellas

Parallel Computer Architecture Spring Memory Consistency. Nikos Bellas Parallel Computer Architecture Spring 2018 Memory Consistency Nikos Bellas Computer and Communications Engineering Department University of Thessaly Parallel Computer Architecture 1 Coherence vs Consistency

More information

Chapter 5. Multiprocessors and Thread-Level Parallelism

Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

Lecture 13: Consistency Models. Topics: sequential consistency, requirements to implement sequential consistency, relaxed consistency models

Lecture 13: Consistency Models. Topics: sequential consistency, requirements to implement sequential consistency, relaxed consistency models Lecture 13: Consistency Models Topics: sequential consistency, requirements to implement sequential consistency, relaxed consistency models 1 Coherence Vs. Consistency Recall that coherence guarantees

More information

Relaxed Memory-Consistency Models

Relaxed Memory-Consistency Models Relaxed Memory-Consistency Models [ 9.1] In Lecture 13, we saw a number of relaxed memoryconsistency models. In this lecture, we will cover some of them in more detail. Why isn t sequential consistency

More information

Introduction. Coherency vs Consistency. Lec-11. Multi-Threading Concepts: Coherency, Consistency, and Synchronization

Introduction. Coherency vs Consistency. Lec-11. Multi-Threading Concepts: Coherency, Consistency, and Synchronization Lec-11 Multi-Threading Concepts: Coherency, Consistency, and Synchronization Coherency vs Consistency Memory coherency and consistency are major concerns in the design of shared-memory systems. Consistency

More information

Relaxed Memory-Consistency Models

Relaxed Memory-Consistency Models Relaxed Memory-Consistency Models Review. Why are relaxed memory-consistency models needed? How do relaxed MC models require programs to be changed? The safety net between operations whose order needs

More information

Chapter 5. Multiprocessors and Thread-Level Parallelism

Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

Memory Consistency Models

Memory Consistency Models Memory Consistency Models Contents of Lecture 3 The need for memory consistency models The uniprocessor model Sequential consistency Relaxed memory models Weak ordering Release consistency Jonas Skeppstedt

More information

Multiprocessors II: CC-NUMA DSM. CC-NUMA for Large Systems

Multiprocessors II: CC-NUMA DSM. CC-NUMA for Large Systems Multiprocessors II: CC-NUMA DSM DSM cache coherence the hardware stuff Today s topics: what happens when we lose snooping new issues: global vs. local cache line state enter the directory issues of increasing

More information

CS 152 Computer Architecture and Engineering

CS 152 Computer Architecture and Engineering CS 152 Computer Architecture and Engineering Lecture 18: Directory-Based Cache Protocols John Wawrzynek EECS, University of California at Berkeley http://inst.eecs.berkeley.edu/~cs152 Administrivia 2 Recap:

More information

Shared Memory Multiprocessors

Shared Memory Multiprocessors Shared Memory Multiprocessors Jesús Labarta Index 1 Shared Memory architectures............... Memory Interconnect Cache Processor Concepts? Memory Time 2 Concepts? Memory Load/store (@) Containers Time

More information

Shared Memory Architecture

Shared Memory Architecture 1 Multiprocessor Architecture Single global memory space 0,, A 1 Physically partitioned into M physical devices All CPUs access full memory space via interconnection network CPUs communicate via shared

More information

Motivations. Shared Memory Consistency Models. Optimizations for Performance. Memory Consistency

Motivations. Shared Memory Consistency Models. Optimizations for Performance. Memory Consistency Shared Memory Consistency Models Authors : Sarita.V.Adve and Kourosh Gharachorloo Presented by Arrvindh Shriraman Motivations Programmer is required to reason about consistency to ensure data race conditions

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols CS 152 Computer Architecture and Engineering Lecture 19: Directory-Based Protocols Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory http://inst.eecs.berkeley.edu/~cs152

More information

EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy

EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy Prof. Sherief Reda School of Engineering Brown University Material from: Parallel Computer Organization and Design by Debois,

More information

Cache Coherence. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T.

Cache Coherence. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Coherence Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L5- Coherence Avoids Stale Data Multicores have multiple private caches for performance Need to provide the illusion

More information

EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy Prof. Sherief Reda School of Engineering Brown University

EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy Prof. Sherief Reda School of Engineering Brown University EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy Prof. Sherief Reda School of Engineering Brown University Material from: Parallel Computer Organization and Design by Debois,

More information

Goldibear and the 3 Locks. Programming With Locks Is Tricky. More Lock Madness. And To Make It Worse. Transactional Memory: The Big Idea

Goldibear and the 3 Locks. Programming With Locks Is Tricky. More Lock Madness. And To Make It Worse. Transactional Memory: The Big Idea Programming With Locks s Tricky Multicore processors are the way of the foreseeable future thread-level parallelism anointed as parallelism model of choice Just one problem Writing lock-based multi-threaded

More information

M4 Parallelism. Implementation of Locks Cache Coherence

M4 Parallelism. Implementation of Locks Cache Coherence M4 Parallelism Implementation of Locks Cache Coherence Outline Parallelism Flynn s classification Vector Processing Subword Parallelism Symmetric Multiprocessors, Distributed Memory Machines Shared Memory

More information

Cache Coherence. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T.

Cache Coherence. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Coherence Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L25-1 Coherence Avoids Stale Data Multicores have multiple private caches for performance Need to provide the illusion

More information

Distributed Shared Memory and Memory Consistency Models

Distributed Shared Memory and Memory Consistency Models Lectures on distributed systems Distributed Shared Memory and Memory Consistency Models Paul Krzyzanowski Introduction With conventional SMP systems, multiple processors execute instructions in a single

More information

Parallel Computer Architecture Spring Distributed Shared Memory Architectures & Directory-Based Memory Coherence

Parallel Computer Architecture Spring Distributed Shared Memory Architectures & Directory-Based Memory Coherence Parallel Computer Architecture Spring 2018 Distributed Shared Memory Architectures & Directory-Based Memory Coherence Nikos Bellas Computer and Communications Engineering Department University of Thessaly

More information

Using Relaxed Consistency Models

Using Relaxed Consistency Models Using Relaxed Consistency Models CS&G discuss relaxed consistency models from two standpoints. The system specification, which tells how a consistency model works and what guarantees of ordering it provides.

More information

Bus-Based Coherent Multiprocessors

Bus-Based Coherent Multiprocessors Bus-Based Coherent Multiprocessors Lecture 13 (Chapter 7) 1 Outline Bus-based coherence Memory consistency Sequential consistency Invalidation vs. update coherence protocols Several Configurations for

More information

Administrivia. p. 1/20

Administrivia. p. 1/20 p. 1/20 Administrivia Please say your name if you answer a question today If we don t have a photo of you yet, stay after class If you didn t get test email, let us know p. 2/20 Program A int flag1 = 0,

More information

Chapter 6. Parallel Processors from Client to Cloud Part 2 COMPUTER ORGANIZATION AND DESIGN. Homogeneous & Heterogeneous Multicore Architectures

Chapter 6. Parallel Processors from Client to Cloud Part 2 COMPUTER ORGANIZATION AND DESIGN. Homogeneous & Heterogeneous Multicore Architectures COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 6 Parallel Processors from Client to Cloud Part 2 Homogeneous & Heterogeneous Multicore Architectures Intel XEON 22nm

More information

4 Chip Multiprocessors (I) Chip Multiprocessors (ACS MPhil) Robert Mullins

4 Chip Multiprocessors (I) Chip Multiprocessors (ACS MPhil) Robert Mullins 4 Chip Multiprocessors (I) Robert Mullins Overview Coherent memory systems Introduction to cache coherency protocols Advanced cache coherency protocols, memory systems and synchronization covered in the

More information

Fall 2012 EE 6633: Architecture of Parallel Computers Lecture 4: Shared Address Multiprocessors Acknowledgement: Dave Patterson, UC Berkeley

Fall 2012 EE 6633: Architecture of Parallel Computers Lecture 4: Shared Address Multiprocessors Acknowledgement: Dave Patterson, UC Berkeley Fall 2012 EE 6633: Architecture of Parallel Computers Lecture 4: Shared Address Multiprocessors Acknowledgement: Dave Patterson, UC Berkeley Avinash Kodi Department of Electrical Engineering & Computer

More information

SELECTED TOPICS IN COHERENCE AND CONSISTENCY

SELECTED TOPICS IN COHERENCE AND CONSISTENCY SELECTED TOPICS IN COHERENCE AND CONSISTENCY Michel Dubois Ming-Hsieh Department of Electrical Engineering University of Southern California Los Angeles, CA90089-2562 dubois@usc.edu INTRODUCTION IN CHIP

More information

Overview: Memory Consistency

Overview: Memory Consistency Overview: Memory Consistency the ordering of memory operations basic definitions; sequential consistency comparison with cache coherency relaxing memory consistency write buffers the total store ordering

More information

Shared Memory Consistency Models: A Tutorial

Shared Memory Consistency Models: A Tutorial Shared Memory Consistency Models: A Tutorial By Sarita Adve & Kourosh Gharachorloo Slides by Jim Larson Outline Concurrent programming on a uniprocessor The effect of optimizations on a uniprocessor The

More information

NOW Handout Page 1. Memory Consistency Model. Background for Debate on Memory Consistency Models. Multiprogrammed Uniprocessor Mem.

NOW Handout Page 1. Memory Consistency Model. Background for Debate on Memory Consistency Models. Multiprogrammed Uniprocessor Mem. Memory Consistency Model Background for Debate on Memory Consistency Models CS 258, Spring 99 David E. Culler Computer Science Division U.C. Berkeley for a SAS specifies constraints on the order in which

More information

Limitations of parallel processing

Limitations of parallel processing Your professor du jour: Steve Gribble gribble@cs.washington.edu 323B Sieg Hall all material in this lecture in Henessey and Patterson, Chapter 8 635-640 645, 646 654-665 11/8/00 CSE 471 Multiprocessors

More information

Shared Memory Architectures. Shared Memory Multiprocessors. Caches and Cache Coherence. Cache Memories. Cache Memories Write Operation

Shared Memory Architectures. Shared Memory Multiprocessors. Caches and Cache Coherence. Cache Memories. Cache Memories Write Operation hared Architectures hared Multiprocessors ngo ander ngo@imit.kth.se hared Multiprocessor are often used pecial Class: ymmetric Multiprocessors (MP) o ymmetric access to all of main from any processor A

More information

Portland State University ECE 588/688. Memory Consistency Models

Portland State University ECE 588/688. Memory Consistency Models Portland State University ECE 588/688 Memory Consistency Models Copyright by Alaa Alameldeen 2018 Memory Consistency Models Formal specification of how the memory system will appear to the programmer Places

More information

Unit 12: Memory Consistency Models. Includes slides originally developed by Prof. Amir Roth

Unit 12: Memory Consistency Models. Includes slides originally developed by Prof. Amir Roth Unit 12: Memory Consistency Models Includes slides originally developed by Prof. Amir Roth 1 Example #1 int x = 0;! int y = 0;! thread 1 y = 1;! thread 2 int t1 = x;! x = 1;! int t2 = y;! print(t1,t2)!

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols CS 152 Computer Architecture and Engineering Lecture 19: Directory-Based Cache Protocols Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste

More information

EN164: Design of Computing Systems Lecture 34: Misc Multi-cores and Multi-processors

EN164: Design of Computing Systems Lecture 34: Misc Multi-cores and Multi-processors EN164: Design of Computing Systems Lecture 34: Misc Multi-cores and Multi-processors Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering

More information

Commit-Reconcile & Fences (CRF): A New Memory Model for Architects and Compiler Writers

Commit-Reconcile & Fences (CRF): A New Memory Model for Architects and Compiler Writers Commit-Reconcile & Fences (CRF): A New Memory Model for Architects and Compiler Writers Computation Structures Group Memo 413 October 1998 (Revised: February 1999) Xiaowei Shen, Arvind, Larry Rudolph xwshen,

More information

EE382 Processor Design. Processor Issues for MP

EE382 Processor Design. Processor Issues for MP EE382 Processor Design Winter 1998 Chapter 8 Lectures Multiprocessors, Part I EE 382 Processor Design Winter 98/99 Michael Flynn 1 Processor Issues for MP Initialization Interrupts Virtual Memory TLB Coherency

More information

Overview: Shared Memory Hardware. Shared Address Space Systems. Shared Address Space and Shared Memory Computers. Shared Memory Hardware

Overview: Shared Memory Hardware. Shared Address Space Systems. Shared Address Space and Shared Memory Computers. Shared Memory Hardware Overview: Shared Memory Hardware Shared Address Space Systems overview of shared address space systems example: cache hierarchy of the Intel Core i7 cache coherency protocols: basic ideas, invalidate and

More information

Overview: Shared Memory Hardware

Overview: Shared Memory Hardware Overview: Shared Memory Hardware overview of shared address space systems example: cache hierarchy of the Intel Core i7 cache coherency protocols: basic ideas, invalidate and update protocols false sharing

More information

A Basic Snooping-Based Multi-processor

A Basic Snooping-Based Multi-processor Lecture 15: A Basic Snooping-Based Multi-processor Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2014 Tunes Stompa (Serena Ryder) I wrote Stompa because I just get so excited

More information

Alewife Messaging. Sharing of Network Interface. Alewife User-level event mechanism. CS252 Graduate Computer Architecture.

Alewife Messaging. Sharing of Network Interface. Alewife User-level event mechanism. CS252 Graduate Computer Architecture. CS252 Graduate Computer Architecture Lecture 18 April 5 th, 2010 ory Consistency Models and Snoopy Bus Protocols Alewife Messaging Send message write words to special network interface registers Execute

More information

Switch Gear to Memory Consistency

Switch Gear to Memory Consistency Outline Memory consistency equential consistency Invalidation vs. update coherence protocols MI protocol tate diagrams imulation Gehringer, based on slides by Yan olihin 1 witch Gear to Memory Consistency

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols CS 152 Computer Architecture and Engineering Lecture 19: Directory-Based Cache Protocols Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste

More information

Lamport Clocks: Verifying A Directory Cache-Coherence Protocol. Computer Sciences Department

Lamport Clocks: Verifying A Directory Cache-Coherence Protocol. Computer Sciences Department Lamport Clocks: Verifying A Directory Cache-Coherence Protocol * Manoj Plakal, Daniel J. Sorin, Anne E. Condon, Mark D. Hill Computer Sciences Department University of Wisconsin-Madison {plakal,sorin,condon,markhill}@cs.wisc.edu

More information

Page 1. SMP Review. Multiprocessors. Bus Based Coherence. Bus Based Coherence. Characteristics. Cache coherence. Cache coherence

Page 1. SMP Review. Multiprocessors. Bus Based Coherence. Bus Based Coherence. Characteristics. Cache coherence. Cache coherence SMP Review Multiprocessors Today s topics: SMP cache coherence general cache coherence issues snooping protocols Improved interaction lots of questions warning I m going to wait for answers granted it

More information

Cache Coherence in Bus-Based Shared Memory Multiprocessors

Cache Coherence in Bus-Based Shared Memory Multiprocessors Cache Coherence in Bus-Based Shared Memory Multiprocessors Shared Memory Multiprocessors Variations Cache Coherence in Shared Memory Multiprocessors A Coherent Memory System: Intuition Formal Definition

More information

A More Sophisticated Snooping-Based Multi-Processor

A More Sophisticated Snooping-Based Multi-Processor Lecture 16: A More Sophisticated Snooping-Based Multi-Processor Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2014 Tunes The Projects Handsome Boy Modeling School (So... How

More information

Page 1. Outline. Coherence vs. Consistency. Why Consistency is Important

Page 1. Outline. Coherence vs. Consistency. Why Consistency is Important Outline ECE 259 / CPS 221 Advanced Computer Architecture II (Parallel Computer Architecture) Memory Consistency Models Copyright 2006 Daniel J. Sorin Duke University Slides are derived from work by Sarita

More information

Multiprocessors & Thread Level Parallelism

Multiprocessors & Thread Level Parallelism Multiprocessors & Thread Level Parallelism COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Introduction

More information

Thread-level Parallelism. Synchronization. Explicit multithreading Implicit multithreading Redundant multithreading Summary

Thread-level Parallelism. Synchronization. Explicit multithreading Implicit multithreading Redundant multithreading Summary Chapter 11: Executing Multiple Threads Modern Processor Design: Fundamentals of Superscalar Processors Executing Multiple Threads Thread-level parallelism Synchronization Multiprocessors Explicit multithreading

More information

Parallel Computer Architecture Lecture 5: Cache Coherence. Chris Craik (TA) Carnegie Mellon University

Parallel Computer Architecture Lecture 5: Cache Coherence. Chris Craik (TA) Carnegie Mellon University 18-742 Parallel Computer Architecture Lecture 5: Cache Coherence Chris Craik (TA) Carnegie Mellon University Readings: Coherence Required for Review Papamarcos and Patel, A low-overhead coherence solution

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 11: Reducing Hit Time Cache Coherence Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering and Computer Science Source: Lecture based

More information

Computer Science 146. Computer Architecture

Computer Science 146. Computer Architecture Computer Architecture Spring 24 Harvard University Instructor: Prof. dbrooks@eecs.harvard.edu Lecture 2: More Multiprocessors Computation Taxonomy SISD SIMD MISD MIMD ILP Vectors, MM-ISAs Shared Memory

More information

Computer System Architecture Final Examination Spring 2002

Computer System Architecture Final Examination Spring 2002 Computer System Architecture 6.823 Final Examination Spring 2002 Name: This is an open book, open notes exam. 180 Minutes 22 Pages Notes: Not all questions are of equal difficulty, so look over the entire

More information

Module 15: "Memory Consistency Models" Lecture 34: "Sequential Consistency and Relaxed Models" Memory Consistency Models. Memory consistency

Module 15: Memory Consistency Models Lecture 34: Sequential Consistency and Relaxed Models Memory Consistency Models. Memory consistency Memory Consistency Models Memory consistency SC SC in MIPS R10000 Relaxed models Total store ordering PC and PSO TSO, PC, PSO Weak ordering (WO) [From Chapters 9 and 11 of Culler, Singh, Gupta] [Additional

More information

Shared Memory Architectures. Approaches to Building Parallel Machines

Shared Memory Architectures. Approaches to Building Parallel Machines Shared Memory Architectures Arvind Krishnamurthy Fall 2004 Approaches to Building Parallel Machines P 1 Switch/Bus P n Scale (Interleaved) First-level $ P 1 P n $ $ (Interleaved) Main memory Shared Cache

More information

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 10: Cache Coherence: Part I Parallel Computer Architecture and Programming Cache design review Let s say your code executes int x = 1; (Assume for simplicity x corresponds to the address 0x12345604

More information

Lecture: Consistency Models, TM

Lecture: Consistency Models, TM Lecture: Consistency Models, TM Topics: consistency models, TM intro (Section 5.6) No class on Monday (please watch TM videos) Wednesday: TM wrap-up, interconnection networks 1 Coherence Vs. Consistency

More information

Multiprocessors and Locking

Multiprocessors and Locking Types of Multiprocessors (MPs) Uniform memory-access (UMA) MP Access to all memory occurs at the same speed for all processors. Multiprocessors and Locking COMP9242 2008/S2 Week 12 Part 1 Non-uniform memory-access

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 19 Lecture 7/8: Synchronization (1) Administrivia How is Lab going? Be prepared with questions for this weeks Lab My impression from TAs is that you are on track

More information

Page 1. Lecture 12: Multiprocessor 2: Snooping Protocol, Directory Protocol, Synchronization, Consistency. Bus Snooping Topology

Page 1. Lecture 12: Multiprocessor 2: Snooping Protocol, Directory Protocol, Synchronization, Consistency. Bus Snooping Topology CS252 Graduate Computer Architecture Lecture 12: Multiprocessor 2: Snooping Protocol, Directory Protocol, Synchronization, Consistency Review: Multiprocessor Basic issues and terminology Communication:

More information

Review: Multiprocessor. CPE 631 Session 21: Multiprocessors (Part 2) Potential HW Coherency Solutions. Bus Snooping Topology

Review: Multiprocessor. CPE 631 Session 21: Multiprocessors (Part 2) Potential HW Coherency Solutions. Bus Snooping Topology Review: Multiprocessor CPE 631 Session 21: Multiprocessors (Part 2) Department of Electrical and Computer Engineering University of Alabama in Huntsville Basic issues and terminology Communication: share

More information

Last Class: Synchronization

Last Class: Synchronization Last Class: Synchronization Synchronization primitives are required to ensure that only one thread executes in a critical section at a time. Concurrent programs Low-level atomic operations (hardware) load/store

More information

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU /15-618, Spring 2015

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU /15-618, Spring 2015 Lecture 10: Cache Coherence: Part I Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Tunes Marble House The Knife (Silent Shout) Before starting The Knife, we were working

More information

CS 61C: Great Ideas in Computer Architecture. Amdahl s Law, Thread Level Parallelism

CS 61C: Great Ideas in Computer Architecture. Amdahl s Law, Thread Level Parallelism CS 61C: Great Ideas in Computer Architecture Amdahl s Law, Thread Level Parallelism Instructor: Alan Christopher 07/17/2014 Summer 2014 -- Lecture #15 1 Review of Last Lecture Flynn Taxonomy of Parallel

More information

CS 152 Computer Architecture and Engineering

CS 152 Computer Architecture and Engineering CS 152 Computer Architecture and Engineering Lecture 27 Multiprocessors 2005-4-28 John Lazzaro (www.cs.berkeley.edu/~lazzaro) TAs: Ted Hong and David Marquardt www-inst.eecs.berkeley.edu/~cs152/ Last Time:

More information