Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say

Size: px
Start display at page:

Download "Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say"

Transcription

1 Sets 1 Where does mathematics start? What are the ideas which come first, in a logical sense, and form the foundation for everything else? Can we get a very small number of basic ideas? Can we reduce it to just one thing? For a long time the basic idea was though to be number. We now see a set as the single starting point. A set in mathematics is a very simple idea - a collection of things. The word 'set' is also used in everyday English, but a maths set is different. A set of cutlery has 'slots' or 'roles', such as knife, fork, soup spoon, desert spoon. A set of golf clubs also has standard slots, such as a driver, a putter and a wedge. These things in maths terms would be called tuples. But a mathematical set is more general than this, and there is no need for slots with fixed purposes. A set is just any collection of anything, with the things not being in order, and with no duplicates. Because sets are the foundation of mathematics, we should have a formal logical basis for them. We outline that later - including more precision as to what the 'things' in a set can be. We start off informally. Set notation For example we could have S1 = { A, B, C } which means that the set S1 is made of the elements A B and C. What kind of thing are A B and C? At the moment, anything. So we might have { red, green blue } a set of colours, { Paris, New York, Chicago } a set of cities { 1,2,3,4,5 } a set of numbers The elements of a set The things in a set are called the elements of it. If x is an element of the set S, we say x S read as 'x is an element of S' For example 2 { 1,2,3} Or maybe x is not an element of S: x S such as 4 {1,2,3} Equality of sets Two sets are equal if they contain exactly the same things. So A = B if and only if every element of A is an element of B, and vice versa. In other words, if x is in A, x is in B, and also the other way round: if x is in B, x is in A For example { 1,2,3 } = {1,2,3}

2 {1,2,3 } = {3,2,1}.. order does not matter {1,2,3 } {2,3} { 1,2 } {1,2,3} Conversely, if A is not equal to B, there must be an x in A not in B, or an x in B not in A. 'Being equal' might be thought to be a simple obvious idea - but it is not. For example, how does 'being equal' relate to 'being the same'? For example, if we say x=y, is that just a way of saying that x and y are different names for the same thing? If so - consider 5 = 3+2. Does that mean 3+2 is the same thing as 5? EXERCISE 1 An equivalence relation must satisfy 3 properties: A~A (reflexive) if A~B and B~C then A~C (transitive) if A~B then B~A (symmetric) Are these true for set equality? In other words, is set equality an equivalence relation? We study relations and equivalence relations later. Sets of Sets We have not discussed what type of thing we can have in a set - this is discussed later. In the meantime we will just call them a b and c and so on, without saying what a and b and c are. But we can have sets of sets - for example S1 = { a,b,c } S2 = { p, q ] S3 = { S1, S2 } S1 has three elements in it. S3 has just two elements - S1 and S2 (not the five elements a b c p and q ) You have to think very carefully about this. Suppose A = { x, y, z } Is A the same as { A }? No. The set A has three elements, x y and z. But { A } has just one element, which is A. The null set The set with no elements, the empty set, is denoted by Φ Φ = { } The null set is unique - there is only one null set. Suppose S6 and S7 were both null sets, and S6 S7 then there must be an element of S6 not in S7, or one in S7 not in S6. But there are no such elements, so S6 S7 is false. Are you sure this is valid logic? The null set might be thought just a curious thing - in fact it is going to be of fundamental importance. Subsets A subset of a set is a selection of the elements of a set. So if S = {A,B,C,D,E}, then {A,C,E} is a subset of S. This is written So {A,C,E} { A,B,C,D,E} The definition is : A B if x A implies x B In other words one set is a subset of another if, when we pick one of its elements (any one), it will also be an element of the other set.

3 That means a set is a subset of itself, since every element of A is in A. Also the null set is a subset of every set. A proper subset excludes the set itself, and the null set. Since A A is true for all A, subsets (set inclusion) is reflexive If A B and B C, then A C, and so set inclusion is transitive If A and B are distinct and not null, then A B implies B A, so set inclusion is anti-symmetric The Power Set What about all the subsets of a set? All the subsets of { 1,2,3} are: {1,2,3} {2,3} {1,3} {1,2} {1} {2} {3} {} (the null set Φ ) The set of all subsets is called the power set. How many elements are in the power set? How many subsets does a set have? Suppose the set is S={A,B,C...N} Some subsets contain A - the rest do not. Those two groups can be combined with those that contain B, and those that do not. That's 2 X 2 sets. Combine those with those that contain C, and those that do not - that's 2 X 2 X 2. Clearly we have a total of 2 n. Or, we can represent each subset as a binary number, like would be the subset that contains A and B but no others. The subsets are then (n bits) to That's 2 n subsets. Venn diagrams One way of visualizing sets is through the use of these diagrams. For example if X = { a, b, c, d } and Y = { b, c } X this diagram shows the situation. Y a b c d Usually we do not write in the elements, and just show the set boundaries. Intersection The intersection of two sets is another set, containing all the elements which are common to both sets. The intersection of A and B is written A B So if A ={ W,X,Y} and B = {X,Y,Z} then A B = { X,Y} if x A B, then x A and x B X Y Intersection

4 Intersection corresponds to the logical connective AND - the intersection is the set of those elements in one set AND the other. EXERCISE 3 1. What is A Φ? 2. What is A A? 3. Is A B = B A true? Union The union of two sets is another set, containing everything which is in one set, or the other (or both) The union of A and B is written A B So if A ={ W,X,Y} and B = {X,Y,Z} then A B = { W,X,Y,Z } ( remember sets do not contain duplicate elements ) if x A B, then x A, or x B, or both. X Union Y EXERCISE 4 1. What is A Φ? 2. What is A A? Difference This is like 'subtracting' one set from another. The difference of two sets A and B, written A - B, contains those elements in A but not in B So if A ={ S, T, U} and B = {T,U,V} then A - B = { S} EXERCISE 5 1. What is A - A? 2. A - Φ? 3. If A - B = A what can you say about B? 4. If A - B = Φ what can you say? 5. If A - B = B? Complement and Universe The complement of a set are the things not in it. The complement is a set X is usually written X' X A X - Y A - B B Y C C - D D But what then is the complement of {X, Y}? Everything except X and Y, but that is rather vague, as regards what 'everything' is. So we have the idea of the universal set, which is the set of everything we are talking about. For example if the universe is { A, B, C, D, E, F} and S = {A, B, C} then S' = { D, E, F }

5 So the complement of a set is the difference between the universal set and the given set. Cartesian Product If we have 2 sets A and B, we can form a new set, containing all pairs, one from A and one from B. For example, if A = { C, D} and B={E, F} then the Cartesian Product of A and B is { {C,E}, {C,F}, {D,E}, {D,F} } This is written A X B We modify this idea slightly in the chapter about ordered pairs. Set builder notation As well as listing elements, we can also form a set by giving a rule to decide if something is a member. For example S = { x : x > 0 and x < 5 } which could be read as S is the set of x, where x is greater than 0 and less than 5 - in other words S = { 1, 2, 3, 4 } And we could have T = { x : x is even } - which is an infinite set. Then S T = { 2,4 } The number sets The natural numbers are 1,2,3,4.. The set of all natural numbers is usually written N ( N if fancy letters are not available. The set of signed integers..-2, -1, 0, +1, +2.. is written Z (from the German Zahlen, number) A rational number is one that can be written as a/b where a and b are signed integers. So 1/9, 5/4, -7/22 are all rational numbers. The set of all rationals is written Q Irrational numbers are numbers which cannot be written as a/b. Examples are 2, π and e. The real numbers are rationals and irrationals - all numbers. The set of reals is written R. There is no standard symbol for the irrationals. It can be written R - Q - that is, the reals without the rationals. The set of complex numbers is written C.

6 Cardinality of a set This is how many elements there are in a set. So the cardinality of {6,7,8,9} is 4. The cardinality of a set S is written S So {5,4,3} is 3. This seems to be a very simple idea. But not always. For example, what is N? Is Q smaller than R? EXERCISE 6 1. Does A X B = B X A? ANSWERS 1. Yes. A=B iff x A implies x B and x B implies x A Clearly x A implies x A so A=A If A=B and B=C then x A implies x B and x B implies x C, so x A implies x C, so A=C If A=B then x B implies x A so B=A 3.1 Φ 3.2 A 3.3 Yes. The elements which are in A and B are the same as the ones in B and A. 4.2 A 4.3 A 5.1 Φ 5.2 A 5.3 There are no elements in B which are in A. In other words A B = Φ. This might be because B = Φ 5.4 A = B 5.5. If you remove the elements of B from A, you get the elements of B. That is impossible, unless B has no elements - so the same for A. So A = B = Φ 6.1 Yes. The elements of A X B are all of {x,y} where x A and y B The elements of B X A are all {y,x} But sets are not ordered, so {x,y} = {y,x}. So A X B = B X A DEFINITIONS OF AND A = B C iff x A x B x C

7 A = B C iff x A x B x C DEFINITION OF = A = B iff x A x B COMMUTATIVITY OF = Axiom : A = B definition of = x A x B x B x A reflexivity of iff Conclusion: B = A definition of = So if A=B, B=A TRANSITIVITY OF = Axiom 1: A = B Axiom 2: B = C x A x B definition of = and axiom 1 x B x C definition of = and axiom 2 x A x C transitivity of iff Conclusion : A = C transitivity of = so if A=B and B=C, A=C COMMUTATIVITY OF Axiom: A = B C x A x B x C definition of x A x C x B transitivity of iff 2 A = C B definition of 3 B C = A commutativity of =, from axiom so A B = B A B C = C B commutativity of =, from 3 and 2 ASSOCIATIVITY OF Axiom X = ( A B) C x X x ( A B) C definition of = x ( A B) x C definition of ( x A x B ) x C definition of x A ( x B x C) associativity of

8 x A (B C) definition of, twice Conclusion ( A B) C = A (B C) definition of = with axiom so ( A B) C = A (B C) ASSOCIATIVITY OF Axiom X = ( A B) C x X x ( A B) C definition of = x ( A B) x C definition of ( x A x B ) x C definition of x A ( x B x C) associativity of x A (B C) definition of, twice Conclusion ( A B) C = A (B C) definition of = with axiom so ( A B) C = A (B C)

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31 Sets MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Sets Fall 2014 1 / 31 Outline 1 Sets Introduction Cartesian Products Subsets Power Sets Union, Intersection, Difference

More information

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets.

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets. SETS A set is a file of objects which have at least one property in common. The objects of the set are called elements. Sets are notated with capital letters K, Z, N, etc., the elements are a, b, c, d,

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS 2-1Numeration Systems Hindu-Arabic Numeration System Tally Numeration System Egyptian Numeration System Babylonian Numeration System Mayan Numeration System Roman Numeration System Other Number Base Systems

More information

Set and Set Operations

Set and Set Operations Set and Set Operations Introduction A set is a collection of objects. The objects in a set are called elements of the set. A well defined set is a set in which we know for sure if an element belongs to

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Algebra of Sets. Aditya Ghosh. April 6, 2018 It is recommended that while reading it, sit with a pen and a paper.

Algebra of Sets. Aditya Ghosh. April 6, 2018 It is recommended that while reading it, sit with a pen and a paper. Algebra of Sets Aditya Ghosh April 6, 2018 It is recommended that while reading it, sit with a pen and a paper. 1 The Basics This article is only about the algebra of sets, and does not deal with the foundations

More information

COMP Logic for Computer Scientists. Lecture 17

COMP Logic for Computer Scientists. Lecture 17 COMP 1002 Logic for Computer Scientists Lecture 17 5 2 J Puzzle: the barber In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

More information

CS 1200 Discrete Math Math Preliminaries. A.R. Hurson 323 CS Building, Missouri S&T

CS 1200 Discrete Math Math Preliminaries. A.R. Hurson 323 CS Building, Missouri S&T CS 1200 Discrete Math A.R. Hurson 323 CS Building, Missouri S&T hurson@mst.edu 1 Course Objective: Mathematical way of thinking in order to solve problems 2 Variable: holder. A variable is simply a place

More information

Sets. X. Zhang Dept. of Computer & Information Sciences Fordham University

Sets. X. Zhang Dept. of Computer & Information Sciences Fordham University Sets! X. Zhang Dept. of Computer & Information Sciences Fordham University 1 Outline on sets! Basics!! Specify a set by enumerating all elements!! Notations!! Cardinality!! Venn Diagram!! Relations on

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecture 2: Basic Structures: Set Theory MING GAO DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 18, 2017 Outline 1 Set Concepts 2 Set Operations 3 Application

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan MATH 22 Lecture M: 10/14/2003 MORE ABOUT FUNCTIONS Form follows function. Louis Henri Sullivan This frightful word, function, was born under other skies than those I have loved. Le Corbusier D ora innanzi

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

CS100: DISCRETE STRUCTURES

CS100: DISCRETE STRUCTURES CS: DISCRETE STRUCTURES Computer Science Department Lecture : Set and Sets Operations (Ch2) Lecture Contents 2 Sets Definition. Some Important Sets. Notation used to describe membership in sets. How to

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

SET DEFINITION 1 elements members

SET DEFINITION 1 elements members SETS SET DEFINITION 1 Unordered collection of objects, called elements or members of the set. Said to contain its elements. We write a A to denote that a is an element of the set A. The notation a A denotes

More information

Problem One: A Quick Algebra Review

Problem One: A Quick Algebra Review CS103A Winter 2019 Solutions for Week One Handout 01S Problem One: A Quick Algebra Review In the first week of CS103, we'll be doing a few proofs that will require some algebraic manipulations and reasoning

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

1 of 7 7/15/2009 3:40 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 1. Sets Poincaré's quote, on the title page of this chapter could not be more wrong (what was he thinking?). Set theory

More information

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set Outline CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets rthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright rthur G. Werschulz, 2017.

More information

The Further Mathematics Support Programme

The Further Mathematics Support Programme Degree Topics in Mathematics Groups A group is a mathematical structure that satisfies certain rules, which are known as axioms. Before we look at the axioms, we will consider some terminology. Elements

More information

Introduction. Sets and the Real Number System

Introduction. Sets and the Real Number System Sets: Basic Terms and Operations Introduction Sets and the Real Number System Definition (Set) A set is a well-defined collection of objects. The objects which form a set are called its members or Elements.

More information

The Language of Sets and Functions

The Language of Sets and Functions MAT067 University of California, Davis Winter 2007 The Language of Sets and Functions Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (January 7, 2007) 1 The Language of Sets 1.1 Definition and Notation

More information

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee Sets Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Sets Sets A set is an unordered collection of objects, called elements, without duplication. We write a A to denote that a is an element

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

Today s Topics. What is a set?

Today s Topics. What is a set? Today s Topics Introduction to set theory What is a set? Set notation Basic set operations What is a set? Definition: A set is an unordered collection of objects Examples: Sets can contain items of mixed

More information

Numbers. Definition :Heading 4...1

Numbers. Definition :Heading 4...1 Numbers Table of Contents Definition :Heading 4...1 NUMBERS We are all familiar with numbers, from an early age. We develop an intuitive grasp of counting, adding, multiplying and so on. Here we show how

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

11 Sets II Operations

11 Sets II Operations 11 Sets II Operations Tom Lewis Fall Term 2010 Tom Lewis () 11 Sets II Operations Fall Term 2010 1 / 12 Outline 1 Union and intersection 2 Set operations 3 The size of a union 4 Difference and symmetric

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Euclid s Axioms. 1 There is exactly one line that contains any two points.

Euclid s Axioms. 1 There is exactly one line that contains any two points. 11.1 Basic Notions Euclid s Axioms 1 There is exactly one line that contains any two points. Euclid s Axioms 1 There is exactly one line that contains any two points. 2 If two points line in a plane then

More information

2/18/14. Uses for Discrete Math in Computer Science. What is discrete? Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2.

2/18/14. Uses for Discrete Math in Computer Science. What is discrete? Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2. Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2.3) TOPICS Discrete math Set Definition Set Operations Tuples Digital computers are based on discrete units of data (bits). Therefore,

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers Contents STRAND B: Number Theory Unit 7 Number System and Bases Student Text Contents Section 7. Number System 7.2 Binary Numbers 7.3 Adding and Subtracting Binary Numbers 7.4 Multiplying Binary Numbers

More information

Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions

Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions EE210: Switching Systems Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions Prof. YingLi Tian Feb. 5/7, 2019 Department of Electrical Engineering The City College of New

More information

Algebraic Expressions

Algebraic Expressions P.1 Algebraic Expressions, Mathematical Models, and Real Numbers P.2 Exponents and Scientific Notation Objectives: Evaluate algebraic expressions, find intersection and unions of sets, simplify algebraic

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets.

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets. Sets A B C This Lecture We will first introduce some basic set theory before we do counting. Basic Definitions Operations on Sets Set Identities Defining Sets Definition: A set is an unordered collection

More information

Math 187 Sample Test II Questions

Math 187 Sample Test II Questions Math 187 Sample Test II Questions Dr. Holmes October 2, 2008 These are sample questions of kinds which might appear on Test II. There is no guarantee that all questions on the test will look like these!

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

Properties. Comparing and Ordering Rational Numbers Using a Number Line

Properties. Comparing and Ordering Rational Numbers Using a Number Line Chapter 5 Summary Key Terms natural numbers (counting numbers) (5.1) whole numbers (5.1) integers (5.1) closed (5.1) rational numbers (5.1) irrational number (5.2) terminating decimal (5.2) repeating decimal

More information

LECTURE NOTES ON SETS

LECTURE NOTES ON SETS LECTURE NOTES ON SETS PETE L. CLARK Contents 1. Introducing Sets 1 2. Subsets 5 3. Power Sets 5 4. Operations on Sets 6 5. Families of Sets 8 6. Partitions 10 7. Cartesian Products 11 1. Introducing Sets

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

Chapter 1: Number and Operations

Chapter 1: Number and Operations Chapter 1: Number and Operations 1.1 Order of operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply

More information

MAT 090 Brian Killough s Instructor Notes Strayer University

MAT 090 Brian Killough s Instructor Notes Strayer University MAT 090 Brian Killough s Instructor Notes Strayer University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

Circuit analysis summary

Circuit analysis summary Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert

More information

10/11/2018. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings

10/11/2018. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings Sometimes, relations define an order on the elements in a set. Definition: A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set

More information

NAME UNIT 4 ALGEBRA II. NOTES PACKET ON RADICALS, RATIONALS d COMPLEX NUMBERS

NAME UNIT 4 ALGEBRA II. NOTES PACKET ON RADICALS, RATIONALS d COMPLEX NUMBERS NAME UNIT 4 ALGEBRA II NOTES PACKET ON RADICALS, RATIONALS d COMPLEX NUMBERS Properties for Algebra II Name: PROPERTIES OF EQUALITY EXAMPLE/MEANING Reflexive a - a Any quantity is equal to itself. Symmetric

More information

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton Fundamental Mathematical Concepts Math 107A Professor T. D. Hamilton January 17, 2007 2 Contents 1 Set Theory 7 What is a set?.......................................... 7 Describing a Set.........................................

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

Relational Database: The Relational Data Model; Operations on Database Relations

Relational Database: The Relational Data Model; Operations on Database Relations Relational Database: The Relational Data Model; Operations on Database Relations Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Overview

More information

LECTURE 2 An Introduction to Boolean Algebra

LECTURE 2 An Introduction to Boolean Algebra IST 210: Boot Camp Ritendra Datta LECTURE 2 An Introduction to Boolean Algebra 2.1. Outline of Lecture Fundamentals Negation, Conjunction, and Disjunction Laws of Boolean Algebra Constructing Truth Tables

More information

Set theory is a branch of mathematics that studies sets. Sets are a collection of objects.

Set theory is a branch of mathematics that studies sets. Sets are a collection of objects. Set Theory Set theory is a branch of mathematics that studies sets. Sets are a collection of objects. Often, all members of a set have similar properties, such as odd numbers less than 10 or students in

More information

CISC 1400 Discrete Structures

CISC 1400 Discrete Structures CISC 1400 Discrete Structures Chapter 4 Relations CISC1400 Yanjun Li 1 1 Relation A relation is a connection between objects in one set and objects in another set (possibly the same set). age is a relation

More information

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below:

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below: Chapter 4 Relations & Graphs 4.1 Relations Definition: Let A and B be sets. A relation from A to B is a subset of A B. When we have a relation from A to A we often call it a relation on A. When we have

More information

What Is A Relation? Example. is a relation from A to B.

What Is A Relation? Example. is a relation from A to B. 3.3 Relations What Is A Relation? Let A and B be nonempty sets. A relation R from A to B is a subset of the Cartesian product A B. If R A B and if (a, b) R, we say that a is related to b by R and we write

More information

An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis October 12, 2016 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

More information

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions Algebra 1 Review Properties of Real Numbers Algebraic Expressions Real Numbers Natural Numbers: 1, 2, 3, 4,.. Numbers used for counting Whole Numbers: 0, 1, 2, 3, 4,.. Natural Numbers and 0 Integers:,

More information

Lecture 6,

Lecture 6, Lecture 6, 4.16.2009 Today: Review: Basic Set Operation: Recall the basic set operator,!. From this operator come other set quantifiers and operations:!,!,!,! \ Set difference (sometimes denoted, a minus

More information

Section 1.2 Fractions

Section 1.2 Fractions Objectives Section 1.2 Fractions Factor and prime factor natural numbers Recognize special fraction forms Multiply and divide fractions Build equivalent fractions Simplify fractions Add and subtract fractions

More information

Quadratic Equations over Matrices over the Quaternions. By Diana Oliff Mentor: Professor Robert Wilson

Quadratic Equations over Matrices over the Quaternions. By Diana Oliff Mentor: Professor Robert Wilson Quadratic Equations over Matrices over the Quaternions By Diana Oliff Mentor: Professor Robert Wilson Fields A field consists of a set of objects S and two operations on this set. We will call these operations

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

Section 1.8. Simplifying Expressions

Section 1.8. Simplifying Expressions Section 1.8 Simplifying Expressions But, first Commutative property: a + b = b + a; a * b = b * a Associative property: (a + b) + c = a + (b + c) (a * b) * c = a * (b * c) Distributive property: a * (b

More information

Decimal Binary Conversion Decimal Binary Place Value = 13 (Base 10) becomes = 1101 (Base 2).

Decimal Binary Conversion Decimal Binary Place Value = 13 (Base 10) becomes = 1101 (Base 2). DOMAIN I. NUMBER CONCEPTS Competency 00 The teacher understands the structure of number systems, the development of a sense of quantity, and the relationship between quantity and symbolic representations.

More information

Definition. A set is a collection of objects. The objects in a set are elements.

Definition. A set is a collection of objects. The objects in a set are elements. Section 1.1: Sets Definition A set is a collection of objects. The objects in a set are elements. Definition A set is a collection of objects. The objects in a set are elements. Examples: {1, cat, ψ} (Sets

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 14: Set Theory: Definitions and Properties 1. Let C = {n Z n = 6r 5 for

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

MITOCW watch?v=kz7jjltq9r4

MITOCW watch?v=kz7jjltq9r4 MITOCW watch?v=kz7jjltq9r4 PROFESSOR: We're going to look at the most fundamental of all mathematical data types, namely sets, and let's begin with the definitions. So informally, a set is a collection

More information

The Size of the Cantor Set

The Size of the Cantor Set The Size of the Cantor Set Washington University Math Circle November 6, 2016 In mathematics, a set is a collection of things called elements. For example, {1, 2, 3, 4}, {a,b,c,...,z}, and {cat, dog, chicken}

More information

SOFTWARE ENGINEERING DESIGN I

SOFTWARE ENGINEERING DESIGN I 2 SOFTWARE ENGINEERING DESIGN I 3. Schemas and Theories The aim of this course is to learn how to write formal specifications of computer systems, using classical logic. The key descriptional technique

More information

1 Sets, Fields, and Events

1 Sets, Fields, and Events CHAPTER 1 Sets, Fields, and Events B 1.1 SET DEFINITIONS The concept of sets play an important role in probability. We will define a set in the following paragraph. Definition of Set A set is a collection

More information

Binary Relations McGraw-Hill Education

Binary Relations McGraw-Hill Education Binary Relations A binary relation R from a set A to a set B is a subset of A X B Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B. We can also represent

More information

2.1 Symbols and Terminology

2.1 Symbols and Terminology 2.1 Symbols and Terminology A is a collection of objects or things. The objects belonging to the are called the, or. - : there is a way of determining for sure whether a particular item is an element of

More information

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic Chapter 3: Theory of Modular Arithmetic 1 Chapter 3: Theory of Modular Arithmetic SECTION A Introduction to Congruences By the end of this section you will be able to deduce properties of large positive

More information

Rational Numbers CHAPTER Introduction

Rational Numbers CHAPTER Introduction RATIONAL NUMBERS Rational Numbers CHAPTER. Introduction In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + () is solved when x, because this value of

More information

The Intersection of Two Sets

The Intersection of Two Sets Venn Diagrams There are times when it proves useful or desirable for us to represent sets and the relationships among them in a visual manner. This can be beneficial for a variety of reasons, among which

More information

MAT 003 Brian Killough s Instructor Notes Saint Leo University

MAT 003 Brian Killough s Instructor Notes Saint Leo University MAT 003 Brian Killough s Instructor Notes Saint Leo University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008

Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008 Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008 Ten questions, each worth the same amount. Complete six of your choice. I will only grade the first six I see. Make sure your name

More information

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions 13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 011 Automata Theory EUR solutions Problem 1 (5 points). Prove that any surjective map between finite sets of the same cardinality is a

More information

Sets. {1, 2, 3, Calvin}.

Sets. {1, 2, 3, Calvin}. ets 2-24-2007 Roughly speaking, a set is a collection of objects. he objects are called the members or the elements of the set. et theory is the basis for mathematics, and there are a number of axiom systems

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example Sets Slides by Christopher M. ourke Instructor: erthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

6. Relational Algebra (Part II)

6. Relational Algebra (Part II) 6. Relational Algebra (Part II) 6.1. Introduction In the previous chapter, we introduced relational algebra as a fundamental model of relational database manipulation. In particular, we defined and discussed

More information

CGF Lecture 2 Numbers

CGF Lecture 2 Numbers CGF Lecture 2 Numbers Numbers A number is an abstract entity used originally to describe quantity. i.e. 80 Students etc The most familiar numbers are the natural numbers {0, 1, 2,...} or {1, 2, 3,...},

More information

Page 1. Kobrin/Losquadro Math 8. Unit 10 - Types of Numbers Test Review. Questions 1 and 2 refer to the following:

Page 1. Kobrin/Losquadro Math 8. Unit 10 - Types of Numbers Test Review. Questions 1 and 2 refer to the following: 9195-1 - Page 1 Name: Date: Kobrin/Losquadro Math 8 Unit 10 - Types of Numbers Test Review Questions 1 and 2 refer to the following: Use the number line below to answer the given question. 1) Which of

More information

Cardinality of Sets. Washington University Math Circle 10/30/2016

Cardinality of Sets. Washington University Math Circle 10/30/2016 Cardinality of Sets Washington University Math Circle 0/0/06 The cardinality of a finite set A is just the number of elements of A, denoted by A. For example, A = {a, b, c, d}, B = {n Z : n } = {,,, 0,,,

More information

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory Proof Techniques Alphabets, Strings, and Languages Foundations of Computer Science Theory Proof By Case Enumeration Sometimes the most straightforward way to prove that a property holds for all elements

More information

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Kavish Gandhi April 4, 2015 Abstract A geodesic in the hypercube is the shortest possible path between two vertices. Leader and Long

More information