CSE2421 Systems1 Introduction to Low-Level Programming and Computer Organization

Size: px
Start display at page:

Download "CSE2421 Systems1 Introduction to Low-Level Programming and Computer Organization"

Transcription

1 Spring 2013 CSE2421 Systems1 Introduction to Low-Level Programming and Computer Organization Kitty Reeves TWRF 8:00-8:55am 1

2 Compiler Drivers = GCC When you invoke GCC, it normally does preprocessing, compilation, assembly and linking, as needed, on behalf of the user accepts options and file names as operands % gcc O1 -g -o p main.c swap.c % man gcc Pre-processor (cpp).c to.i Compiler (cc1).i file to.s Assembler (as).s to relocatable object file.o Linker (ld) creates executable object file called a.out as default Compiler driver Loader the unix shell invokes a function in the OS to call the loader Copies the code and data in the executable file into memory Transfers control to the beginning of the program See slide #13 and #206 (3 times a charm?!) 2

3 Linkage After the individual source files comprising a program are compiled, the object files are linked together with functions from one or more libraries to form the executable program When the same identifier appears in more than one source file, do they refer to the same entity or to different entities? 3

4 Chp. 7 Linking building a program vs program execution which runs a program i.e. text file EFFICIENCY issue: Small change requires recompilation MODULARITY issue: hard to share common functions (i.e. printf) SOLUTION static LINKER like LAB4 Compile each C program separately to create.o file: % gcc c m.c % gcc c a.c Combined.o files into single executable, then run: % gcc m.o a.o o p % p 4

5 Types of object files Object files, created by the assembler and link editor, are binary representations of programs intended to be executed directly on a processor A relocatable object file holds code and data suitable for linking with other object files to create an executable or a shared object file. Each.o file is produced from exactly one source (.c) file An executable object file (default is a.out) holds code and data that can be copied directly into memory then executed. A shared object file (.so file) is a special type of relocatable object file that can be loaded into memory and linked dynamically, at either load time or run time. Load time: the link editor processes the shared object file with other relocatable and shared object files to create another object file Run time: the dynamic linker combines it with an executable file and other shared objects to create a process image 5

6 Hello World revisited #include <stdio.h> int main() { printf("hello World"); return 0; } Object file has not been linked yet <main>: 0: 55 push %rbp 1: e5 mov %rsp,%rbp 4: bf mov $0x0,%edi 9: b mov $0x0,%eax e: e callq 13 <main+0x13> 13: b mov $0x0,%eax 18: c9 leaveq 19: c3 retq cc <main>: 4004cc: 55 push %rbp 4004cd: e5 mov %rsp,%rbp 4004d0: bf dc mov $0x4005dc,%edi 4004d5: b mov $0x0,%eax 4004da: e8 e1 fe ff ff callq 4003c0 <printf@plt> 4004df: b mov $0x0,%eax 4004e4: c9 leaveq 4004e5: c3 retq Relocatable vs Executable object code 6

7 Static linking What do linkers do? Step 1. Symbol resolution Programs define and reference symbols (variables and functions): void swap() { } swap(); int *xp = &x; // define symbol swap // reference to a symbol swap // define symbol xp, reference x Symbol definitions are stored (by compiler) in a symbol table A symbol table is an array of structs Each entry includes name, size, and location of symbol Linker associates each symbol reference with exactly one symbol definition 7

8 Static linking What do linkers do? Step 2. Relocation Merges separate code and data sections into single sections Relocates symbols from their relative locations in the.o files to their final absolute memory locations in the executable. Updates all references to these symbols to reflect their new positions. 8

9 Object File Format/Organization The object file formats provide parallel views of a file's contents, reflecting the differing needs of those activities ELF header (executable and linkable format) resides at the beginning and holds a road map describing the file's organization. Program header table Tells the system how to create a process image Files used to build a process image (execute a program) must have a program header table; relocatable files do not need one. 9

10 Object File Format/Organization (cont) Section header table Contains information describing the file's sections Every section has an entry in the table each entry gives information such as the section name, the section size, and so on. Sections Hold the bulk of object file information for the linking view: instructions, data, symbol table, relocation information, etc. Files used during linking must have a section header table; other object files may or may not have one. FYI: Although the figure shows the program header table immediately after the ELF header, and the section header table following the sections, actual files may differ. Moreover, sections and segments have no specified order. Only the ELF header has a fixed position in the file. 10

11 ELF Object File Format (details) 11

12 ELF Object File Format (cont) 12

13 Processes (section 8.2) What is a process? Provides each program with the illusion that is has exclusive use of the processor and memory What is a process image? Process address space 13

14 Linker Symbols (reminders) Global symbols Symbols defined by module m that can be referenced by other modules External symbols Global symbols that are referenced by module m but defined by some other module Local symbols Symbols that are defined and referenced exclusively by module m Ex. C functions and variables defined with the static attribute 14

15 Resolving Symbols 15

16 Relocating Code and Data 16

17 Practice problem 7.1 (pg 662) SYMBOL TABLE.symtab Info about functions and global variables that are defined and referenced in a program Does not contain entries for local variables Understanding the relationship between linker symbols and C variables/functions notice that the C local variable temp does NOT have a symbol table entry. Why? It goes on the stack! Symbol swap.o.symtab entry? symbol type module where defined section buf yes extern main.o.data bufp0 yes global swap.o.data bufp1 yes global swap.o.bss swap yes global swap.o.text temp no

18 Swap relocatable symbol table % objdump -r -d -t swap.o swap.o: file format elf32-i386 SYMBOL TABLE: l df *ABS* swap.c l d.text text l d.data data l d.bss bss l O.bss bufp g O.data bufp *UND* buf g F.text swap O = object d = debug l = local F = function f = file g = global 18

19 Symbols and Symbol Tables Local linker symbols!= local program variables.symtab does not contain any symbols that correspond to local non-static program variables. These are managed at run time on the stack and are not of interest to the linker However local procedure variables that are defined with the C static attribute (EXCEPTION) are not managed on the stack The compiler allocates space in.data or.bss for each and created a local linker symbol in the symbol table with a unique name FYI: Static variable s lifetime extends across the entire run of the program where local variables are allocated and deallocated on the stack 19

20 SYMBOL TABLES Built by assemblers using symbols exported by the compiler into the.s file An ELF symbol table is contained in the.symtab section It contains an array of entries where each entry contains: Symbol s value i.e. address Flag bits (l=local, g = global, F=function, etc) Characters and spaces up to 7 bits Section or *ABS* (absolute not in any section) *UND* if referenced but not defined Alignment or size Symbol s name 20

21 Relocation Relocation merges the input modules and assigns runtime addresses to each symbol When an assembler generates an object module, it does not know where the code and data will ultimately be stored in memory or the locations of any externally defined functions or global variables referenced by the module A relocation entry is generated when the assembler encounters a reference to an object who ultimate location is unknown 2 types R_386_PC32 R_386_32 21

22 2 Relocation types R_386_PC32 relocate a reference that uses a 32-bit PC-relative address. Effective address = PC + instruction encoded addr R_386_32 Absolute addressing Uses the value encoded in the instruction 22

23 Relocation Info % gcc -o main -m32 main.c /tmp/ccevreug.o: In function `main': main.c:(.text+0x7): undefined reference to `swap' collect2: ld returned 1 exit status Call offset 0x6, opcode e8, 32-bit ref (-4) Offset = 0x7 Symbol = swap Type = R_386_PC32 % gcc c m32 main.c % objdump -r -tdata main.o SYMBOL TABLE: l df *ABS* main.c l d.text text l d.data data l d.bss bss g O.data buf g F.text main *UND* swap Disassembly of section.text: <main>: 0: 55 push %ebp 0x80483b4 1: 89 e5 mov %esp,%ebp 3: 83 e4 f0 and $0xfffffff0,%esp 6: e8 fc ff ff ff call 7 <main+0x7> 7: R_386_PC32 swap b: b mov $0x0,%eax 10: 89 ec mov %ebp,%esp 12: 5d pop %ebp 13: c3 ret NOTE: relocation entries and instructions are stored in different sections of the object file.rel.txt vs.text.text +.offset 0x80483b4 + 0x7 = 0x80483bb = ref addr 0x80483c8 call swap Relocation entry.symbol swap + 32-bit ref ref addr 0x80483c x80483bb = 0x9 23

24 Executable before/after relocation Return address Location of swap function R_386_PC32 relocate a reference that uses a 32-bit PC-relative address. Effective address = PC + instruction encoded address.text +.offset = 0x x12 = 0x reference address Call + 32-bit ref reference address = 0x80483b x = 0x1a 24

25 Relocation Info.text and.data [0] [1] 25

26 Executable After Relocation and External Reference Resolution 26

27 Relocating Symbols and Resolving External References (another example) 27

28 Relocation information (m.c) 28

29 Relocation information (a.c) 29

30 Executable after relocation with external reference resolution 30

Compiler Drivers = GCC

Compiler Drivers = GCC Compiler Drivers = GCC When you invoke GCC, it normally does preprocessing, compilation, assembly and linking, as needed, on behalf of the user accepts options and file names as operands % gcc O1 -g -o

More information

Link 4. Relocation. Young W. Lim Wed. Young W. Lim Link 4. Relocation Wed 1 / 22

Link 4. Relocation. Young W. Lim Wed. Young W. Lim Link 4. Relocation Wed 1 / 22 Link 4. Relocation Young W. Lim 2017-09-13 Wed Young W. Lim Link 4. Relocation 2017-09-13 Wed 1 / 22 Outline 1 Linking - 4. Relocation Based on Relocation Relocation Entries Relocating Symbol Reference

More information

Link 4. Relocation. Young W. Lim Thr. Young W. Lim Link 4. Relocation Thr 1 / 26

Link 4. Relocation. Young W. Lim Thr. Young W. Lim Link 4. Relocation Thr 1 / 26 Link 4. Relocation Young W. Lim 2017-09-14 Thr Young W. Lim Link 4. Relocation 2017-09-14 Thr 1 / 26 Outline 1 Linking - 4. Relocation Based on Relocation Relocation Entries Relocating Symbol Reference

More information

Link 3. Symbols. Young W. Lim Mon. Young W. Lim Link 3. Symbols Mon 1 / 42

Link 3. Symbols. Young W. Lim Mon. Young W. Lim Link 3. Symbols Mon 1 / 42 Link 3. Symbols Young W. Lim 2017-09-11 Mon Young W. Lim Link 3. Symbols 2017-09-11 Mon 1 / 42 Outline 1 Linking - 3. Symbols Based on Symbols Symbol Tables Symbol Table Examples main.o s symbol table

More information

Linking. Explain what ELF format is. Explain what an executable is and how it got that way. With huge thanks to Steve Chong for his notes from CS61.

Linking. Explain what ELF format is. Explain what an executable is and how it got that way. With huge thanks to Steve Chong for his notes from CS61. Linking Topics How do you transform a collection of object files into an executable? How is an executable structured? Why is an executable structured as it is? Learning Objectives: Explain what ELF format

More information

Link Edits and Relocatable Code

Link Edits and Relocatable Code Link Edits and Relocatable Code Computer Systems Chapter 7.4-7.7 gcc g o ttt ttt.c ttt.c gcc ttt Pre-Processor Linker Compiler Assembler ttt.s ttt.o gcc g o ttt ttt.c main.c gcc cmd util.c Pre-Processor

More information

Binghamton University. CS-220 Spring Loading Code. Computer Systems Chapter 7.5, 7.8, 7.9

Binghamton University. CS-220 Spring Loading Code. Computer Systems Chapter 7.5, 7.8, 7.9 Loading Code Computer Systems Chapter 7.5, 7.8, 7.9 gcc g o ttt ttt.c ttt.c ttt gcc gcc g o ttt ttt.c ttt.c gcc ttt Pre-Processor Linker Compiler Assembler ttt.s ttt.o What is in a binary executable file?

More information

Link 4. Relocation. Young W. Lim Sat. Young W. Lim Link 4. Relocation Sat 1 / 33

Link 4. Relocation. Young W. Lim Sat. Young W. Lim Link 4. Relocation Sat 1 / 33 Link 4. Relocation Young W. Lim 2017-09-16 Sat Young W. Lim Link 4. Relocation 2017-09-16 Sat 1 / 33 Outline 1 Linking - 4. Relocation Based on Relocation Relocation Entries Relocating Symbol Reference

More information

Link 2. Object Files

Link 2. Object Files Link 2. Object Files Young W. Lim 2017-09-23 Sat Young W. Lim Link 2. Object Files 2017-09-23 Sat 1 / 40 Outline 1 Linking - 2. Object Files Based on Oject Files ELF Sections Example Program Source Codes

More information

Link 2. Object Files

Link 2. Object Files Link 2. Object Files Young W. Lim 2017-09-20 Wed Young W. Lim Link 2. Object Files 2017-09-20 Wed 1 / 33 Outline 1 Linking - 2. Object Files Based on Oject Files ELF Sections Example Program Source Codes

More information

CSE 2421: Systems I Low-Level Programming and Computer Organization. Linking. Presentation N. Introduction to Linkers

CSE 2421: Systems I Low-Level Programming and Computer Organization. Linking. Presentation N. Introduction to Linkers CSE 2421: Systems I Low-Level Programming and Computer Organization Linking Read/Study: Bryant 7.1 7.10 Gojko Babić 11-15-2017 Introduction to Linkers Linking is the process of collecting and combining

More information

238P: Operating Systems. Lecture 7: Basic Architecture of a Program. Anton Burtsev January, 2018

238P: Operating Systems. Lecture 7: Basic Architecture of a Program. Anton Burtsev January, 2018 238P: Operating Systems Lecture 7: Basic Architecture of a Program Anton Burtsev January, 2018 What is a program? What parts do we need to run code? Parts needed to run a program Code itself By convention

More information

CS 550 Operating Systems Spring Process I

CS 550 Operating Systems Spring Process I CS 550 Operating Systems Spring 2018 Process I 1 Process Informal definition: A process is a program in execution. Process is not the same as a program. Program is a passive entity stored in the disk Process

More information

Linking Oct. 26, 2009"

Linking Oct. 26, 2009 Linking Oct. 26, 2009" Linker Puzzles" int x; p1() {} p1() {} int x; p1() {} int x; p2() {} int x; int y; p1() {} int x=7; int y=5; p1() {} double x; p2() {} double x; p2() {} int x=7; p1() {} int x; p2()

More information

Example C program. 11: Linking. Why linkers? Modularity! Static linking. Why linkers? Efficiency! What do linkers do? 10/28/2013

Example C program. 11: Linking. Why linkers? Modularity! Static linking. Why linkers? Efficiency! What do linkers do? 10/28/2013 Example C program 11: Linking Computer Architecture and Systems Programming 252 61, Herbstsemester 213 Timothy Roscoe main.c int buf[2] = 1, 2; swap(); return ; swap.c static int *bufp = &buf[]; void swap()

More information

Link 4. Relocation. Young W. Lim Tue. Young W. Lim Link 4. Relocation Tue 1 / 38

Link 4. Relocation. Young W. Lim Tue. Young W. Lim Link 4. Relocation Tue 1 / 38 Link 4. Relocation Young W. Lim 2017-09-26 Tue Young W. Lim Link 4. Relocation 2017-09-26 Tue 1 / 38 Outline 1 Linking - 4. Relocation Based on Relocation Relocation Entries Relocation Algorithm Reloation

More information

LINKING. Jo, Heeseung

LINKING. Jo, Heeseung LINKING Jo, Heeseung PROGRAM TRANSLATION (1) A simplistic program translation scheme m.c ASCII source file Translator p Binary executable object file (memory image on disk) Problems: - Efficiency: small

More information

Example C Program The course that gives CMU its Zip! Linking March 2, Static Linking. Why Linkers? Page # Topics

Example C Program The course that gives CMU its Zip! Linking March 2, Static Linking. Why Linkers? Page # Topics 15-213 The course that gives CMU its Zip! Topics Linking March 2, 24 Static linking Dynamic linking Case study: Library interpositioning Example C Program main.c int buf[2] = 1, 2; int main() swap(); return

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 AS 2016 Linking 1 12: Linking Computer Architecture

More information

Link 4. Relocation. Young W. Lim Mon. Young W. Lim Link 4. Relocation Mon 1 / 35

Link 4. Relocation. Young W. Lim Mon. Young W. Lim Link 4. Relocation Mon 1 / 35 Link 4. Relocation Young W. Lim 2017-09-25 Mon Young W. Lim Link 4. Relocation 2017-09-25 Mon 1 / 35 Outline 1 Linking - 4. Relocation Based on Relocation Relocation Entries Relocating Symbol Reference

More information

CS 33. Linkers. CS33 Intro to Computer Systems XXV 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Linkers. CS33 Intro to Computer Systems XXV 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Linkers CS33 Intro to Computer Systems XXV 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. gcc Steps 1) Compile to start here, supply.c file to stop here: gcc -S (produces.s file) if not

More information

Machine Language, Assemblers and Linkers"

Machine Language, Assemblers and Linkers Machine Language, Assemblers and Linkers 1 Goals for this Lecture Help you to learn about: IA-32 machine language The assembly and linking processes 2 1 Why Learn Machine Language Last stop on the language

More information

Linking February 24, 2005

Linking February 24, 2005 15-213 The course that gives CMU its Zip! Linking February 24, 2005 Topics Static linking Dynamic linking Case study: Library interpositioning 13-linking.ppt Example C Program main.c int buf[2] = {1, 2};

More information

Lecture 16: Linking Computer Architecture and Systems Programming ( )

Lecture 16: Linking Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 16: Linking Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Last time: memory hierarchy L1/L2

More information

Linking Oct. 15, 2002

Linking Oct. 15, 2002 15-213 The course that gives CMU its Zip! Topics Linking Oct. 15, 2002 Static linking Object files Static libraries Loading Dynamic linking of shared libraries class15.ppt Linker Puzzles int x; p1() {}

More information

Exercise Session 7 Computer Architecture and Systems Programming

Exercise Session 7 Computer Architecture and Systems Programming Systems Group Department of Computer Science ETH Zürich Exercise Session 7 Computer Architecture and Systems Programming Herbstsemester 2014 Review of last week s excersice structs / arrays in Assembler

More information

Executables and Linking. CS449 Fall 2017

Executables and Linking. CS449 Fall 2017 Executables and Linking CS449 Fall 2017 Remember External Linkage Scope? #include int global = 0; void foo(); int main() { } foo(); printf( global=%d\n, global); return 0; extern int

More information

Systems I. Linking II

Systems I. Linking II Systems I Linking II Topics Relocation Static libraries Loading Dynamic linking of shared libraries Relocating Symbols and Resolving External References Symbols are lexical entities that name functions

More information

Link 4. Relocation. Young W. Lim Thr. Young W. Lim Link 4. Relocation Thr 1 / 48

Link 4. Relocation. Young W. Lim Thr. Young W. Lim Link 4. Relocation Thr 1 / 48 Link 4. Relocation Young W. Lim 2017-09-28 Thr Young W. Lim Link 4. Relocation 2017-09-28 Thr 1 / 48 Outline 1 Linking - 4. Relocation Based on Relocation Relocation Entries Relocation Algorithm Reloation

More information

(Extract from the slides by Terrance E. Boult

(Extract from the slides by Terrance E. Boult What software engineers need to know about linking and a few things about execution (Extract from the slides by Terrance E. Boult http://vast.uccs.edu/~tboult/) A Simplistic Program Translation Scheme

More information

COMPILING OBJECTS AND OTHER LANGUAGE IMPLEMENTATION ISSUES. Credit: Mostly Bryant & O Hallaron

COMPILING OBJECTS AND OTHER LANGUAGE IMPLEMENTATION ISSUES. Credit: Mostly Bryant & O Hallaron COMPILING OBJECTS AND OTHER LANGUAGE IMPLEMENTATION ISSUES Credit: Mostly Bryant & O Hallaron Word-Oriented Memory Organization Addresses Specify Byte Locations Address of first byte in word Addresses

More information

CS 201 Linking Gerson Robboy Portland State University

CS 201 Linking Gerson Robboy Portland State University CS 201 Linking Gerson Robboy Portland State University 1 15-213, F 02 A Simplistic Program Translation Scheme m.c ASCII source file Translator p Binary executable object file (memory image on disk) Problems:

More information

Introduction Presentation A

Introduction Presentation A CSE 2421/5042: Systems I Low-Level Programming and Computer Organization Introduction Presentation A Read carefully: Bryant Chapter 1 Study: Reek Chapter 2 Skim: Reek Chapter 1 08/22/2018 Gojko Babić Some

More information

E = 2 e lines per set. S = 2 s sets tag. valid bit B = 2 b bytes per cache block (the data) CSE351 Inaugural EdiNon Spring

E = 2 e lines per set. S = 2 s sets tag. valid bit B = 2 b bytes per cache block (the data) CSE351 Inaugural EdiNon Spring Last Time Caches E = 2 e lines per set Address of word: t bits s bits b bits S = 2 s sets tag set index block offset data begins at this offset v tag 0 1 2 B 1 valid bit B = 2 b bytes per cache block (the

More information

Computer Organization: A Programmer's Perspective

Computer Organization: A Programmer's Perspective A Programmer's Perspective Linking Gal A. Kaminka galk@cs.biu.ac.il A Simplistic Program Translation Scheme m.c ASCII source file Translator p Binary executable object file (memory image on disk) Problems:

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: January 13, 2017 at 08:55 CS429 Slideset 25: 1 Relocating Symbols

More information

CIT 595 Spring System Software: Programming Tools. Assembly Process Example: First Pass. Assembly Process Example: Second Pass.

CIT 595 Spring System Software: Programming Tools. Assembly Process Example: First Pass. Assembly Process Example: Second Pass. System Software: Programming Tools Programming tools carry out the mechanics of software creation within the confines of the operating system and hardware environment Linkers & Loaders CIT 595 Spring 2010

More information

Linking and Loading. CS61, Lecture 16. Prof. Stephen Chong October 25, 2011

Linking and Loading. CS61, Lecture 16. Prof. Stephen Chong October 25, 2011 Linking and Loading CS61, Lecture 16 Prof. Stephen Chong October 25, 2011 Announcements Midterm exam in class on Thursday 80 minute exam Open book, closed note. No electronic devices allowed Please be

More information

Executables and Linking. CS449 Spring 2016

Executables and Linking. CS449 Spring 2016 Executables and Linking CS449 Spring 2016 Remember External Linkage Scope? #include int global = 0; void foo(); int main() { foo(); printf( global=%d\n, global); return 0; } extern int

More information

Roadmap. Java: Assembly language: OS: Machine code: Computer system:

Roadmap. Java: Assembly language: OS: Machine code: Computer system: Roadmap C: car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: Computer system: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp

More information

Generating Programs and Linking. Professor Rick Han Department of Computer Science University of Colorado at Boulder

Generating Programs and Linking. Professor Rick Han Department of Computer Science University of Colorado at Boulder Generating Programs and Linking Professor Rick Han Department of Computer Science University of Colorado at Boulder CSCI 3753 Announcements Moodle - posted last Thursday s lecture Programming shell assignment

More information

Relocating Symbols and Resolving External References. CS429: Computer Organization and Architecture. m.o Relocation Info

Relocating Symbols and Resolving External References. CS429: Computer Organization and Architecture. m.o Relocation Info Relocating Symbols and Resolving External References CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: January 13,

More information

ELF (1A) Young Won Lim 10/22/14

ELF (1A) Young Won Lim 10/22/14 ELF (1A) Copyright (c) 2010-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Example C Program. Linking CS Instructor: Sanjeev Se(a. int buf[2] = {1, 2}; extern int buf[]; int main() { swap(); return 0; }

Example C Program. Linking CS Instructor: Sanjeev Se(a. int buf[2] = {1, 2}; extern int buf[]; int main() { swap(); return 0; } Linking Instructor: Sanjeev Se(a 1 Example C Program main.c int buf[2] = {1, 2; int main() { swap(); return 0; swap.c extern int buf[]; static int *bufp0 = &buf[0]; static int *bufp1; void swap() { int

More information

M2 Instruction Set Architecture

M2 Instruction Set Architecture M2 Instruction Set Architecture Module Outline Addressing modes. Instruction classes. MIPS-I ISA. Translating and starting a program. High level languages, Assembly languages and object code. Subroutine

More information

Process Environment. Pradipta De

Process Environment. Pradipta De Process Environment Pradipta De pradipta.de@sunykorea.ac.kr Today s Topic Program to process How is a program loaded by the kernel How does kernel set up the process Outline Review of linking and loading

More information

Link 7. Static Linking

Link 7. Static Linking Link 7. Static Linking Young W. Lim 2018-12-21 Fri Young W. Lim Link 7. Static Linking 2018-12-21 Fri 1 / 41 Outline 1 Linking - 7. Static Linking Based on Static Library Examples Linking with Static Libraries

More information

CS356: Discussion #8 Buffer-Overflow Attacks. Marco Paolieri

CS356: Discussion #8 Buffer-Overflow Attacks. Marco Paolieri CS356: Discussion #8 Buffer-Overflow Attacks Marco Paolieri (paolieri@usc.edu) Previous Example #include void unreachable() { printf("impossible.\n"); void hello() { char buffer[6]; scanf("%s",

More information

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p text C program (p1.c p2.c) Compiler (gcc -S) text Asm

More information

Computer Systems Organization

Computer Systems Organization Computer Systems Organization 1 Outline 2 A software view User Interface 3 How it works 4 The gcc compilation system 5 The gcc compilation system hello.c (source code) Pre-processor (cpp) hello.i (modified

More information

Computer Systems Architecture I. CSE 560M Lecture 3 Prof. Patrick Crowley

Computer Systems Architecture I. CSE 560M Lecture 3 Prof. Patrick Crowley Computer Systems Architecture I CSE 560M Lecture 3 Prof. Patrick Crowley Plan for Today Announcements Readings are extremely important! No class meeting next Monday Questions Commentaries A few remaining

More information

CSE 333 Lecture 2 Memory

CSE 333 Lecture 2 Memory CSE 333 Lecture 2 Memory John Zahorjan Department of Computer Science & Engineering University of Washington Today s goals - some terminology - review of memory resources - reserving memory - type checking

More information

Binghamton University. CS-220 Spring X86 Debug. Computer Systems Section 3.11

Binghamton University. CS-220 Spring X86 Debug. Computer Systems Section 3.11 X86 Debug Computer Systems Section 3.11 GDB is a Source Level debugger We have learned how to debug at the C level But the machine is executing X86 object code! How does GDB play the shell game? Makes

More information

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction E I P CPU isters Condition Codes Addresses Data Instructions Memory Object Code Program Data OS Data Topics Assembly Programmer

More information

Princeton University Computer Science 217: Introduction to Programming Systems. Machine Language

Princeton University Computer Science 217: Introduction to Programming Systems. Machine Language Princeton University Computer Science 217: Introduction to Programming Systems Machine Language 1 A paradox grader.c enum {BUFSIZE = 48}; char grade = 'D'; char name[bufsize]; /* Read a string into s */

More information

Linking and Loading. ICS312 - Spring 2010 Machine-Level and Systems Programming. Henri Casanova

Linking and Loading. ICS312 - Spring 2010 Machine-Level and Systems Programming. Henri Casanova Linking and Loading ICS312 - Spring 2010 Machine-Level and Systems Programming Henri Casanova (henric@hawaii.edu) The Big Picture High-level code char *tmpfilename; int num_schedulers=0; int num_request_submitters=0;

More information

Outline. 1 Background. 2 ELF Linking. 3 Static Linking. 4 Dynamic Linking. 5 Summary. Linker. Various Stages. 1 Linking can be done at compile.

Outline. 1 Background. 2 ELF Linking. 3 Static Linking. 4 Dynamic Linking. 5 Summary. Linker. Various Stages. 1 Linking can be done at compile. Outline CS 6V81-05: System Security and Malicious Code Analysis Revealing Internals of Linkers Zhiqiang Lin Department of Computer Science University of Texas at Dallas March 26 th, 2012 1 Background 2

More information

Compila(on, Disassembly, and Profiling

Compila(on, Disassembly, and Profiling Compila(on, Disassembly, and Profiling (in Linux) CS 485: Systems Programming Fall 2015 Instructor: James Griffioen 1 Recall the compila(on process/steps 2 Turning C into Object Code Code in files p1.c

More information

A Simplistic Program Translation Scheme

A Simplistic Program Translation Scheme A Simplistic Program Translation Scheme m.c ASCII source file Translator p Binary executable object file (memory image on disk) Problems: Efficiency: small change requires complete recompilation Modularity:

More information

Revealing Internals of Linkers. Zhiqiang Lin

Revealing Internals of Linkers. Zhiqiang Lin CS 6V81-05: System Security and Malicious Code Analysis Revealing Internals of Linkers Zhiqiang Lin Department of Computer Science University of Texas at Dallas March 26 th, 2012 Outline 1 Background 2

More information

Compiler, Assembler, and Linker

Compiler, Assembler, and Linker Compiler, Assembler, and Linker Minsoo Ryu Department of Computer Science and Engineering Hanyang University msryu@hanyang.ac.kr What is a Compilation? Preprocessor Compiler Assembler Linker Loader Contents

More information

Linking. Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3. Instructor: Joanna Klukowska

Linking. Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3. Instructor: Joanna Klukowska Linking Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran (NYU) Example C

More information

CS165 Computer Security. Understanding low-level program execution Oct 1 st, 2015

CS165 Computer Security. Understanding low-level program execution Oct 1 st, 2015 CS165 Computer Security Understanding low-level program execution Oct 1 st, 2015 A computer lets you make more mistakes faster than any invention in human history - with the possible exceptions of handguns

More information

Computer Systems. Linking. Han, Hwansoo

Computer Systems. Linking. Han, Hwansoo Computer Systems Linking Han, Hwansoo Example C Program int sum(int *a, int n); int array[2] = {1, 2}; int sum(int *a, int n) { int i, s = 0; int main() { int val = sum(array, 2); return val; } main.c

More information

ELF (1A) Young Won Lim 3/24/16

ELF (1A) Young Won Lim 3/24/16 ELF (1A) Copyright (c) 21-216 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

CS2141 Software Development using C/C++ Libraries

CS2141 Software Development using C/C++ Libraries CS2141 Software Development using C/C++ Compilation and linking /* p1.c */ int x; int z; main() { x=0; z=0; printf("f(3)=%d x=%d z=%d\n",f(3),x,z); } Code for int f(int) not available yet, nor printf()

More information

A software view. Computer Systems. The Compilation system. How it works. 1. Preprocesser. 1. Preprocessor (cpp)

A software view. Computer Systems. The Compilation system. How it works. 1. Preprocesser. 1. Preprocessor (cpp) A software view User Interface Computer Systems MTSU CSCI 3240 Spring 2016 Dr. Hyrum D. Carroll Materials from CMU and Dr. Butler How it works hello.c #include int main() { printf( hello, world\n

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures ISAs Brief history of processors and architectures C, assembly, machine code Assembly basics: registers, operands, move instructions 1 What should the HW/SW interface contain?

More information

+ Machine Level Programming: x86-64 History

+ Machine Level Programming: x86-64 History + Machine Level Programming: x86-64 History + Intel x86 Processors Dominate laptop/desktop/server market Evolutionary design Backwards compatible up until 8086, introduced in 1978 Added more features as

More information

Today s Big Adventure

Today s Big Adventure 1/34 Today s Big Adventure - How to name and refer to things that don t exist yet - How to merge separate name spaces into a cohesive whole Readings - man a.out & elf on a Solaris machine - run nm or objdump

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures! ISAs! Brief history of processors and architectures! C, assembly, machine code! Assembly basics: registers, operands, move instructions 1 What should the HW/SW interface

More information

Systems I. Machine-Level Programming I: Introduction

Systems I. Machine-Level Programming I: Introduction Systems I Machine-Level Programming I: Introduction Topics Assembly Programmerʼs Execution Model Accessing Information Registers IA32 Processors Totally Dominate General Purpose CPU Market Evolutionary

More information

Machine Code and Assemblers November 6

Machine Code and Assemblers November 6 Machine Code and Assemblers November 6 CSC201 Section 002 Fall, 2000 Definitions Assembly time vs. link time vs. load time vs. run time.c file.asm file.obj file.exe file compiler assembler linker Running

More information

Midterm. Median: 56, Mean: "midterm.data" using 1:2 1 / 37

Midterm. Median: 56, Mean: midterm.data using 1:2 1 / 37 30 Midterm "midterm.data" using 1:2 25 20 15 10 5 0 0 20 40 60 80 100 Median: 56, Mean: 53.13 1 / 37 Today s Big Adventure f.c gcc f.s as f.o c.c gcc c.s as c.o ld a.out How to name and refer to things

More information

Full Name: CISC 360, Fall 2008 Example of Exam

Full Name: CISC 360, Fall 2008 Example of Exam Full Name: CISC 360, Fall 2008 Example of Exam Page 1 of 0 Problem 1. (12 points): Consider the following 8-bit floating point representation based on the IEEE floating point format: There is a sign bit

More information

Linking. Today. Next time. Static linking Object files Static & dynamically linked libraries. Exceptional control flows

Linking. Today. Next time. Static linking Object files Static & dynamically linked libraries. Exceptional control flows Linking Today Static linking Object files Static & dynamically linked libraries Next time Exceptional control flows Fabián E. Bustamante, 2007 Example C program main.c void swap(); int buf[2] = {1, 2;

More information

Compilation, Disassembly, and Profiling (in Linux)

Compilation, Disassembly, and Profiling (in Linux) Compilation, Disassembly, and Profiling (in Linux) CS 485: Systems Programming Spring 2016 Instructor: Neil Moore 1 Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc O1 p1.c

More information

Assembly Language Programming Linkers

Assembly Language Programming Linkers Assembly Language Programming Linkers November 14, 2017 Placement problem (relocation) Because there can be more than one program in the memory, during compilation it is impossible to forecast their real

More information

238P: Operating Systems. Lecture 4: Linking and Loading (Basic architecture of a program) Anton Burtsev October, 2018

238P: Operating Systems. Lecture 4: Linking and Loading (Basic architecture of a program) Anton Burtsev October, 2018 238P: Operating Systems Lecture 4: Linking and Loading (Basic architecture of a program) Anton Burtsev October, 2018 What is a program? What parts do we need to run code? Parts needed to run a program

More information

143A: Principles of Operating Systems. Lecture 4: Linking and Loading (Basic architecture of a program) Anton Burtsev October, 2018

143A: Principles of Operating Systems. Lecture 4: Linking and Loading (Basic architecture of a program) Anton Burtsev October, 2018 143A: Principles of Operating Systems Lecture 4: Linking and Loading (Basic architecture of a program) Anton Burtsev October, 2018 What is a program? What parts do we need to run code? Parts needed to

More information

Today s Big Adventure

Today s Big Adventure Today s Big Adventure - How to name and refer to things that don t exist yet - How to merge separate name spaces into a cohesive whole Readings - man a.out & elf on a Solaris machine - run nm or objdump

More information

gpio timer uart printf malloc keyboard fb gl console shell

gpio timer uart printf malloc keyboard fb gl console shell Where are We Going? Processor and memory architecture Peripherals: GPIO, timers, UART Assembly language and machine code From C to assembly language Function calls and stack frames Serial communication

More information

Compiler Design IIIT Kalyani, West Bengal 1. Introduction. Goutam Biswas. Lect 1

Compiler Design IIIT Kalyani, West Bengal 1. Introduction. Goutam Biswas. Lect 1 Compiler Design IIIT Kalyani, West Bengal 1 Introduction Compiler Design IIIT Kalyani, West Bengal 2 Programming a Computer High level language program Assembly language program Machine language program

More information

Machine-Level Programming I: Introduction Jan. 30, 2001

Machine-Level Programming I: Introduction Jan. 30, 2001 15-213 Machine-Level Programming I: Introduction Jan. 30, 2001 Topics Assembly Programmer s Execution Model Accessing Information Registers Memory Arithmetic operations IA32 Processors Totally Dominate

More information

MACHINE-LEVEL PROGRAMMING I: BASICS COMPUTER ARCHITECTURE AND ORGANIZATION

MACHINE-LEVEL PROGRAMMING I: BASICS COMPUTER ARCHITECTURE AND ORGANIZATION MACHINE-LEVEL PROGRAMMING I: BASICS COMPUTER ARCHITECTURE AND ORGANIZATION Today: Machine Programming I: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics:

More information

Program Translation. text. text. binary. binary. C program (p1.c) Compiler (gcc -S) Asm code (p1.s) Assembler (gcc or as) Object code (p1.

Program Translation. text. text. binary. binary. C program (p1.c) Compiler (gcc -S) Asm code (p1.s) Assembler (gcc or as) Object code (p1. Program Translation Compilation & Linking 1 text C program (p1.c) Compiler (gcc -S) text Asm code (p1.s) binary binary Assembler (gcc or as) Object code (p1.o) Linker (gccor ld) Executable program (p)

More information

CS 3214 Computer Systems. Do not start the test until instructed to do so! printed

CS 3214 Computer Systems. Do not start the test until instructed to do so! printed Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No calculators or other computing devices may

More information

Outline. Unresolved references

Outline. Unresolved references Outline CS 4120 Introduction to Compilers Andrew Myers Cornell University Lecture 36: Linking and Loading 21 Nov 11 Static linking Object files Libraries Shared libraries Relocatable Dynamic linking explicit

More information

Systems Programming. Fatih Kesgin &Yusuf Yaslan Istanbul Technical University Computer Engineering Department 18/10/2005

Systems Programming. Fatih Kesgin &Yusuf Yaslan Istanbul Technical University Computer Engineering Department 18/10/2005 Systems Programming Fatih Kesgin &Yusuf Yaslan Istanbul Technical University Computer Engineering Department 18/10/2005 Outline How to assemble and link nasm ld gcc Debugging Using gdb; breakpoints,registers,

More information

Lecture 3: Instruction Set Architecture

Lecture 3: Instruction Set Architecture Lecture 3: Instruction Set Architecture CSE 30: Computer Organization and Systems Programming Summer 2014 Diba Mirza Dept. of Computer Science and Engineering University of California, San Diego 1. Steps

More information

LC-3 Assembly Language

LC-3 Assembly Language Chapter 7 LC-3 Assembly Language CS Reality You ve got to know assembly Chances are, you ll never write program in assembly Compilers are much better & more patient than you are Understanding assembly

More information

University*of*Washington*

University*of*Washington* Roadmap* C:* car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly* language:* Machine* code:* Computer* system:* get_mpg: pushq movq... popq ret %rbp %rsp,

More information

CS 261 Fall Machine and Assembly Code. Data Movement and Arithmetic. Mike Lam, Professor

CS 261 Fall Machine and Assembly Code. Data Movement and Arithmetic. Mike Lam, Professor CS 261 Fall 2018 0000000100000f50 55 48 89 e5 48 83 ec 10 48 8d 3d 3b 00 00 00 c7 0000000100000f60 45 fc 00 00 00 00 b0 00 e8 0d 00 00 00 31 c9 89 0000000100000f70 45 f8 89 c8 48 83 c4 10 5d c3 Mike Lam,

More information

CS-220 Spring 2018 Test 2 Version Practice Apr. 23, Name:

CS-220 Spring 2018 Test 2 Version Practice Apr. 23, Name: CS-220 Spring 2018 Test 2 Version Practice Apr. 23, 2018 Name: 1. (10 points) For the following, Check T if the statement is true, the F if the statement is false. (a) T F : The main difference between

More information

Linker Puzzles The course that gives CMU its Zip! Linking Mar 4, A Simplistic Program Translation Scheme. A Better Scheme Using a Linker

Linker Puzzles The course that gives CMU its Zip! Linking Mar 4, A Simplistic Program Translation Scheme. A Better Scheme Using a Linker 15-213 The course that gives CMU its Zi! Toics Static linking Object files Linking Mar 4, 2003 Static libraries Loading Dynamic linking of shared libraries Linker Puzzles 1() { 1() { 1() { 1() { int x=7;

More information

C Compilation Model. Comp-206 : Introduction to Software Systems Lecture 9. Alexandre Denault Computer Science McGill University Fall 2006

C Compilation Model. Comp-206 : Introduction to Software Systems Lecture 9. Alexandre Denault Computer Science McGill University Fall 2006 C Compilation Model Comp-206 : Introduction to Software Systems Lecture 9 Alexandre Denault Computer Science McGill University Fall 2006 Midterm Date: Thursday, October 19th, 2006 Time: from 16h00 to 17h30

More information

Lecture 2 Assembly Language

Lecture 2 Assembly Language Lecture 2 Assembly Language Computer and Network Security 9th of October 2017 Computer Science and Engineering Department CSE Dep, ACS, UPB Lecture 2, Assembly Language 1/37 Recap: Explorations Tools assembly

More information

Lecture 8: linking CS 140. Dawson Engler Stanford CS department

Lecture 8: linking CS 140. Dawson Engler Stanford CS department Lecture 8: linking CS 140 Dawson Engler Stanford CS department Today s Big Adventure Linking f.c gcc f.s as f.o c.c gcc c.s as c.o ld a.out how to name and refer to things that don t exist yet how to merge

More information

Princeton University Computer Science 217: Introduction to Programming Systems. A paradox. Machine Language. Machine language.

Princeton University Computer Science 217: Introduction to Programming Systems. A paradox. Machine Language. Machine language. Princeton University Computer Science 217: Introduction to Programming Systems Machine Language 1 A paradox grader.c enum {BUFSIZE = 48; char grade = 'D'; char name[bufsize]; /* Read a string into s */

More information

CS / ECE , Spring 2010 Exam 1

CS / ECE , Spring 2010 Exam 1 Andrew login ID: Full Name: Recitation Section: CS 15-213 / ECE 18-243, Spring 2010 Exam 1 Version 1100101 Tuesday, March 2nd, 2010 Instructions: Make sure that your exam is not missing any sheets, then

More information