CCPS 305: Quick guide to C programming for Java folks

Size: px
Start display at page:

Download "CCPS 305: Quick guide to C programming for Java folks"

Transcription

1 CCPS 305: Quick guide to C programming for Java folks (version of March 30, 2014) For the purposes of the course CCPS 305 Data Structures, this document explains the main ideas of how C and especially its compilation process differ from Java, and so hopefully helps those of you coming from a pure Java background get smoothly started (and more importantly, finished) with the labs of this course. The C program structure and compilation process Unlike in Java where you can simply compile each class separately and the source code of each class is stored in a single file, the compilation process of C is a bit more primitive. Each source code file is compiled in isolation, and instead of immediately producing the final executable, the compiler first turns the source file into an intermediate form called an object file. (Despite the name, this has nothing to do with objects of object oriented programming.) For example, compiling the file foo.c would produce the object file foo.o. After every source file has been separately compiled into the corresponding object file, these object files are finally linked together to produce the final executable. For example, consider the following extremely simple example C source code file test.c, that defines the Hello world function: #include <stdio.h> void test() { printf("hello, world!\n"); } The #include is not a C statement, but a preprocessor directive that includes stdio.h that contains the definitions for console input and output functions, including printf. Since the C programming language is not object oriented, it does not have classes and methods and objects, but only functions. Since each C source file is compiled in isolation, what if some function in it contains a call to another function that is defined in some other source code file? This could be resolved in the linking phase, but unfortunately we ll never get that far, since compiling test.c already fails! For this reason, for every C source file that contains any functions that are meant to be called from other files, we always also write a corresponding header file. This header file contains the prototypes for each function defined in the C file. A prototype is basically a function without a body, telling what parameters it takes and what type of value it returns, which is enough for the compiler to check if a call to it is correct and compile it. This header file is then #included to all other files that want to call some function in it. For example, the header file test.h for our test.c would contain #ifndef TEST_H #define TEST_H void test(); /* no body */ #endif The preprocessor directives #define, #ifndef and #endif ensure that the same header file does not accidentally get included twice in the same compilation process. Yes, C compiler honestly is so stupid and primitive that it doesn't remember what files it has already included into each compilation, so this canonical trick is used. The execution of a C program starts from the main function. We could, of course, also place this function in the same source code file test.c. However, just to make a point, we now put main in the second separate file

2 testmain.c and because the function test is defined in test.c, include the corresponding header file first to tell the compiler that such a function will be defined somewhere and will be properly bound to the call at the linking phase: #include "test.h" int main() { test(); // call a function defined in another file return 0; } Since the C language is nowhere near as standardized as Java (for example, the size of types such as int in bytes can vary in different systems, and in fact, even the number of bits in one byte is not guaranteed to be 8), there are some historical variations in how to define and write the main function. For example, its return type can also be void. However, if you define this function to return an int, you need to return 0 in the end to indicate that the program finished successfully, or some nonzero value to indicate that some kind of error occurred (this should not be needed in this course). For each weekly lab and the two programming projects of the course, I will always provide you the header file and the test file that contains the main method. For example, lab1.h and lab1test.c. You should never modify these files in any way. Instead, you should write from scratch the solution file lab1.c that implements the functions defined and specified in the header file, and submit only that file to me. I will then compile your code with these predefined files into an executable to test it. Do it with a GUI: Quincy The Quincy integrated development environment is free to download and use, and despite its minor idiosyncrasies, it is very suitable for the needs of this course. However, you need to take certain steps to make your project properly compile in it. When you first start Quincy, you need to create a new project. From the dialog that opens with File >New... select Project, and in the dialog that opens, give your project name and the directory where you keep it. Make your project a console application without any extra bells or whistles. Once the project has been created (and it shows as a project window inside Quincy), you can create (or copy) the C source code and header files that you intend to use in this project. Note that each project corresponds to one executable and should therefore have exactly one file with the main function, so you need to have a separate project for each lab in this course. When you submit a lab, just submit the one file labx.c that I asked you to submit, not the entire project folder. After you have written all the files (make sure that they are in the correct working directory that you defined earlier) and want to compile and run your project, first click the project window into focus, and then click on Project >Insert File(s)... to actually insert all the files in your project. (It is not enough just to have them in the same Quincy window.) Project >Build (or F6) compiles the files listed in the project window, and if there were no errors, links them into an executable that you can run with Project >Execute (or F9). Note that the classic C standard allows local variables to be defined only in the beginning of the function. Since this is rather annoying for those of us who live up here in the twenty first century and do not feel like being slaves to the limitations of compiler technology in the seventies, go to Tools >Options and from the Build tab, click on C99 Support for C programs to use the latest C language standard that allows local variables to be defined everywhere within the function. Some of you might want to use some other visual programming tool that you are already familiar with, and that

3 is perfectly fine by me. However, make sure that you don't use anything that is not part of the C99 language standard, because I will be compiling and testing your code only in that environment. None of the labs in this course should have any kind of graphics or GUI anyway, nor do any kind of console input or output, except perhaps for your private debugging purposes. The old school cool tool: gcc For those comfortable with Unix/Linux (or the Windows cygwin project), the compiler of choice would be gcc, the grand old man of compilers. gcc is already available for your use in the elara.scs.ryerson.ca server environment (see the SCS User Guide for how to log on to our Unix servers). This compiler (technically, an entire compiler collection not just for C and C++, but a slew of other programming languages) has a ton of bells and whistles for the propeller beanie crowd to tweak, and those interested can go to and check out the documentation pages therein. Fortunately, the basic use of gcc is very easy, since all of these options have reasonable default values. You can log on to elara with any terminal program that supports SSH encryption, but I recommend PuTTy as a good free terminal. If you have the first lab files lab1.c, lab1.h and lab1test.c in some directory in your elara account (note that this is the exact same file system as you have in the SCS Windows machines, so having them there is enough), after logging on to elara and going to that directory, you can issue the command gcc Wall std=c99 lab1.c lab1test.c otest to compile and link your files into the final executable binary file named test. You can of course name this file anything you want, and if you leave out the o command line parameter altogether, the executable will by default be named a.out. To run it, type the command./test Note that the header files are never part of the list of files given to gcc. In the previous example, lab1.h is not given to gcc as any of the command line arguments, since both lab1.c and lab1test.c already include it. The command line option Wall turns on all warnings to the strictest and pickiest level possible. Unlike in Java and its strong type checking where all sorts of hinky things are errors that get caught in compilation, in C it is easy even for experienced programmers to accidentally mix and match different types and make all kinds of silly mistakes that this handy little option then reveals. The option std=c99 makes the compiler use the latest C language standard that allows local variables to be defined anywhere, and the use of // to start a Java style one liner comment. Second, valgrind is a superb memory use correctness checking tool that can instantly reveal a ton of bugs from C programs as soon as they manifest themselves and would otherwise be invisible for a long time until they eventually mysteriously crash the program. It is also available on elara and is extremely easy to use, since valgrind can run any machine code program inside its virtual machine that carefully checks every memory access and pointer operation. To use valgrind from the command line, just write valgrind and then the command normally. Honestly, that s all there is to immediately starting to productively use valgrind! I encourage you in the strongest possible terms to use valgrind to test your labs before you submit them to me, to catch the lurking errors. valgrind./test Some C language gotchas C can sometimes surprise Java programmers with certain inevitable but not immediately obvious consequences of its low level nature. I will update this document with gotchas and problems of the C language as they are

4 encountered by my students caught unawares with them. Different types of computers also have different machine code and operating systems. An executable compiled in one machine will not run on others, so the same source code needs to be compiled in the other systems separately to produce an executable binary for them. (As opposed to Java, where the exact same bytecode file can be run anywhere where there exists an operational Java Virtual Machine.) You simply can't run the C executable binary that was compiled under Windows in Linux or Mac, or vice versa. Remember to always #include all the standard library header files that you need. For math functions, math.h. For the constant NULL and the memory allocation operations malloc and free, stdlib.h. For string operations, string.h. In C, a header file only contains function prototypes (and typedefs and struct definitions) and it never contains any code. Placing any code there is always wrong and bad. I will instantly and summarily reject any lab or project submission that tries to violate this rule. Similarly, you should never have any header file as part of your project or compilation, since there is nothing to compile there, as a header file only contains prototypes for things defined elsewhere. In C, if a function foo calls function bar that is defined in the same source code file, the definition of function bar must physically come before the definition of function foo. (Yes, the C compiler really is again this stupid. Hey, that s how things were the seventies.) If both functions call each other in mutual recursion, the solution to get around the resulting chicken and egg problem is to write the prototypes in the beginning of the source code file, or if these functions are meant to be called from other files, put these prototypes in the header file. C doesn't have classes, but it has structured types that you can define with the keyword struct. A structured type is basically a class with no methods or a constructor, and all its fields are public. Basically, a struct is a fixed size block of passive data that just sits there, waiting for the code to manipulate it from the outside. Individual structs can be copied with assignment = and passed to and from functions by either value or (preferably) pointer, but they cannot be compared for equality with each other using ==, or given to printf to be output. Unlike in Java, where you can only have references to objects that are separate from your variables, in C your struct variable can either be the struct itself, or it can be a pointer to a struct, so the language must distinguish between these two. If a is a itself the struct, to access its field x, use the dot operator a.x. If p is a pointer to a struct, then to access its field x, use either (*p).x or its syntactic sugar version p >x, which by definition means and works exactly the same as the explicit dereferencing. In C, arrays don't know their own length. Therefore every function that gets an array as a parameter must also get another int parameter (canonically named n) that tells this function the length of the parameter array. When you have an array stored in the memory, just like everything else in C it is just raw bytes representing the elements: there is absolutely nothing in the raw memory that says that an array begins here or an array ends here, so once you forget the start address or the length of the array, there is no general way to get it back. In C, a pointer to an array is really a pointer to its first element, and every time you use an array variable in an expression, it devolves into a pointer to that array. For this reason, if a function takes an array parameter, it actually gets a pointer to the beginning of the array. The operation a[i] that we think of as array indexing is syntactic sugar for the pointer arithmetic expression *(a+i) that firsts offsets the pointer a by i units and then dereferences the result. When you define your own data structures, you write their functions so that there is a function to create and return a new instance of this data structure and another function to release it (a handy rule is to ask if the user of the data structure ever has to explicitly use malloc or free), and after these, the functions for the operations that the data structure supports. Except the function that creates and returns an instance, all of these functions should take a pointer to the data structure to operate on as their first parameter. Even though structs

5 can be passed by value in C, you shouldn't write your functions to operate on a data structure passed by value, since your function would only modify its local copy of the structure, instead of the original structure held by the caller like it is supposed to do. In C, the sizes of different types such as int, long, int* and int** in bytes are not defined by the language standard. You could find them out at runtime with the sizeof operator, but by then it's too late. (Remember, you can't even trust that a byte is equal to eight bits!) For this reason, a program written in one system may seem to work there without any errors, but fails epically right after it is compiled and run in another system where the sizes of, say, the types int and int* are different, and you have accidentally used one where you really meant to use the other. So be careful with types (and keep Wall on with every compilation to catch you napping), and use valgrind to catch your memory errors. printf will output exactly what you tell it to output, nothing more or less. Remember to put the white space and line breaks with \n wherever you need them. The placeholder for an integer is %d, and for a double, %f. (The d stands for decimal, i.e. base 10 as opposed to base 16 hexadecimal, and f stands for float for a floating point number.) We don't need scanf for console input anywhere in this course. C has essentially zero encapsulation, so all function names are global. Therefore, your program cannot be linked if it has two functions with the same name (since C has no function overloading, it doesn't help even if these functions expect different parameters). Especially your program must have exactly one main function in one of its files to properly link and run.

Lectures 5-6: Introduction to C

Lectures 5-6: Introduction to C Lectures 5-6: Introduction to C Motivation: C is both a high and a low-level language Very useful for systems programming Faster than Java This intro assumes knowledge of Java Focus is on differences Most

More information

C Review. MaxMSP Developers Workshop Summer 2009 CNMAT

C Review. MaxMSP Developers Workshop Summer 2009 CNMAT C Review MaxMSP Developers Workshop Summer 2009 CNMAT C Syntax Program control (loops, branches): Function calls Math: +, -, *, /, ++, -- Variables, types, structures, assignment Pointers and memory (***

More information

CS 11 C track: lecture 5

CS 11 C track: lecture 5 CS 11 C track: lecture 5 Last week: pointers This week: Pointer arithmetic Arrays and pointers Dynamic memory allocation The stack and the heap Pointers (from last week) Address: location where data stored

More information

CSE 374 Programming Concepts & Tools

CSE 374 Programming Concepts & Tools CSE 374 Programming Concepts & Tools Hal Perkins Fall 2017 Lecture 8 C: Miscellanea Control, Declarations, Preprocessor, printf/scanf 1 The story so far The low-level execution model of a process (one

More information

Lectures 5-6: Introduction to C

Lectures 5-6: Introduction to C Lectures 5-6: Introduction to C Motivation: C is both a high and a low-level language Very useful for systems programming Faster than Java This intro assumes knowledge of Java Focus is on differences Most

More information

Chapter IV Introduction to C for Java programmers

Chapter IV Introduction to C for Java programmers Chapter IV Introduction to C for Java programmers Now that we have seen the native instructions that a processor can execute, we will temporarily take a step up on the abstraction ladder and learn the

More information

Topic 6: A Quick Intro To C

Topic 6: A Quick Intro To C Topic 6: A Quick Intro To C Assumption: All of you know Java. Much of C syntax is the same. Also: Many of you have used C or C++. Goal for this topic: you can write & run a simple C program basic functions

More information

Motivation was to facilitate development of systems software, especially OS development.

Motivation was to facilitate development of systems software, especially OS development. A History Lesson C Basics 1 Development of language by Dennis Ritchie at Bell Labs culminated in the C language in 1972. Motivation was to facilitate development of systems software, especially OS development.

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

Compiling and Running a C Program in Unix

Compiling and Running a C Program in Unix CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 95 ] Compiling and Running a C Program in Unix Simple scenario in which your program is in a single file: Suppose you want to name

More information

CSci 4061 Introduction to Operating Systems. Programs in C/Unix

CSci 4061 Introduction to Operating Systems. Programs in C/Unix CSci 4061 Introduction to Operating Systems Programs in C/Unix Today Basic C programming Follow on to recitation Structure of a C program A C program consists of a collection of C functions, structs, arrays,

More information

PRINCIPLES OF OPERATING SYSTEMS

PRINCIPLES OF OPERATING SYSTEMS PRINCIPLES OF OPERATING SYSTEMS Tutorial-1&2: C Review CPSC 457, Spring 2015 May 20-21, 2015 Department of Computer Science, University of Calgary Connecting to your VM Open a terminal (in your linux machine)

More information

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays C Arrays This handout was written by Nick Parlante and Julie Zelenski. As you recall, a C array is formed by laying out all the elements

More information

Kurt Schmidt. October 30, 2018

Kurt Schmidt. October 30, 2018 to Structs Dept. of Computer Science, Drexel University October 30, 2018 Array Objectives to Structs Intended audience: Student who has working knowledge of Python To gain some experience with a statically-typed

More information

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community http://csc.cs.rit.edu History and Evolution of Programming Languages 1. Explain the relationship between machine

More information

COSC 2P91. Introduction Part Deux. Week 1b. Brock University. Brock University (Week 1b) Introduction Part Deux 1 / 14

COSC 2P91. Introduction Part Deux. Week 1b. Brock University. Brock University (Week 1b) Introduction Part Deux 1 / 14 COSC 2P91 Introduction Part Deux Week 1b Brock University Brock University (Week 1b) Introduction Part Deux 1 / 14 Source Files Like most other compiled languages, we ll be dealing with a few different

More information

Chapter 1 Getting Started

Chapter 1 Getting Started Chapter 1 Getting Started The C# class Just like all object oriented programming languages, C# supports the concept of a class. A class is a little like a data structure in that it aggregates different

More information

Creating a String Data Type in C

Creating a String Data Type in C C Programming Creating a String Data Type in C For this assignment, you will use the struct mechanism in C to implement a data type that models a character string: struct _String { char data; dynamically-allocated

More information

CS 261 Fall C Introduction. Variables, Memory Model, Pointers, and Debugging. Mike Lam, Professor

CS 261 Fall C Introduction. Variables, Memory Model, Pointers, and Debugging. Mike Lam, Professor CS 261 Fall 2017 Mike Lam, Professor C Introduction Variables, Memory Model, Pointers, and Debugging The C Language Systems language originally developed for Unix Imperative, compiled language with static

More information

Computer Science 2500 Computer Organization Rensselaer Polytechnic Institute Spring Topic Notes: C and Unix Overview

Computer Science 2500 Computer Organization Rensselaer Polytechnic Institute Spring Topic Notes: C and Unix Overview Computer Science 2500 Computer Organization Rensselaer Polytechnic Institute Spring 2009 Topic Notes: C and Unix Overview This course is about computer organization, but since most of our programming is

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Why C? Test on 21 Android Devices with 32-bits and 64-bits processors and different versions

More information

A Fast Review of C Essentials Part I

A Fast Review of C Essentials Part I A Fast Review of C Essentials Part I Structural Programming by Z. Cihan TAYSI Outline Program development C Essentials Functions Variables & constants Names Formatting Comments Preprocessor Data types

More information

Motivation was to facilitate development of systems software, especially OS development.

Motivation was to facilitate development of systems software, especially OS development. A History Lesson C Basics 1 Development of language by Dennis Ritchie at Bell Labs culminated in the C language in 1972. Motivation was to facilitate development of systems software, especially OS development.

More information

C for C++ Programmers

C for C++ Programmers C for C++ Programmers CS230/330 - Operating Systems (Winter 2001). The good news is that C syntax is almost identical to that of C++. However, there are many things you're used to that aren't available

More information

CS11 Intro C++ Spring 2018 Lecture 1

CS11 Intro C++ Spring 2018 Lecture 1 CS11 Intro C++ Spring 2018 Lecture 1 Welcome to CS11 Intro C++! An introduction to the C++ programming language and tools Prerequisites: CS11 C track, or equivalent experience with a curly-brace language,

More information

Slide Set 3. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng

Slide Set 3. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng Slide Set 3 for ENCM 339 Fall 2017 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2017 ENCM 339 Fall 2017 Section 01

More information

gcc hello.c a.out Hello, world gcc -o hello hello.c hello Hello, world

gcc hello.c a.out Hello, world gcc -o hello hello.c hello Hello, world alun@debian:~$ gcc hello.c alun@debian:~$ a.out Hello, world alun@debian:~$ gcc -o hello hello.c alun@debian:~$ hello Hello, world alun@debian:~$ 1 A Quick guide to C for Networks and Operating Systems

More information

HW1 due Monday by 9:30am Assignment online, submission details to come

HW1 due Monday by 9:30am Assignment online, submission details to come inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures Lecture #2 - C Pointers and Arrays Administrivia Buggy Start Lab schedule, lab machines, HW0 due tomorrow in lab 2009-06-24 HW1 due Monday by 9:30am

More information

Computer Science 322 Operating Systems Mount Holyoke College Spring Topic Notes: C and Unix Overview

Computer Science 322 Operating Systems Mount Holyoke College Spring Topic Notes: C and Unix Overview Computer Science 322 Operating Systems Mount Holyoke College Spring 2010 Topic Notes: C and Unix Overview This course is about operating systems, but since most of our upcoming programming is in C on a

More information

Topic 6: A Quick Intro To C. Reading. "goto Considered Harmful" History

Topic 6: A Quick Intro To C. Reading. goto Considered Harmful History Topic 6: A Quick Intro To C Reading Assumption: All of you know basic Java. Much of C syntax is the same. Also: Some of you have used C or C++. Goal for this topic: you can write & run a simple C program

More information

C Introduction. Comparison w/ Java, Memory Model, and Pointers

C Introduction. Comparison w/ Java, Memory Model, and Pointers CS 261 Fall 2018 Mike Lam, Professor C Introduction Comparison w/ Java, Memory Model, and Pointers Please go to socrative.com on your phone or laptop, choose student login and join room LAMJMU The C Language

More information

// Initially NULL, points to the dynamically allocated array of bytes. uint8_t *data;

// Initially NULL, points to the dynamically allocated array of bytes. uint8_t *data; Creating a Data Type in C Bytes For this assignment, you will use the struct mechanism in C to implement a data type that represents an array of bytes. This data structure could be used kind of like a

More information

CSCI 171 Chapter Outlines

CSCI 171 Chapter Outlines Contents CSCI 171 Chapter 1 Overview... 2 CSCI 171 Chapter 2 Programming Components... 3 CSCI 171 Chapter 3 (Sections 1 4) Selection Structures... 5 CSCI 171 Chapter 3 (Sections 5 & 6) Iteration Structures

More information

EL2310 Scientific Programming

EL2310 Scientific Programming (yaseminb@kth.se) Overview Overview Roots of C Getting started with C Closer look at Hello World Programming Environment Discussion Basic Datatypes and printf Schedule Introduction to C - main part of

More information

printf( Please enter another number: ); scanf( %d, &num2);

printf( Please enter another number: ); scanf( %d, &num2); CIT 593 Intro to Computer Systems Lecture #13 (11/1/12) Now that we've looked at how an assembly language program runs on a computer, we're ready to move up a level and start working with more powerful

More information

377 Student Guide to C++

377 Student Guide to C++ 377 Student Guide to C++ c Mark Corner January 21, 2004 1 Introduction In this course you will be using the C++ language to complete several programming assignments. Up to this point we have only provided

More information

Programming Tips for CS758/858

Programming Tips for CS758/858 Programming Tips for CS758/858 January 28, 2016 1 Introduction The programming assignments for CS758/858 will all be done in C. If you are not very familiar with the C programming language we recommend

More information

Running a C program Compilation Python and C Variables and types Data and addresses Functions Performance. John Edgar 2

Running a C program Compilation Python and C Variables and types Data and addresses Functions Performance. John Edgar 2 CMPT 125 Running a C program Compilation Python and C Variables and types Data and addresses Functions Performance John Edgar 2 Edit or write your program Using a text editor like gedit Save program with

More information

Here's how you declare a function that returns a pointer to a character:

Here's how you declare a function that returns a pointer to a character: 23 of 40 3/28/2013 10:35 PM Violets are blue Roses are red C has been around, But it is new to you! ANALYSIS: Lines 32 and 33 in main() prompt the user for the desired sort order. The value entered is

More information

Rule 1-3: Use white space to break a function into paragraphs. Rule 1-5: Avoid very long statements. Use multiple shorter statements instead.

Rule 1-3: Use white space to break a function into paragraphs. Rule 1-5: Avoid very long statements. Use multiple shorter statements instead. Chapter 9: Rules Chapter 1:Style and Program Organization Rule 1-1: Organize programs for readability, just as you would expect an author to organize a book. Rule 1-2: Divide each module up into a public

More information

CS 11 C track: lecture 6

CS 11 C track: lecture 6 CS 11 C track: lecture 6 Last week: pointer arithmetic This week: The gdb program struct typedef linked lists gdb for debugging (1) gdb: the Gnu DeBugger http://courses.cms.caltech.edu/cs11/material /c/mike/misc/gdb.html

More information

Lab 1 Introduction to UNIX and C

Lab 1 Introduction to UNIX and C Name: Lab 1 Introduction to UNIX and C This first lab is meant to be an introduction to computer environments we will be using this term. You must have a Pitt username to complete this lab. NOTE: Text

More information

Have examined process Creating program Have developed program Written in C Source code

Have examined process Creating program Have developed program Written in C Source code Preprocessing, Compiling, Assembling, and Linking Introduction In this lesson will examine Architecture of C program Introduce C preprocessor and preprocessor directives How to use preprocessor s directives

More information

Tutorial 1: Introduction to C Computer Architecture and Systems Programming ( )

Tutorial 1: Introduction to C Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Tutorial 1: Introduction to C Computer Architecture and Systems Programming (252-0061-00) Herbstsemester 2012 Goal Quick introduction to C Enough

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Structures and Memory (yaseminb@kth.se) Overview Overview Lecture 11: Structures and Memory Structures Continued Memory Allocation Lecture 11: Structures and Memory Structures Continued Memory

More information

Slide Set 5. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 5. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 5 for ENCM 339 Fall 2016 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary October 2016 ENCM 339 Fall 2016 Slide Set 5 slide 2/32

More information

Slide Set 3. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 3. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 3 for ENCM 339 Fall 2016 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2016 ENCM 339 Fall 2016 Slide Set 3 slide 2/46

More information

CSE 351. Introduction & Course Tools

CSE 351. Introduction & Course Tools CSE 351 Introduction & Course Tools Meet Your TA TA Name Interesting information examples: Where you are from Year in school Hobbies Unique talents Introductions Pick an interesting (but quick) ice breaker

More information

Lecture 12 CSE July Today we ll cover the things that you still don t know that you need to know in order to do the assignment.

Lecture 12 CSE July Today we ll cover the things that you still don t know that you need to know in order to do the assignment. Lecture 12 CSE 110 20 July 1992 Today we ll cover the things that you still don t know that you need to know in order to do the assignment. 1 The NULL Pointer For each pointer type, there is one special

More information

ch = argv[i][++j]; /* why does ++j but j++ does not? */

ch = argv[i][++j]; /* why does ++j but j++ does not? */ CMPS 12M Introduction to Data Structures Lab Lab Assignment 4 The purpose of this lab assignment is to get more practice programming in C, including the character functions in the library ctype.h, and

More information

Basic C Programming. Bin Li Assistant Professor Dept. of Electrical, Computer and Biomedical Engineering University of Rhode Island

Basic C Programming. Bin Li Assistant Professor Dept. of Electrical, Computer and Biomedical Engineering University of Rhode Island Basic C Programming Bin Li Assistant Professor Dept. of Electrical, Computer and Biomedical Engineering University of Rhode Island Announcements Exam 1 (20%): Feb. 27 (Tuesday) Tentative Proposal Deadline:

More information

Variables Data types Variable I/O. C introduction. Variables. Variables 1 / 14

Variables Data types Variable I/O. C introduction. Variables. Variables 1 / 14 C introduction Variables Variables 1 / 14 Contents Variables Data types Variable I/O Variables 2 / 14 Usage Declaration: t y p e i d e n t i f i e r ; Assignment: i d e n t i f i e r = v a l u e ; Definition

More information

Functions. Using Bloodshed Dev-C++ Heejin Park. Hanyang University

Functions. Using Bloodshed Dev-C++ Heejin Park. Hanyang University Functions Using Bloodshed Dev-C++ Heejin Park Hanyang University 2 Introduction Reviewing Functions ANSI C Function Prototyping Recursion Compiling Programs with Two or More Source Code Files Finding Addresses:

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture Arrays, Strings, and Some More Pointers June 24, 2014 Review of Last Lecture C Basics Variables, functioss, control flow, types, structs Only 0 and NULL evaluate to false Pointers hold addresses Address

More information

CS 326 Operating Systems C Programming. Greg Benson Department of Computer Science University of San Francisco

CS 326 Operating Systems C Programming. Greg Benson Department of Computer Science University of San Francisco CS 326 Operating Systems C Programming Greg Benson Department of Computer Science University of San Francisco Why C? Fast (good optimizing compilers) Not too high-level (Java, Python, Lisp) Not too low-level

More information

Outline. Lecture 1 C primer What we will cover. If-statements and blocks in Python and C. Operators in Python and C

Outline. Lecture 1 C primer What we will cover. If-statements and blocks in Python and C. Operators in Python and C Lecture 1 C primer What we will cover A crash course in the basics of C You should read the K&R C book for lots more details Various details will be exemplified later in the course Outline Overview comparison

More information

Programming in C++ Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Programming in C++ Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Programming in C++ Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture 04 Programs with IO and Loop We will now discuss the module 2,

More information

Slide Set 6. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng

Slide Set 6. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng Slide Set 6 for ENCM 339 Fall 2017 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary October 2017 ENCM 339 Fall 2017 Section 01 Slide

More information

Slide Set 2. for ENCM 335 in Fall Steve Norman, PhD, PEng

Slide Set 2. for ENCM 335 in Fall Steve Norman, PhD, PEng Slide Set 2 for ENCM 335 in Fall 2018 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2018 ENCM 335 Fall 2018 Slide Set 2 slide

More information

QUIZ Friends class Y;

QUIZ Friends class Y; QUIZ Friends class Y; Is a forward declaration neeed here? QUIZ Friends QUIZ Friends - CONCLUSION Forward (a.k.a. incomplete) declarations are needed only when we declare member functions as friends. They

More information

Parallel Programming Pre-Assignment. Setting up the Software Environment

Parallel Programming Pre-Assignment. Setting up the Software Environment Parallel Programming Pre-Assignment Setting up the Software Environment Author: B. Wilkinson Modification date: January 3, 2016 Software The purpose of this pre-assignment is to set up the software environment

More information

Pointers. A pointer is simply a reference to a variable/object. Compilers automatically generate code to store/retrieve variables from memory

Pointers. A pointer is simply a reference to a variable/object. Compilers automatically generate code to store/retrieve variables from memory Pointers A pointer is simply a reference to a variable/object Compilers automatically generate code to store/retrieve variables from memory It is automatically generating internal pointers We don t have

More information

Computers and Computation. The Modern Computer. The Operating System. The Operating System

Computers and Computation. The Modern Computer. The Operating System. The Operating System The Modern Computer Computers and Computation What is a computer? A machine that manipulates data according to instructions. Despite their apparent complexity, at the lowest level computers perform simple

More information

C++ for Java Programmers

C++ for Java Programmers Basics all Finished! Everything we have covered so far: Lecture 5 Operators Variables Arrays Null Terminated Strings Structs Functions 1 2 45 mins of pure fun Introduction Today: Pointers Pointers Even

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #3 C Strings, Arrays, & Malloc 2007-06-27 Scott Beamer, Instructor Sun announces new supercomputer: Sun Constellation CS61C L3 C Pointers

More information

Two approaches. array lists linked lists. There are two approaches that you can take:

Two approaches. array lists linked lists. There are two approaches that you can take: Lists 1 2 Lists 3 A list is like an array, except that the length changes. Items are added to a list over time, and you don't know in advance how many there will be. This chapter implements lists in two

More information

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #34. Function with pointer Argument

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #34. Function with pointer Argument Introduction to Programming in C Department of Computer Science and Engineering Lecture No. #34 Function with pointer Argument (Refer Slide Time: 00:05) So, here is the stuff that we have seen about pointers.

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

struct _Rational { int64_t Top; // numerator int64_t Bottom; // denominator }; typedef struct _Rational Rational;

struct _Rational { int64_t Top; // numerator int64_t Bottom; // denominator }; typedef struct _Rational Rational; Creating a Data Type in C Rational Numbers For this assignment, you will use the struct mechanism in C to implement a data type that represents rational numbers. A set can be modeled using the C struct:

More information

CSE 361S Intro to Systems Software Final Project

CSE 361S Intro to Systems Software Final Project Due: Tuesday, December 9, 2008. CSE 361S Intro to Systems Software Final Project In this project, you will be writing a dynamic storage allocator for C programs (i.e., your own version of malloc, free,

More information

Algorithms for GIS. Programming in C: Pointers, header files and multiple files. Laura Toma. Bowdoin College

Algorithms for GIS. Programming in C: Pointers, header files and multiple files. Laura Toma. Bowdoin College Algorithms for GIS Programming in C: Pointers, header files and multiple files Laura Toma Bowdoin College Outline Programming in C Pointers.h and.c files Compiling Working with multiple files Using Makefiles

More information

CS 237 Meeting 19 10/24/12

CS 237 Meeting 19 10/24/12 CS 237 Meeting 19 10/24/12 Announcements 1. Midterm: New date: Oct 29th. In class open book/notes. 2. Try to complete the linear feedback shift register lab in one sitting (and please put all the equipment

More information

Laboratory 2: Programming Basics and Variables. Lecture notes: 1. A quick review of hello_comment.c 2. Some useful information

Laboratory 2: Programming Basics and Variables. Lecture notes: 1. A quick review of hello_comment.c 2. Some useful information Laboratory 2: Programming Basics and Variables Lecture notes: 1. A quick review of hello_comment.c 2. Some useful information 3. Comment: a. name your program with extension.c b. use o option to specify

More information

CSE 333 Autumn 2013 Midterm

CSE 333 Autumn 2013 Midterm CSE 333 Autumn 2013 Midterm Please do not read beyond this cover page until told to start. A question involving what could be either C or C++ is about C, unless it explicitly states that it is about C++.

More information

CSE 351, Spring 2010 Lab 7: Writing a Dynamic Storage Allocator Due: Thursday May 27, 11:59PM

CSE 351, Spring 2010 Lab 7: Writing a Dynamic Storage Allocator Due: Thursday May 27, 11:59PM CSE 351, Spring 2010 Lab 7: Writing a Dynamic Storage Allocator Due: Thursday May 27, 11:59PM 1 Instructions In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version

More information

The output: The address of i is 0xbf85416c. The address of main is 0x80483e4. arrays.c. 1 #include <stdio.h> 3 int main(int argc, char **argv) 4 {

The output: The address of i is 0xbf85416c. The address of main is 0x80483e4. arrays.c. 1 #include <stdio.h> 3 int main(int argc, char **argv) 4 { Memory A bit is a binary digit, either 0 or 1. A byte is eight bits, and can thus represent 256 unique values, such as 00000000 and 10010110. Computer scientists often think in terms of hexadecimal, rather

More information

CS Programming In C

CS Programming In C CS 24000 - Programming In C Week Two: Basic C Program Organization and Data Types Zhiyuan Li Department of Computer Science Purdue University, USA 2 int main() { } return 0; The Simplest C Program C programs

More information

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018 Pointer Basics Lecture 13 COP 3014 Spring 2018 March 28, 2018 What is a Pointer? A pointer is a variable that stores a memory address. Pointers are used to store the addresses of other variables or memory

More information

A PROGRAM IS A SEQUENCE of instructions that a computer can execute to

A PROGRAM IS A SEQUENCE of instructions that a computer can execute to A PROGRAM IS A SEQUENCE of instructions that a computer can execute to perform some task. A simple enough idea, but for the computer to make any use of the instructions, they must be written in a form

More information

12. Pointers Address-of operator (&)

12. Pointers Address-of operator (&) 12. Pointers In earlier chapters, variables have been explained as locations in the computer's memory which can be accessed by their identifer (their name). This way, the program does not need to care

More information

Supporting Class / C++ Lecture Notes

Supporting Class / C++ Lecture Notes Goal Supporting Class / C++ Lecture Notes You started with an understanding of how to write Java programs. This course is about explaining the path from Java to executing programs. We proceeded in a mostly

More information

QUIZ. What is wrong with this code that uses default arguments?

QUIZ. What is wrong with this code that uses default arguments? QUIZ What is wrong with this code that uses default arguments? Solution The value of the default argument should be placed in either declaration or definition, not both! QUIZ What is wrong with this code

More information

Final CSE 131B Spring 2004

Final CSE 131B Spring 2004 Login name Signature Name Student ID Final CSE 131B Spring 2004 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 (25 points) (24 points) (32 points) (24 points) (28 points) (26 points) (22 points)

More information

COP 3330 Final Exam Review

COP 3330 Final Exam Review COP 3330 Final Exam Review I. The Basics (Chapters 2, 5, 6) a. comments b. identifiers, reserved words c. white space d. compilers vs. interpreters e. syntax, semantics f. errors i. syntax ii. run-time

More information

Functions, Pointers, and the Basics of C++ Classes

Functions, Pointers, and the Basics of C++ Classes Functions, Pointers, and the Basics of C++ Classes William E. Skeith III Functions in C++ Vocabulary You should be familiar with all of the following terms already, but if not, you will be after today.

More information

BLM2031 Structured Programming. Zeyneb KURT

BLM2031 Structured Programming. Zeyneb KURT BLM2031 Structured Programming Zeyneb KURT 1 Contact Contact info office : D-219 e-mail zeynebkurt@gmail.com, zeyneb@ce.yildiz.edu.tr When to contact e-mail first, take an appointment What to expect help

More information

CS 31: Intro to Systems Pointers and Memory. Kevin Webb Swarthmore College October 2, 2018

CS 31: Intro to Systems Pointers and Memory. Kevin Webb Swarthmore College October 2, 2018 CS 31: Intro to Systems Pointers and Memory Kevin Webb Swarthmore College October 2, 2018 Overview How to reference the location of a variable in memory Where variables are placed in memory How to make

More information

C / C++ Coding Rules

C / C++ Coding Rules C / C++ Coding Rules Luca Abeni luca.abeni@unitn.it March 3, 2008 Abstract This short document collects some simple and stupid coding rules for writing understandable C or C++ code, and has been written

More information

C PROGRAMMING LANGUAGE. POINTERS, ARRAYS, OPERATORS AND LOOP. CAAM 519, CHAPTER5

C PROGRAMMING LANGUAGE. POINTERS, ARRAYS, OPERATORS AND LOOP. CAAM 519, CHAPTER5 C PROGRAMMING LANGUAGE. POINTERS, ARRAYS, OPERATORS AND LOOP. CAAM 519, CHAPTER5 1. Pointers As Kernighan and Ritchie state, a pointer is a variable that contains the address of a variable. They have been

More information

#include <stdio.h> int main() { printf ("hello class\n"); return 0; }

#include <stdio.h> int main() { printf (hello class\n); return 0; } C #include int main() printf ("hello class\n"); return 0; Working environment Linux, gcc We ll work with c9.io website, which works with ubuntu I recommend to install ubuntu too Also in tirgul

More information

Operator overloading

Operator overloading 1 Introduction 2 The copy constructor 3 Operator Overloading 4 Eg 1: Adding two vectors 5 The -> operator 6 The this pointer 7 Overloading = 8 Unary operators 9 Overloading for the matrix class 10 The

More information

CSE 374 Final Exam Sample Solution 3/17/11

CSE 374 Final Exam Sample Solution 3/17/11 Question 1. (12 points) (testing) In Homework 5, many solutions included a function to add or insert a new word into the trie, creating appropriate strings and nodes as needed (something like insert(char

More information

0x0d2C May your signals all trap May your references be bounded All memory aligned Floats to ints round. remember...

0x0d2C May your signals all trap May your references be bounded All memory aligned Floats to ints round. remember... Types Page 1 "ode to C" Monday, September 18, 2006 4:09 PM 0x0d2C ------ May your signals all trap May your references be bounded All memory aligned Floats to ints round remember... Non -zero is true ++

More information

QUIZ. Source:

QUIZ. Source: QUIZ Source: http://stackoverflow.com/questions/17349387/scope-of-macros-in-c Ch. 4: Data Abstraction The only way to get massive increases in productivity is to leverage off other people s code. That

More information

CSE 333 Midterm Exam Sample Solution 5/10/13

CSE 333 Midterm Exam Sample Solution 5/10/13 Question 1. (18 points) Consider these two C files: a.c void f(int p); int main() { f(17); return 0; b.c void f(char *p) { *p = 'x'; (a) Why is the program made from a.c and b.c incorrect? What would you

More information

CS 61C: Great Ideas in Computer Architecture Introduction to C

CS 61C: Great Ideas in Computer Architecture Introduction to C CS 61C: Great Ideas in Computer Architecture Introduction to C Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/ 1 Agenda C vs. Java vs. Python Quick Start Introduction

More information

Pointer Casts and Data Accesses

Pointer Casts and Data Accesses C Programming Pointer Casts and Data Accesses For this assignment, you will implement a C function similar to printf(). While implementing the function you will encounter pointers, strings, and bit-wise

More information

Project #1: Tracing, System Calls, and Processes

Project #1: Tracing, System Calls, and Processes Project #1: Tracing, System Calls, and Processes Objectives In this project, you will learn about system calls, process control and several different techniques for tracing and instrumenting process behaviors.

More information

Lecture Notes on Memory Layout

Lecture Notes on Memory Layout Lecture Notes on Memory Layout 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 11 1 Introduction In order to understand how programs work, we can consider the functions,

More information

CS 231 Data Structures and Algorithms, Fall 2016

CS 231 Data Structures and Algorithms, Fall 2016 CS 231 Data Structures and Algorithms, Fall 2016 Dr. Bruce A. Maxwell Department of Computer Science Colby College Course Description Focuses on the common structures used to store data and the standard

More information