Programming Languages

Size: px
Start display at page:

Download "Programming Languages"

Transcription

1 Programming Languages Andrea Flexeder Chair for Theoretical Computer Science Prof. Seidl TU München winter term 2010/2011

2 Lecture 10 Side-Effects

3 Main Points you should get: Why monads? What is a monad? How to use a monad?

4 C : Lazy evaluation and side-effects static bool LessThanThirty(int x) { Console.Write(" <0>? Less than 30;",x); return x < 30; } static bool MoreThanTwenty(int x) { Console.Write(" <0>? More than 20;",x); return x > 20; } var q0 = from x in new[] <1,25,40,5,23> where LessThanThirty(x) select x; var q1 = from x in q0 where MoreThanTwenty(x) select x; foreach (var r in q1) Console. WriteLine("[<0>];",r);

5 C : Lazy evaluation and side-effects Output: 1? Less than 30; 1? More than 20; 25? Less than 30; 25? More than 20; 40? Less than 30; 5? Less than 30;...

6 Haskell lessthanthirty x = do {putstrln (( show x) ++ " less than 30?"); return (x < 30) } morethantwenty x = do {putstrln (( show x) ++ " more than 20?"); return (x > 20) } q0 = [x x <- [1, 25, 50, 5, 23], lessthanthirty x] q1 = [x x <- q0, morethantwenty x] Couldn t match expected type Bool against inferred type IO Bool In the expression: morethantwenty 20 In a stmt of a list comprehension: morethantwenty 20 In the expression: [x x q0, morethantwenty 20]

7 Side-Effects Effect besides producing a value, modifying some state, observable interaction with world/functions e.g. global state, exception handling, I/O, non-determinism,... control flow matters! Control Flow order in which actions/function calls are evaluated

8 Discussion two ways of approaching effects in functional programming: 1. reference cells, sequence operator, functions with side-effect val x = ref 0 x :=!x +1 print x e.g. Standard ML

9 Discussion two ways of approaching effects in functional programming: 1. reference cells, sequence operator, functions with side-effect val x = ref 0 x :=!x +1 print x e.g. Standard ML 2. monads aim: integrate impure side-effects into a pure functional language e.g. Haskell

10 Monadic Style Characteristics: make explicit sequence in which actions take place allows I/O operations in presence of laziness usage of state dealing with global data objects crosscutting concerns: debugging, exception handling, etc. concept from category theory idea of E. Moggi (mathematical formalisation) structuring denotational semantics translated to functional programming by P. Wadler alternative to CPS

11 echo :: IO () echo = getchar >>= putchar IO Example (1)

12 IO Example (1) echo :: IO () echo = getchar >>= putchar echotwice :: IO () echotwice = echo >> echo echodup :: IO () echodup = getchar >>= \c -> putchar c >> putchar c

13 IO Example (2) gettwochars :: IO (Char, Char) gettwochars = getchar >>= \c1 -> getchar >>= \c2 ->???????

14 IO Example (2) gettwochars :: IO (Char, Char) gettwochars = getchar >>= \c1 -> getchar >>= \c2 -> return (c1,c2)

15 IO Monad type constructor IO denotes computations interacting with operating system return :: a IO a (>>=) :: IO a (a IO b) IO b interpretation of type IO a: computation with I/O and a return value of type a return value of a computation should only be used in further computations and not as return value of a function!

16 Basic Definition type class Monad for monads with methods return and bind (>>=) type constructor m generation of a monad return :: Monad m => a m a takes some value x yields a monadic operation having only x as return value composition of monadic computations (>>=) :: Monad m => m a (a m b) m b 2nd computation uses return value of 1st computation return value is return value of 2nd computation

17 Monad Class type constructor class class Monad m :: (* *) where (>>=) :: forall a b. m a (a m b) m b (>>) :: forall a b. m a m b m b (return) :: forall a. a m a (fail) :: String m a m >> k = m >>= \ k fail s = error s

18 Do Notation (Example) fun a = return a >>= (\b (f b >>= (\c g b c) )) in do-notation: fun b = do { c f b; g b c } equivalent to: fun b = do c f b g b c

19 Do Notation (Example) fun a = return a >>= (\b (f b >>= (\c g b c) )) in do-notation: fun b = do { c f b; g b c } equivalent to: fun b = do c f b g b c each line in do-notation creates a new scope: fun r = do x f r x g x x h x return x fun r = f r >>= ((\x g x) >>= ((\x h x) >>= (\x return x)))

20 Do Notation each e >>= \x... becomes x e;... each e >>... becomes e;... e1 >>= \x1 e2 >>= \x2 e3 >> e4 >>= \x4 e5

21 Do Notation each e >>= \x... becomes x e;... each e >>... becomes e;... e1 >>= \x1 e2 >>= \x2 e3 >> e4 >>= \x4 e5 equivalent to: do x1 e1; x2 e2; e3; x4 e4; e5

22 IO Example (2) in Do-Notation gettwochars :: IO (Char, Char) gettwochars = getchar >>= \c1 -> getchar >>= \c2 -> return (c1,c2) gettwochars :: IO (Char,Char) gettwochars = do { c1 <- getchar ; c2 <- getchar ; return (c1,c2) }

23 IO in Haskell entire Haskell program is wrapped inside the IO monad main program is an action of type IO () example: main :: IO () main = do putstr "Your name: " x <- getline putstr ("Hello "++ x ++".\n") -- equivalent to main1 = putstr "Your name:" >>= \x -> getline >>= \x -> putstr ("Hello "++ x ++".\n") reconcile effects and referential transparency, laziness disciplined way to encapsulate states (imperative style)

24 Monadic Laws guarantee that monadic composition is associative and has left and right unit 1. (return a) >>= f = f a - - left unit 2. m >>= return = m - - right unit 3. (m >>= f ) >>= g = m >>= (\x f x >>= g) - - associativity

25 Monadic Laws guarantee that monadic composition is associative and has left and right unit 1. (return a) >>= f = f a - - left unit 2. m >>= return = m - - right unit 3. (m >>= f ) >>= g = m >>= (\x f x >>= g) - - associativity (>>=) and return satisfy the laws of a monad: return v >>= \x m = m[x:=v] m >>= \x return x = m (m >>= \x n) >>= \y o = m >>= \x (n >>= \y o)

26 Monoid algebraic structure (M,, u): operator ( ), value u, set M operator has the value as identity u x = x x u = x operator is associative ( x y ) z = x (y z)

27 Monoid algebraic structure (M,, u): operator ( ), value u, set M operator has the value as identity u x = x x u = x operator is associative ( x y ) z = x (y z) monoid examples: (N 0, +, 0) (Z, +, 0) (N,, 1) (Σ, concat, ɛ) (a, (++), [ ])

28 Overview some instances of monads: IO Identity Exception State Maybe List

29 Example: Interpreter Modularity and Extensibility: Example: Interpreter combination of interpreter and background information enriched by following background info: 1. no: identity monad 2. errors: exception monad 3. operation counter: state monad

30 Modification environment contains computations instead of values type Env = [(Variable, M Value)] update :: Env Variable M Value Env replacing each function of type a b by a function of type a M b functions eval, add, mylookup have to be modified!

31 Identity Monad module MonIdent where newtype I a = I a deriving Show instance Monad I where return x = I x (I x) >>= f = f x fail i = error "lookup failed" printout :: Show a => I a -> String printout (I x) = show x

32 Exceptions Exceptions mechanism for interrupting normal control flow in program signalling exceptional condition exception: typed, diagnostic identifier 1. typed: you can define your own kinds of exception 2. diagnostic: you can tell something about the error

33 Exceptions Realisation function f returns something or fails possibility 1: return Nothing possibility 2: wrap every function application in a case to find out whether result is returned or exception possibility 3: mechanism in language exception mechanisms: 1. exit(1) / atexit(...) 2. goto 3. setjmp/longjmp 4. raise/jump (catch/throw) and variations 5. callcc continuations

34 Exceptions - Order matters! example: int i =..., j =...; malloc (512MB/i);... int k = i/j; situation: 1. allocation fail and 2. division by zero

35 Exceptions - Order matters! example: int i =..., j =...; malloc (512MB/i);... int k = i/j; situation: 1. allocation fail and 2. division by zero Attention: user might be interested in order of errors! 1. scenario1: division by zero prior to allocation fail assumption: i=0 trying to allocate memory 1 error 2. scenario2: allocation fail prior to division by zero assumption: < 512/i RAM available j=0 2 errors

36 Exception Monad module MonError where data E a = Error String Ok a deriving Show instance Monad E where return x = Ok x m >>= f = case m of Error s -> Error s Ok x -> f x fail s = Error s printout :: Show a => E a -> String printout (Error s) = "Error: "++ s printout (Ok x) = "Ok: " ++ show x

37 Modelling State aim: providing operations for 1. specifying an initial state, 2. querying current state and 3. changing it state transformer: function of type s (a, s) mapping an initial state to a result value paired with the final state data ST s a = ST (s (a,s)) once constructed, transformers of states of different type are obtained

38 State Monad module MonStateTrans where data ST s a = ST { unst::(s -> (a,s)) } instance Monad (ST s) where return x = ST (\s -> (x,s)) m >>= f = ST (\s -> let (x1,s1) = unst m s (x2,s2) = unst (f x1) s1 in (x2,s2)) fail x = error "lookup failed" printout :: Show a => M a -> String printout m = case unst m 0 of (a,s) -> "Count: " ++ show s ++ ", Value: " ++ show a

39 Main Points: Why monads? neatly integrate side-effects into a pure functional language What is a monad? < M, return, <<= > How to use a monad? replace functions of type a b by those of type a M b

40 Conclusion benefits of monads: introduce effects (e.g. state, concurrency,... ) and retain laziness and referential transparency mix imperative + purely functional programming all laws of functional programming remain unconditionally valid separation of concerns (values are distinguished from computations of values) monadic style offers a new way of thinking about how to structure code possibility of proving properties exploiting the monad laws

41 More... many other features with monads: monad transformers allow the features of different monads to be combined monadic parser combinators additive monads (MonadPlus) Reader/Writer monad interface to code written in other languages continuations...

42 Further Reading Fundamentalist Functional Programming PL book chapters A Gentle Introduction to Haskell 98 chapters 7,9 The essence of functional programming by Phil Wadler Monads for functional programming by Phil Wadler

Haskell Monads CSC 131. Kim Bruce

Haskell Monads CSC 131. Kim Bruce Haskell Monads CSC 131 Kim Bruce Monads The ontological essence of a monad is its irreducible simplicity. Unlike atoms, monads possess no material or spatial character. They also differ from atoms by their

More information

Informatics 1 Functional Programming 19 Tuesday 23 November IO and Monads. Philip Wadler University of Edinburgh

Informatics 1 Functional Programming 19 Tuesday 23 November IO and Monads. Philip Wadler University of Edinburgh Informatics 1 Functional Programming 19 Tuesday 23 November 2010 IO and Monads Philip Wadler University of Edinburgh The 2010 Informatics 1 Competition Sponsored by Galois (galois.com) List everyone who

More information

References. Monadic I/O in Haskell. Digression, continued. Digression: Creating stand-alone Haskell Programs

References. Monadic I/O in Haskell. Digression, continued. Digression: Creating stand-alone Haskell Programs References Monadic I/O in Haskell Jim Royer CIS 352 March 6, 2018 Chapter 18 of Haskell: the Craft of Functional Programming by Simon Thompson, Addison-Wesley, 2011. Chapter 9 of Learn you a Haskell for

More information

CS The IO Monad. Slides from John Mitchell, K Fisher, and S. Peyton Jones

CS The IO Monad. Slides from John Mitchell, K Fisher, and S. Peyton Jones CS 242 2012 The IO Monad Slides from John Mitchell, K Fisher, and S. Peyton Jones Reading: Tackling the Awkward Squad, Sections 1-2 Real World Haskell, Chapter 7: I/O Beauty... Functional programming is

More information

Informatics 1 Functional Programming Lectures 15 and 16. IO and Monads. Don Sannella University of Edinburgh

Informatics 1 Functional Programming Lectures 15 and 16. IO and Monads. Don Sannella University of Edinburgh Informatics 1 Functional Programming Lectures 15 and 16 IO and Monads Don Sannella University of Edinburgh Part I The Mind-Body Problem The Mind-Body Problem Part II Commands Print a character putchar

More information

Principles of Programming Languages

Principles of Programming Languages Principles of Programming Languages h"p://www.di.unipi.it/~andrea/dida2ca/plp- 15/ Prof. Andrea Corradini Department of Computer Science, Pisa Monads in Haskell The IO Monad Lesson 27! 1 Pros of FuncConal

More information

I/O in Purely Functional Languages. Stream-Based I/O. Continuation-Based I/O. Monads

I/O in Purely Functional Languages. Stream-Based I/O. Continuation-Based I/O. Monads I/O in Purely Functional Languages Stream-Based I/O Four centuries ago, Descartes pondered the mind-body problem: how can incorporeal minds interact with physical bodies? Designers of purely declarative

More information

PROGRAMMING IN HASKELL. Chapter 10 - Interactive Programming

PROGRAMMING IN HASKELL. Chapter 10 - Interactive Programming PROGRAMMING IN HASKELL Chapter 10 - Interactive Programming 0 Introduction To date, we have seen how Haskell can be used to write batch programs that take all their inputs at the start and give all their

More information

CSCE 314 Programming Languages. Interactive Programming: I/O

CSCE 314 Programming Languages. Interactive Programming: I/O CSCE 314 Programming Languages Interactive Programming: I/O Dr. Hyunyoung Lee 1 Introduction To date, we have seen how Haskell can be used to write batch programs that take all their inputs at the start

More information

Software System Design and Implementation

Software System Design and Implementation Software System Design and Implementation Controlling Effects Gabriele Keller The University of New South Wales School of Computer Science and Engineering Sydney, Australia COMP3141 18s1 Examples of effects

More information

Monad Background (3A) Young Won Lim 11/18/17

Monad Background (3A) Young Won Lim 11/18/17 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Embedded Domain Specific Languages in Idris Lecture 3: State, Side Effects and Resources

Embedded Domain Specific Languages in Idris Lecture 3: State, Side Effects and Resources Embedded Domain Specific Languages in Idris Lecture 3: State, Side Effects and Resources Edwin Brady (ecb10@st-andrews.ac.uk) University of St Andrews, Scotland, UK @edwinbrady SSGEP, Oxford, 9th July

More information

Monad Background (3A) Young Won Lim 11/8/17

Monad Background (3A) Young Won Lim 11/8/17 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Applicative, traversable, foldable

Applicative, traversable, foldable Applicative, traversable, foldable Advanced functional programming - Lecture 3 Wouter Swierstra 1 Beyond the monad So far, we have seen how monads define a common abstraction over many programming patterns.

More information

Programming in Haskell Aug Nov 2015

Programming in Haskell Aug Nov 2015 Programming in Haskell Aug Nov 2015 LECTURE 23 NOVEMBER 12, 2015 S P SURESH CHENNAI MATHEMATICAL INSTITUTE Summary of IO Actions of type IO t1, t1 -> IO t2, t1 -> t2 -> IO t3 etc. As opposed to pure functions

More information

Applicative, traversable, foldable

Applicative, traversable, foldable Applicative, traversable, foldable Advanced functional programming - Lecture 4 Wouter Swierstra and Alejandro Serrano 1 Beyond the monad So far, we have seen how monads define a common abstraction over

More information

Background Type Classes (1B) Young Won Lim 6/28/18

Background Type Classes (1B) Young Won Lim 6/28/18 Background Type Classes (1B) Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Mostly functional programming does not work

Mostly functional programming does not work Mostly functional programming does not work Alejandro Gómez-Londoño EAFIT University June 26, 2014 Introduction Conventional programming languages are large, complex, and inflexible. Their limited expressive

More information

I/O in Haskell. To output a character: putchar :: Char -> IO () e.g., putchar c. To output a string: putstr :: String -> IO () e.g.

I/O in Haskell. To output a character: putchar :: Char -> IO () e.g., putchar c. To output a string: putstr :: String -> IO () e.g. I/O in Haskell Generally, I/O functions in Haskell have type IO a, where a could be any type. The purpose and use of a will be explained later. We call these commands or actions, for we think of them as

More information

Principles of Programming Languages

Principles of Programming Languages Principles of Programming Languages h"p://www.di.unipi.it/~andrea/dida2ca/plp-16/ Prof. Andrea Corradini Department of Computer Science, Pisa Monads in Haskell The IO Monad Lesson 23! 1 Pros of FuncConal

More information

Monad class. Example: Lambda laughter. The functional IO problem. EDAN40: Functional Programming Functors and Monads

Monad class. Example: Lambda laughter. The functional IO problem. EDAN40: Functional Programming Functors and Monads Monad class EDAN40: Functional Programming Functors and Monads Jacek Malec Dept. of Computer Science, Lund University, Sweden April 23rd, 2018 Motivation: Separation of pure and impure code Properties

More information

EECS 700 Functional Programming

EECS 700 Functional Programming EECS 700 Functional Programming Dr. Andy Gill University of Kansas February 16, 2010 1 / 41 Parsing A parser is a program that analyses a piece of text to determine its syntactic structure. The expression

More information

Monads. Functional Programming (CS4011) Monads

Monads. Functional Programming (CS4011) Monads Monads Functional Programming (CS4011) Andrew Butterfield Glenn Strong Foundations & Methods Group, Discipline of Software Systems Trinity College, University of Dublin {Andrew.Butterfield,Glenn.Strong}@cs.tcd.ie

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 3 Thomas Wies New York University Review Last week Names and Bindings Lifetimes and Allocation Garbage Collection Scope Outline Control Flow Sequencing

More information

Monad Background (3A) Young Won Lim 10/5/17

Monad Background (3A) Young Won Lim 10/5/17 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Introduction to Haskell

Introduction to Haskell Introduction to Haskell Matt Mullins Texas A&M Computing Society October 6, 2009 Matt Mullins (TACS) Introduction to Haskell October 6, 2009 1 / 39 Outline Introduction to Haskell Functional Programming

More information

7. Introduction to Denotational Semantics. Oscar Nierstrasz

7. Introduction to Denotational Semantics. Oscar Nierstrasz 7. Introduction to Denotational Semantics Oscar Nierstrasz Roadmap > Syntax and Semantics > Semantics of Expressions > Semantics of Assignment > Other Issues References > D. A. Schmidt, Denotational Semantics,

More information

Haskell & functional programming, some slightly more advanced stuff. Matteo Pradella

Haskell & functional programming, some slightly more advanced stuff. Matteo Pradella Haskell & functional programming, some slightly more advanced stuff Matteo Pradella pradella@elet.polimi.it IEIIT, Consiglio Nazionale delle Ricerche & DEI, Politecnico di Milano PhD course @ UniMi - Feb

More information

IO Monad (3D) Young Won Lim 1/18/18

IO Monad (3D) Young Won Lim 1/18/18 Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Advanced Programming Handout 7. Monads and Friends (SOE Chapter 18)

Advanced Programming Handout 7. Monads and Friends (SOE Chapter 18) Advanced Programming Handout 7 Monads and Friends (SOE Chapter 18) The Type of a Type In previous chapters we discussed: Monomorphic types such as Int, Bool, etc. Polymorphic types such as [a], Tree a,

More information

IO Monad (3C) Young Won Lim 1/6/18

IO Monad (3C) Young Won Lim 1/6/18 Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Monad Background (3A) Young Won Lim 11/20/17

Monad Background (3A) Young Won Lim 11/20/17 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Introduction to Functional Programming in Haskell 1 / 56

Introduction to Functional Programming in Haskell 1 / 56 Introduction to Functional Programming in Haskell 1 / 56 Outline Why learn functional programming? The essence of functional programming What is a function? Equational reasoning First-order vs. higher-order

More information

INTRODUCTION TO FUNCTIONAL PROGRAMMING

INTRODUCTION TO FUNCTIONAL PROGRAMMING INTRODUCTION TO FUNCTIONAL PROGRAMMING Graham Hutton University of Nottingham adapted by Gordon Uszkay 1 What is Functional Programming? Opinions differ, and it is difficult to give a precise definition,

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 18 Thursday, March 29, 2018 In abstract algebra, algebraic structures are defined by a set of elements and operations

More information

CS 242. Fundamentals. Reading: See last slide

CS 242. Fundamentals. Reading: See last slide CS 242 Fundamentals Reading: See last slide Syntax and Semantics of Programs Syntax The symbols used to write a program Semantics The actions that occur when a program is executed Programming language

More information

More on functional programming

More on functional programming More on functional programming Emphasis on Haskell (as a pure functional language) Input and output in Haskell Wrappers / contexts Monads chaining wrapped computations Maybe and lists as monads Return

More information

College Functors, Applicatives

College Functors, Applicatives College 2016-2017 Functors, Applicatives Wouter Swierstra with a bit of Jurriaan Hage Utrecht University Contents So far, we have seen monads define a common abstraction over many programming patterns.

More information

Modules Matter Most. Robert Harper Carnegie Mellon University. MacQueen Fest Chicago May 2012

Modules Matter Most. Robert Harper Carnegie Mellon University. MacQueen Fest Chicago May 2012 Modules Matter Most Robert Harper Carnegie Mellon University MacQueen Fest Chicago May 2012 Thanks... to the organizers for organizing this meeting.... to Dave for being an inspiration to and influence

More information

Maybe Monad (3B) Young Won Lim 12/21/17

Maybe Monad (3B) Young Won Lim 12/21/17 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

IO Monad (3C) Young Won Lim 8/23/17

IO Monad (3C) Young Won Lim 8/23/17 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

An introduction to functional programming. July 23, 2010

An introduction to functional programming. July 23, 2010 An introduction to functional programming July 23, 2010 About Outline About About What is functional programming? What is? Why functional programming? Why? is novel. is powerful. is fun. About A brief

More information

Functional Programming

Functional Programming Functional Programming Monadic Prelude Jevgeni Kabanov Department of Computer Science University of Tartu Introduction Previously on Functional Programming Monadic laws Monad class (>>= and return) MonadPlus

More information

n n Try tutorial on front page to get started! n spring13/ n Stack Overflow!

n   n Try tutorial on front page to get started! n   spring13/ n Stack Overflow! Announcements n Rainbow grades: HW1-6, Quiz1-5, Exam1 n Still grading: HW7, Quiz6, Exam2 Intro to Haskell n HW8 due today n HW9, Haskell, out tonight, due Nov. 16 th n Individual assignment n Start early!

More information

Monad (3A) Young Won Lim 8/9/17

Monad (3A) Young Won Lim 8/9/17 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Haskell. COS 326 Andrew W. Appel Princeton University. a lazy, purely functional language. slides copyright David Walker and Andrew W.

Haskell. COS 326 Andrew W. Appel Princeton University. a lazy, purely functional language. slides copyright David Walker and Andrew W. Haskell a lazy, purely functional language COS 326 Andrew W. Appel Princeton University slides copyright 2013-2015 David Walker and Andrew W. Appel Haskell Another cool, typed, functional programming language

More information

Assigning to a Variable

Assigning to a Variable What is the result of this program? Is it 0 or 1? Assigning to a Variable let f = proc(x) set x = 1 in let y = 0 in { (f y); y } 1 Assigning to a Variable let f = proc(x) set x = 1 in let y = 0 in { (f

More information

Parsing. Zhenjiang Hu. May 31, June 7, June 14, All Right Reserved. National Institute of Informatics

Parsing. Zhenjiang Hu. May 31, June 7, June 14, All Right Reserved. National Institute of Informatics National Institute of Informatics May 31, June 7, June 14, 2010 All Right Reserved. Outline I 1 Parser Type 2 Monad Parser Monad 3 Derived Primitives 4 5 6 Outline Parser Type 1 Parser Type 2 3 4 5 6 What

More information

Monads. Mark Hills 6 August Department of Computer Science University of Illinois at Urbana-Champaign

Monads. Mark Hills 6 August Department of Computer Science University of Illinois at Urbana-Champaign Monads Mark Hills mhills@cs.uiuc.edu Department of Computer Science University of Illinois at Urbana-Champaign 6 August 2009 Hills Monads 1 / 19 Overview Overview Hills Monads 2 / 19 Why Monads? Overview

More information

Using Monads for Input and Output

Using Monads for Input and Output L13-1 Using Monads for Input and Output Jan-Willem Laboratory for Computer Science M.I.T. November 4, 2002 Functional Languages and I/O L13-2 z := f(x) + g(y); In a functional language f and g can be evaluated

More information

Concepts of Programming Languages

Concepts of Programming Languages Concepts of Programming Languages Lecture 15 - Functional Programming Patrick Donnelly Montana State University Spring 2014 Patrick Donnelly (Montana State University) Concepts of Programming Languages

More information

f() ! " Run a higher-priority task? ! " Yield the processor to another task because our ! " Use the processor for some other activity while

f() !  Run a higher-priority task? !  Yield the processor to another task because our !  Use the processor for some other activity while CS 410/510: Advanced Programming Continuing a Computation: Continuations Mark P Jones Portland State University 1 Standard nested function call pattern 2 Continuing a Computation: What might we want to

More information

CS 410/510: Advanced Programming

CS 410/510: Advanced Programming CS 410/510: Advanced Programming Continuations Mark P Jones Portland State University 1 Continuing a Computation: f() g() h() Standard nested function call pattern 2 Continuing a Computation: f() g() h()

More information

Side Effects (3B) Young Won Lim 11/20/17

Side Effects (3B) Young Won Lim 11/20/17 Side Effects (3B) Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Side Effects (3B) Young Won Lim 11/23/17

Side Effects (3B) Young Won Lim 11/23/17 Side Effects (3B) Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Haskell Programming

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Haskell Programming About the Tutorial Haskell is a widely used purely functional language. Functional programming is based on mathematical functions. Besides Haskell, some of the other popular languages that follow Functional

More information

Side Effects (3B) Young Won Lim 11/27/17

Side Effects (3B) Young Won Lim 11/27/17 Side Effects (3B) Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Background Operators (1E) Young Won Lim 7/7/18

Background Operators (1E) Young Won Lim 7/7/18 Background Operators (1E) Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Maybe Monad (3B) Young Won Lim 1/3/18

Maybe Monad (3B) Young Won Lim 1/3/18 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Tackling the Awkward Squad: monadic input/output, concurrency, exceptions, and foreign-language calls in Haskell

Tackling the Awkward Squad: monadic input/output, concurrency, exceptions, and foreign-language calls in Haskell Tackling the Awkward Squad: monadic inputoutput, concurrency, exceptions, and foreign-language calls in Haskell Simon PEYTON JONES Microsoft Research, Cambridge simonpj@microsoft.com http:research.microsoft.comuserssimonpj

More information

JVM ByteCode Interpreter

JVM ByteCode Interpreter JVM ByteCode Interpreter written in Haskell (In under 1000 Lines of Code) By Louis Jenkins Presentation Schedule ( 15 Minutes) Discuss and Run the Virtual Machine first

More information

M-Structures (Continued)

M-Structures (Continued) M-Structures (Continued) plus Introduction to the I/O Monad Arvind Computer Science and Artificial Intelligence Laboratory M.I.T. October 24, 2006 October 24, 2006 http://www.csg.csail.mit.edu/6.827 L12-1

More information

CS 457/557: Functional Languages

CS 457/557: Functional Languages CS 457/557: Functional Languages I/O Actions in Haskell Mark P Jones Portland State University 1 Question: If functional programs don t have any side-effects, then how can we ever do anything useful? 2

More information

Value Recursion in Monadic Computations

Value Recursion in Monadic Computations Value Recursion in Monadic Computations Levent Erkök OGI School of Science and Engineering, OHSU Advisor: John Launchbury June 24th, 2002 Outline Recursion and effects Motivating examples Value recursion

More information

Programming Languages Third Edition

Programming Languages Third Edition Programming Languages Third Edition Chapter 12 Formal Semantics Objectives Become familiar with a sample small language for the purpose of semantic specification Understand operational semantics Understand

More information

Example: A Compiler Fragment (1) Example: A Compiler Fragment (2) Example: A Compiler Fragment (3)

Example: A Compiler Fragment (1) Example: A Compiler Fragment (2) Example: A Compiler Fragment (3) LiU-FP2016: Lecture 7 Monads Henrik Nilsson University of Nottingham, UK Example: A Compiler Fragment (1) Identification is the task of relating each applied identifier occurrence to its declaration or

More information

LECTURE 16. Functional Programming

LECTURE 16. Functional Programming LECTURE 16 Functional Programming WHAT IS FUNCTIONAL PROGRAMMING? Functional programming defines the outputs of a program as a mathematical function of the inputs. Functional programming is a declarative

More information

CS 11 Haskell track: lecture 1

CS 11 Haskell track: lecture 1 CS 11 Haskell track: lecture 1 This week: Introduction/motivation/pep talk Basics of Haskell Prerequisite Knowledge of basic functional programming e.g. Scheme, Ocaml, Erlang CS 1, CS 4 "permission of

More information

INF 212 ANALYSIS OF PROG. LANGS FUNCTION COMPOSITION. Instructors: Crista Lopes Copyright Instructors.

INF 212 ANALYSIS OF PROG. LANGS FUNCTION COMPOSITION. Instructors: Crista Lopes Copyright Instructors. INF 212 ANALYSIS OF PROG. LANGS FUNCTION COMPOSITION Instructors: Crista Lopes Copyright Instructors. Topics Recursion Higher-order functions Continuation-Passing Style Monads (take 1) Identity Monad Maybe

More information

Monad (1A) Young Won Lim 6/26/17

Monad (1A) Young Won Lim 6/26/17 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Overview. Declarative Languages. General monads. The old IO monad. Sequencing operator example. Sequencing operator

Overview. Declarative Languages. General monads. The old IO monad. Sequencing operator example. Sequencing operator Overview Declarative Languages D7012E: General monads in haskell Fredrik Bengtsson IO-monad sequencing operator monad class requirements on monad Monadic computation trivial example useful example The

More information

Programming Paradigms

Programming Paradigms PP 2017/18 Unit 11 Functional Programming with Haskell 1/37 Programming Paradigms Unit 11 Functional Programming with Haskell J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE

More information

Multi-paradigm Declarative Languages

Multi-paradigm Declarative Languages Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 1 Multi-paradigm Declarative Languages Michael Hanus Christian-Albrechts-University of Kiel Programming Languages and Compiler Construction

More information

Haskell: From Basic to Advanced. Part 2 Type Classes, Laziness, IO, Modules

Haskell: From Basic to Advanced. Part 2 Type Classes, Laziness, IO, Modules Haskell: From Basic to Advanced Part 2 Type Classes, Laziness, IO, Modules Qualified types In the types schemes we have seen, the type variables were universally quantified, e.g. ++ :: [a] -> [a] -> [a]

More information

CIS552: Advanced Programming

CIS552: Advanced Programming CIS552: Advanced Programming Handout 8 What is a Parser? A parser is a program that analyzes a piece of text to deine its structure (and, typically, returns a tree representing this structure). The World

More information

Background Type Classes (1B) Young Won Lim 6/14/18

Background Type Classes (1B) Young Won Lim 6/14/18 Background Type Classes (1B) Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Monad P1 : Several Monad Types (4A) Young Won Lim 2/13/19

Monad P1 : Several Monad Types (4A) Young Won Lim 2/13/19 Monad P1 : Several Copyright (c) 2016-2019 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Trees. Solution: type TreeF a t = BinF t a t LeafF 1 point for the right kind; 1 point per constructor.

Trees. Solution: type TreeF a t = BinF t a t LeafF 1 point for the right kind; 1 point per constructor. Trees 1. Consider the following data type Tree and consider an example inhabitant tree: data Tree a = Bin (Tree a) a (Tree a) Leaf deriving Show tree :: Tree Int tree = Bin (Bin (Bin Leaf 1 Leaf ) 2 (Bin

More information

Part VI. Imperative Functional Programming

Part VI. Imperative Functional Programming Part VI Imperative Functional Programming Chapter 14 Mutable Storage MinML is said to be a pure language because the execution model consists entirely of evaluating an expression for its value. ML is

More information

Programming language design and analysis

Programming language design and analysis Programming language design and analysis Introduction Marius Minea 25 September 2017 Why this course? Programming languages are fundamental and one of the oldest CS fields Language design is an important

More information

The story so far. Elements of Programming Languages. While-programs. Mutable vs. immutable

The story so far. Elements of Programming Languages. While-programs. Mutable vs. immutable The story so far Elements of Programming Languages Lecture 12: Imperative programming James Cheney University of Edinburgh November 4, 2016 So far we ve mostly considered pure computations. Once a variable

More information

Monads and all that III Applicative Functors. John Hughes Chalmers University/Quviq AB

Monads and all that III Applicative Functors. John Hughes Chalmers University/Quviq AB Monads and all that III Applicative Functors John Hughes Chalmers University/Quviq AB Recall our expression parser expr = do a

More information

Monads. COS 441 Slides 16

Monads. COS 441 Slides 16 Monads COS 441 Slides 16 Last time: Agenda We looked at implementation strategies for languages with errors, with printing and with storage We introduced the concept of a monad, which involves 3 things:

More information

Applicatives Comparisons (2C) Young Won Lim 3/6/18

Applicatives Comparisons (2C) Young Won Lim 3/6/18 Comparisons (2C) Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Side Effects (3A) Young Won Lim 1/13/18

Side Effects (3A) Young Won Lim 1/13/18 Side Effects (3A) Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Functional Programming

Functional Programming Functional Programming Björn B. Brandenburg The University of North Carolina at Chapel Hill Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts. Brief

More information

Monad (1A) Young Won Lim 6/21/17

Monad (1A) Young Won Lim 6/21/17 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen COP4020 Programming Languages Functional Programming Prof. Robert van Engelen Overview What is functional programming? Historical origins of functional programming Functional programming today Concepts

More information

Introduction to Functional Programming and Haskell. Aden Seaman

Introduction to Functional Programming and Haskell. Aden Seaman Introduction to Functional Programming and Haskell Aden Seaman Functional Programming Functional Programming First Class Functions Expressions (No Assignment) (Ideally) No Side Effects Different Approach

More information

Relation Overriding. Syntax and Semantics. Simple Semantic Domains. Operational Semantics

Relation Overriding. Syntax and Semantics. Simple Semantic Domains. Operational Semantics SE3E03, 2006 1.59 61 Syntax and Semantics Syntax Shape of PL constructs What are the tokens of the language? Lexical syntax, word level How are programs built from tokens? Mostly use Context-Free Grammars

More information

Monad Overview (3B) Young Won Lim 1/16/18

Monad Overview (3B) Young Won Lim 1/16/18 Based on Haskell in 5 steps https://wiki.haskell.org/haskell_in_5_steps 2 Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of

More information

CONVENTIONAL EXECUTABLE SEMANTICS. Grigore Rosu CS422 Programming Language Design

CONVENTIONAL EXECUTABLE SEMANTICS. Grigore Rosu CS422 Programming Language Design CONVENTIONAL EXECUTABLE SEMANTICS Grigore Rosu CS422 Programming Language Design Conventional Semantic Approaches A language designer should understand the existing design approaches, techniques and tools,

More information

Imperative Functional Programming

Imperative Functional Programming Imperative Functional Programming Uday S. Reddy Department of Computer Science The University of Illinois at Urbana-Champaign Urbana, Illinois 61801 reddy@cs.uiuc.edu Our intuitive idea of a function is

More information

Monads à la Mode. 1 Introduction. 2 Motivation. 2.1 On Termination. 2.2 Continuation-Passing Style. 2.4 Reconciling Styles. 2.3 Store-Passing Style

Monads à la Mode. 1 Introduction. 2 Motivation. 2.1 On Termination. 2.2 Continuation-Passing Style. 2.4 Reconciling Styles. 2.3 Store-Passing Style 1 Introduction Monads à la Mode Cameron Swords The purpose of this article is to provide a concise introduction to monads for anyone who has an understanding of Scheme and simple types. It provides a motivation

More information

Some Advanced ML Features

Some Advanced ML Features Some Advanced ML Features Mooly Sagiv Michael Clarkson, Cornell CS 3110 Data Structures and Functional Programming University of Washington: Dan Grossman ML is small Small number of powerful constructs

More information

PARALLEL AND CONCURRENT PROGRAMMING IN HASKELL

PARALLEL AND CONCURRENT PROGRAMMING IN HASKELL Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References PARALLEL AND CONCURRENT PROGRAMMING IN HASKELL AN OVERVIEW Eva Burrows BLDL-Talks Department of Informatics, University of

More information

Monads. Bonus lecture 2017 David Sands

Monads. Bonus lecture 2017 David Sands Monads Bonus lecture 2017 David Sands Our version of the story, so far. Monad is the class of instructions. Instructions can be built using do notation. We have seen two kinds of instructions i.e. two

More information

Thoughts on Assignment 4 Haskell: Flow of Control

Thoughts on Assignment 4 Haskell: Flow of Control Thoughts on Assignment 4 Haskell: Flow of Control CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Monday, February 27, 2017 Glenn G. Chappell Department of Computer

More information

Monads in Haskell. Nathanael Schilling. December 12, 2014

Monads in Haskell. Nathanael Schilling. December 12, 2014 Monads in Haskell Nathanael Schilling December 12, 2014 Abstract In Haskell, monads provide a mechanism for mapping functions of the type a -> m b to those of the type m a -> m b. This mapping is dependent

More information

CS252 Advanced Programming Language Principles. Prof. Tom Austin San José State University Fall 2013

CS252 Advanced Programming Language Principles. Prof. Tom Austin San José State University Fall 2013 CS252 Advanced Programming Language Principles Prof. Tom Austin San José State University Fall 2013 What are some programming languages? Why are there so many? Different domains Mobile devices (Objective

More information