CS311 / MATH352 - AUTOMATA AND COMPLEXITY THEORY

Size: px
Start display at page:

Download "CS311 / MATH352 - AUTOMATA AND COMPLEXITY THEORY"

Transcription

1 CS311 / MATH352 - AUTOMATA AND COMPLEXITY THEORY Homework # 8 Max. Points: 100 Due Date: Thursday, February 15, 2007, 11:45 AM Student s Name: Student ID: Important Instructions You are required to get print-out of this homework, and solve it using the space provided against each question. You are not allowed to solve on other papers. Clearly state your assumptions, if you are assuming some thing in addition to the given information in each question. Please write legibly. Write your roll number on every page that you submit. Avoid copying work of another person. If found, then such case would be forwarded for disciplinary action without any warning / justification. If you are acquiring help from any resource, then include references completely. There are total 5 questions in this homework Qs 1a)Suppose that you have a class of PDAs, let us say PDA new where you are allowed to have more than one symbol on the left side of a transition. E.g, ABC D is allowed under the rules of PDA new. Show that this class of PDAs has equivalent power to the PDAs that you have studied in class (let us call this latter class PDA normal.) in which you were allowed to pop only one symbol at a time. To do so, use the following method. Take a PDA new that accepts an arbitrary language L, and construct a PDA normal that accepts the same language. Similarly, take a PDA normal that accepts an arbitrary language L, and construct a PDA new that accepts the same language. Note: Over here, both PDA new and PDA normal accept by final state. (15 marks) Ans 1) Showing that a PDA new simulates a PDA normal is trivial. Since you may have one or more symbols on the left side of a transition of PDA new, you can take a PDA normal and simulate all its transitions. The reverse direction is a little more tricky(simulating a PDA new by a PDA normal ) is a bit more tricky, but it can be done like this. Suppose you have a transition as below: x, ABC-> DE Q1

2 Now, what you need to do is introduce new states for popping each symbol in turn. It goes like this: Q1 x, A-> λ λ, B-> λ λ, C-> DE P1 P2 In general, for any transition with z number of symbols on L.H.S (where z>1), add z-1 new states, where you pop out each symbol in turn. If you find all the symbols in the transition, then from the last state push the entire R.H.S of original transition. This will yield an equivalent NPDA.

3 Qs 1b) Now, let us consider another class of PDAs, which has no start symbol and does not necessarily halt upon empty stack. So, for example, it will halt if the only transition available between two states q i and q j while stack is empty is of form ( 0,A anything ) but it will not halt if there is a transition of form ( 0, λ B) or (0, λ λ) while the stack is empty. Show that this class of PDAs (let us call these PDA no_start ) are equivalent in power to PDA normal, by the same method as used in part a) Note: Over here, both PDA no_start and PDA normal accept by final state. (10 marks) Ans) Showing that PDA normal simulates PDA no_start is fairly trivial. Take PDA no_start, and add a new start state and start variable. If PDA no_start hangs any where, so does the PDA normal we have constructed. Simlarly, if PDA no_start accepts, so does PDA normal. The original PDA no_start, with no start symbol. Qf We simulate the same thing in PDA normal, but over here when we start in P0, the stack contains a start symbol $. This PDA will accept same language as above. P0 λ, λ-> λ Qf Now, we need to show that PDA no_start simulates PDA normal.. Its fairly simple.

4 1) Take a given PDA normal P1 with its states and transitions. It starts out with a start symbol $. 2) Take all the states and transitions to a new machine P2 which is a PDA no_start. Introduce a new start state, and push the start symbol $ onto PDA no_start. This new PDA now simulates all the transitions of PDA normal. 3) Now, what we need to do is find a way to have this PDA halt if the start symbol is popped. So what we do is replace all transitions of form (a, λ -> x) according to every letter of the alphabet. So, if stack alphabet is {A,B,C, $} then (a, λ -> x) is replaced by (a, A -> x) and (a, B -> x), (a, C -> x) and (a, $ -> x). This modification now prevents us operating on an empty stack, just as we had in original P1. 4) We also need to ensure that the state machine halts after doing something f the form $->$. So, wherever a $->$ transition occurs, we remove it and replace it with the same transition going to a state having no outgoing transitions (we take it to an accepting state if the $->$ transition occurred on a accepting state in the original P1; a non-accepting state if it initially occurred on a non-accepting state in P1). 5) This P2 now accepts an equivalent language to P1. The original PDAnormal, with a start symbol $ present by default. Qf Below, we have to place the start symbol in PDAno_start ourselves. We also take precautions by modifying lambada transitions in between and Qf to halt the PDA when stack is empty. P0 λ, λ-> $ Qf

5 Qs 2 a). Use the CYK algorithm on the strings and for the grammar below to determine whether they belong to the language or not. You must exhibit the table correctly to receive credit. (Note: You may, or may not, have to simplify the grammar first before proceeding) 20 marks S --> AB BC A --> BA 0 B --> CC 1 C --> AB 0 {B} {S,C} {S,C,A} {A,S} - {A,S,C} {B} - {B} {B} {S,C} {S,A} {B} {S,C} {S,A} {A,C} {B} {A,C} {A,C} {B} {A,C} Since the last entry does not contain S, we say the string w cannot be produced by the grammar. {B} {S,A,C} {S,A,C} {B} {B} {B} {S,A,C} {S,A,C} {S,A,C} {S,A,C} {B} {B} {B} {B} {B} {A,C} {A,C} {A,C} {A,C} {A,C} {A,C}

6 Since the last entry does not contain S, we say the string w cannot be produced by the grammar. b) You have studied the time-complexity of CYK algorithm in class (or at least in the slides). Give the big-oh, and explain why the algorithm has this complexity.. (5 marks) Since we have O(n square) entries, and each takes O(n) time, it takes O(n cube) time to implement this algorithm. Qs 3) Consider the language L of the form a n b n c i (0 <= n <= i <= 2n). Show that this language is non-context free using pumping lemma for CFL. This topic will be covered in Saturday s lecture. (20 marks) First of all, we assume the language L to be an infinite CFL for contradiction. We select the string w= a m b m c 2m, where m is pumping lemma constant. Now, we subdivide w = uvwxy, where w >m., vwx <=m and vx >=1. Case 1: vwx lies entirely in a s. Simply pump i = 2 to get a string where no of a s exceeds no of b s and hence does not belong to L. Case 2: vwx lies entirely in b s. Similar treatment to case 1. Case 3: vwx lies entirely in c s. Pump i =2 to get a string where no of c s exceeds double numbers of b s (and hence does not belong to L)

7 Case 4: v contains a s and b s, while x contains b s.simply pump i=2, the string you get will no longer be of form a s followed by b s followed by c s, and hence will not belong to L Case 5: v contains a s, while x contains a s and b s. Similar to case 4. Case 6: v contains b s and c s while x contains c s. Similar to case 4. Case 7: v contains b s while x contains b s and c s. Similar to case 4. Case 8: v contains a s, while x contains b s. Pump down (i = 0) to get a string where no of c s exceeds double numbers of b s, or double numbers of a s(and hence does not belong to L) Case 9: V contains b s and x contains c s. Pump up (i=2), to get a string where either no of c s exceeds double number of b s, or number of b s and a s are not equal (or both conditions) and hence does not belong to language L. Since we have a contradiction for each case when we pump the repeated portion of string, hence we have that our original assumption that L is CFL is mistaken. Hence by pumping lemma it is shown to be non-cfl. Qs 4 )Use the construction given in your book (pg , Exercise ) to convert the following grammar to Greibach normal form. (10 marks) S AA 0 A SS 1 To be ed later this evening Qs 5) This is essentially a reading/research check. Find out what the operations of homomorphism and inverse homomorphisms on a language are, and what are the closure properties of CFLs under these operations. Don t worry, these are just complicated names for a very simple concept that is explained in the book. You will need to know this(as well as the other closure properties studied in class) to solve the following questions.

8 a)assume that L1 ={ a n b n, n >= 0} is a CFL.. Now, use closure properties of CFL (you may use the ones studied in class, as well as homomorphisms and inverse homomorphisms) to prove that L2 = { a m b n c n, m>=0, n>=0} is also a CFL. (7 marks) Ans) First do a homomorphism on L1, replacing a with b and b with c to get L3 ={ b n c n, n >= 0} is a CFL. Now, take the language L4 =a* (which we know to be a CFL), and using closure of CFL under concatenation, take L4. L3 = { a m b n c n, m>=0, n>=0} as the required language which we needed to show to be CFL. b)you may assume that L1 ={ a n b n c n, n >= 0} is NOT a CFL. Using this fact, and closure properties of CFL(you may use the ones studied in class, as well as homomorphisms and inverse homomorphisms), show that L2 ={ a n b n c 2n, n >= 0} is also not a CFL. (13 marks) Ans) Assume for contradiction that L1 ={ a n b n c 2n, n >= 0} is indeed a CFL. Then we may perform a inverse homomorphism on L2, replacing cc with c (as CFL closed under inverse homomorphism). This gives us a new language, that is L1 ={ a n b n c n, n >= 0} which must also be CFL. But we are already given that L2 is non-cfl, so this conclusion is impossible. Hence our initial assumption that L1 is a CFL must have been wrong. Hence proved by contradiction, that L1 is noncfl (since assuming it to be CFL leads to impossible conclusion).

9 Note: To get credit in part a) and b), you may ONLY use closure properties and the assumptions given to you

Final Course Review. Reading: Chapters 1-9

Final Course Review. Reading: Chapters 1-9 Final Course Review Reading: Chapters 1-9 1 Objectives Introduce concepts in automata theory and theory of computation Identify different formal language classes and their relationships Design grammars

More information

CS5371 Theory of Computation. Lecture 8: Automata Theory VI (PDA, PDA = CFG)

CS5371 Theory of Computation. Lecture 8: Automata Theory VI (PDA, PDA = CFG) CS5371 Theory of Computation Lecture 8: Automata Theory VI (PDA, PDA = CFG) Objectives Introduce Pushdown Automaton (PDA) Show that PDA = CFG In terms of descriptive power Pushdown Automaton (PDA) Roughly

More information

PDA s. and Formal Languages. Automata Theory CS 573. Outline of equivalence of PDA s and CFG s. (see Theorem 5.3)

PDA s. and Formal Languages. Automata Theory CS 573. Outline of equivalence of PDA s and CFG s. (see Theorem 5.3) CS 573 Automata Theory and Formal Languages Professor Leslie Lander Lecture # 20 November 13, 2000 Greibach Normal Form (GNF) Sheila Greibach s normal form (GNF) for a CFG is one where EVERY production

More information

Closure Properties of CFLs; Introducing TMs. CS154 Chris Pollett Apr 9, 2007.

Closure Properties of CFLs; Introducing TMs. CS154 Chris Pollett Apr 9, 2007. Closure Properties of CFLs; Introducing TMs CS154 Chris Pollett Apr 9, 2007. Outline Closure Properties of Context Free Languages Algorithms for CFLs Introducing Turing Machines Closure Properties of CFL

More information

Ambiguous Grammars and Compactification

Ambiguous Grammars and Compactification Ambiguous Grammars and Compactification Mridul Aanjaneya Stanford University July 17, 2012 Mridul Aanjaneya Automata Theory 1/ 44 Midterm Review Mathematical Induction and Pigeonhole Principle Finite Automata

More information

Theory of Computation Dr. Weiss Extra Practice Exam Solutions

Theory of Computation Dr. Weiss Extra Practice Exam Solutions Name: of 7 Theory of Computation Dr. Weiss Extra Practice Exam Solutions Directions: Answer the questions as well as you can. Partial credit will be given, so show your work where appropriate. Try to be

More information

Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and

Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and Computer Language Theory Chapter 4: Decidability 1 Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and

More information

Decision Properties for Context-free Languages

Decision Properties for Context-free Languages Previously: Decision Properties for Context-free Languages CMPU 240 Language Theory and Computation Fall 2018 Context-free languages Pumping Lemma for CFLs Closure properties for CFLs Today: Assignment

More information

Lecture 12: Cleaning up CFGs and Chomsky Normal

Lecture 12: Cleaning up CFGs and Chomsky Normal CS 373: Theory of Computation Sariel Har-Peled and Madhusudan Parthasarathy Lecture 12: Cleaning up CFGs and Chomsky Normal m 3 March 2009 In this lecture, we are interested in transming a given grammar

More information

Theory of Computations Spring 2016 Practice Final Exam Solutions

Theory of Computations Spring 2016 Practice Final Exam Solutions 1 of 8 Theory of Computations Spring 2016 Practice Final Exam Solutions Name: Directions: Answer the questions as well as you can. Partial credit will be given, so show your work where appropriate. Try

More information

University of Nevada, Las Vegas Computer Science 456/656 Fall 2016

University of Nevada, Las Vegas Computer Science 456/656 Fall 2016 University of Nevada, Las Vegas Computer Science 456/656 Fall 2016 The entire examination is 925 points. The real final will be much shorter. Name: No books, notes, scratch paper, or calculators. Use pen

More information

CS 44 Exam #2 February 14, 2001

CS 44 Exam #2 February 14, 2001 CS 44 Exam #2 February 14, 2001 Name Time Started: Time Finished: Each question is equally weighted. You may omit two questions, but you must answer #8, and you can only omit one of #6 or #7. Circle the

More information

Final Exam 2, CS154. April 25, 2010

Final Exam 2, CS154. April 25, 2010 inal Exam 2, CS154 April 25, 2010 Exam rules. he exam is open book and open notes you can use any printed or handwritten material. However, no electronic devices are allowed. Anything with an on-off switch

More information

Enumerations and Turing Machines

Enumerations and Turing Machines Enumerations and Turing Machines Mridul Aanjaneya Stanford University August 07, 2012 Mridul Aanjaneya Automata Theory 1/ 35 Finite Sets Intuitively, a finite set is a set for which there is a particular

More information

Derivations of a CFG. MACM 300 Formal Languages and Automata. Context-free Grammars. Derivations and parse trees

Derivations of a CFG. MACM 300 Formal Languages and Automata. Context-free Grammars. Derivations and parse trees Derivations of a CFG MACM 300 Formal Languages and Automata Anoop Sarkar http://www.cs.sfu.ca/~anoop strings grow on trees strings grow on Noun strings grow Object strings Verb Object Noun Verb Object

More information

CSC-461 Exam #2 April 16, 2014

CSC-461 Exam #2 April 16, 2014 Pledge: On my honor, I pledge that I have not discussed any of the questions on this exam with fellow students, nor will I until after 7 p.m. tonight. Signed: CSC-461 Exam #2 April 16, 2014 Name Time Started:

More information

Formal Languages and Automata

Formal Languages and Automata Mobile Computing and Software Engineering p. 1/3 Formal Languages and Automata Chapter 3 Regular languages and Regular Grammars Chuan-Ming Liu cmliu@csie.ntut.edu.tw Department of Computer Science and

More information

Definition 2.8: A CFG is in Chomsky normal form if every rule. only appear on the left-hand side, we allow the rule S ǫ.

Definition 2.8: A CFG is in Chomsky normal form if every rule. only appear on the left-hand side, we allow the rule S ǫ. CS533 Class 02b: 1 c P. Heeman, 2017 CNF Pushdown Automata Definition Equivalence Overview CS533 Class 02b: 2 c P. Heeman, 2017 Chomsky Normal Form Definition 2.8: A CFG is in Chomsky normal form if every

More information

From Theorem 8.5, page 223, we have that the intersection of a context-free language with a regular language is context-free. Therefore, the language

From Theorem 8.5, page 223, we have that the intersection of a context-free language with a regular language is context-free. Therefore, the language CSCI 2400 Models of Computation, Section 3 Solutions to Practice Final Exam Here are solutions to the practice final exam. For some problems some details are missing for brevity. You should write complete

More information

(Refer Slide Time: 0:19)

(Refer Slide Time: 0:19) Theory of Computation. Professor somenath Biswas. Department of Computer Science & Engineering. Indian Institute of Technology, Kanpur. Lecture-15. Decision Problems for Regular Languages. (Refer Slide

More information

Compiler Construction

Compiler Construction Compiler Construction Exercises 1 Review of some Topics in Formal Languages 1. (a) Prove that two words x, y commute (i.e., satisfy xy = yx) if and only if there exists a word w such that x = w m, y =

More information

JNTUWORLD. Code No: R

JNTUWORLD. Code No: R Code No: R09220504 R09 SET-1 B.Tech II Year - II Semester Examinations, April-May, 2012 FORMAL LANGUAGES AND AUTOMATA THEORY (Computer Science and Engineering) Time: 3 hours Max. Marks: 75 Answer any five

More information

Homework 2. Sample Solution. Due Date: Thursday, May 31, 11:59 pm

Homework 2. Sample Solution. Due Date: Thursday, May 31, 11:59 pm Homework Sample Solution Due Date: Thursday, May 31, 11:59 pm Directions: Your solutions should be typed and submitted as a single pdf on Gradescope by the due date. L A TEX is preferred but not required.

More information

PS3 - Comments. Describe precisely the language accepted by this nondeterministic PDA.

PS3 - Comments. Describe precisely the language accepted by this nondeterministic PDA. University of Virginia - cs3102: Theory of Computation Spring 2010 PS3 - Comments Average: 46.6 (full credit for each question is 55 points) Problem 1: Mystery Language. (Average 8.5 / 10) In Class 7,

More information

Lab 7 1 Due Thu., 6 Apr. 2017

Lab 7 1 Due Thu., 6 Apr. 2017 Lab 7 1 Due Thu., 6 Apr. 2017 CMPSC 112 Introduction to Computer Science II (Spring 2017) Prof. John Wenskovitch http://cs.allegheny.edu/~jwenskovitch/teaching/cmpsc112 Lab 7 - Using Stacks to Create a

More information

Multiple Choice Questions

Multiple Choice Questions Techno India Batanagar Computer Science and Engineering Model Questions Subject Name: Formal Language and Automata Theory Subject Code: CS 402 Multiple Choice Questions 1. The basic limitation of an FSM

More information

1. [5 points each] True or False. If the question is currently open, write O or Open.

1. [5 points each] True or False. If the question is currently open, write O or Open. University of Nevada, Las Vegas Computer Science 456/656 Spring 2018 Practice for the Final on May 9, 2018 The entire examination is 775 points. The real final will be much shorter. Name: No books, notes,

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

R10 SET a) Construct a DFA that accepts an identifier of a C programming language. b) Differentiate between NFA and DFA?

R10 SET a) Construct a DFA that accepts an identifier of a C programming language. b) Differentiate between NFA and DFA? R1 SET - 1 1. a) Construct a DFA that accepts an identifier of a C programming language. b) Differentiate between NFA and DFA? 2. a) Design a DFA that accepts the language over = {, 1} of all strings that

More information

Post's Correspondence Problem. An undecidable, but RE, problem that. appears not to have anything to do with. TM's.

Post's Correspondence Problem. An undecidable, but RE, problem that. appears not to have anything to do with. TM's. Post's Correspondence Problem An undecidable, but RE, problem that appears not to have anything to do with TM's. Given two lists of ëcorresponding" strings èw 1 ;w 2 ;:::;w n è and x 1 ;x 2 ;:::;x n è,

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6503 Subject

More information

QUESTION BANK. Unit 1. Introduction to Finite Automata

QUESTION BANK. Unit 1. Introduction to Finite Automata QUESTION BANK Unit 1 Introduction to Finite Automata 1. Obtain DFAs to accept strings of a s and b s having exactly one a.(5m )(Jun-Jul 10) 2. Obtain a DFA to accept strings of a s and b s having even

More information

Computer Science 236 Fall Nov. 11, 2010

Computer Science 236 Fall Nov. 11, 2010 Computer Science 26 Fall Nov 11, 2010 St George Campus University of Toronto Assignment Due Date: 2nd December, 2010 1 (10 marks) Assume that you are given a file of arbitrary length that contains student

More information

Pushdown Automata. A PDA is an FA together with a stack.

Pushdown Automata. A PDA is an FA together with a stack. Pushdown Automata A PDA is an FA together with a stack. Stacks A stack stores information on the last-in firstout principle. Items are added on top by pushing; items are removed from the top by popping.

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 11 Ana Bove April 26th 2018 Recap: Regular Languages Decision properties of RL: Is it empty? Does it contain this word? Contains

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

Limits of Computation p.1/?? Limits of Computation p.2/??

Limits of Computation p.1/?? Limits of Computation p.2/?? Context-Free Grammars (CFG) There are languages, such as {0 n 1 n n 0} that cannot be described (specified) by finite automata or regular expressions. Context-free grammars provide a more powerful mechanism

More information

CS154 Midterm Examination. May 4, 2010, 2:15-3:30PM

CS154 Midterm Examination. May 4, 2010, 2:15-3:30PM CS154 Midterm Examination May 4, 2010, 2:15-3:30PM Directions: Answer all 7 questions on this paper. The exam is open book and open notes. Any materials may be used. Name: I acknowledge and accept the

More information

COMP 330 Autumn 2018 McGill University

COMP 330 Autumn 2018 McGill University COMP 330 Autumn 2018 McGill University Assignment 4 Solutions and Grading Guide Remarks for the graders appear in sans serif font. Question 1[25 points] A sequence of parentheses is a sequence of ( and

More information

Normal Forms and Parsing. CS154 Chris Pollett Mar 14, 2007.

Normal Forms and Parsing. CS154 Chris Pollett Mar 14, 2007. Normal Forms and Parsing CS154 Chris Pollett Mar 14, 2007. Outline Chomsky Normal Form The CYK Algorithm Greibach Normal Form Chomsky Normal Form To get an efficient parsing algorithm for general CFGs

More information

Chapter 14: Pushdown Automata

Chapter 14: Pushdown Automata Chapter 14: Pushdown Automata Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu The corresponding textbook chapter should

More information

(Refer Slide Time 3:31)

(Refer Slide Time 3:31) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 5 Logic Simplification In the last lecture we talked about logic functions

More information

Recursively Enumerable Languages, Turing Machines, and Decidability

Recursively Enumerable Languages, Turing Machines, and Decidability Recursively Enumerable Languages, Turing Machines, and Decidability 1 Problem Reduction: Basic Concepts and Analogies The concept of problem reduction is simple at a high level. You simply take an algorithm

More information

CS103 Handout 14 Winter February 8, 2013 Problem Set 5

CS103 Handout 14 Winter February 8, 2013 Problem Set 5 CS103 Handout 14 Winter 2012-2013 February 8, 2013 Problem Set 5 This fifth problem set explores the regular languages, their properties, and their limits. This will be your first foray into computability

More information

Name: CS 341 Practice Final Exam. 1 a 20 b 20 c 20 d 20 e 20 f 20 g Total 207

Name: CS 341 Practice Final Exam. 1 a 20 b 20 c 20 d 20 e 20 f 20 g Total 207 Name: 1 a 20 b 20 c 20 d 20 e 20 f 20 g 20 2 10 3 30 4 12 5 15 Total 207 CS 341 Practice Final Exam 1. Please write neatly. You will lose points if we cannot figure out what you are saying. 2. Whenever

More information

CT32 COMPUTER NETWORKS DEC 2015

CT32 COMPUTER NETWORKS DEC 2015 Q.2 a. Using the principle of mathematical induction, prove that (10 (2n-1) +1) is divisible by 11 for all n N (8) Let P(n): (10 (2n-1) +1) is divisible by 11 For n = 1, the given expression becomes (10

More information

LING/C SC/PSYC 438/538. Lecture 20 Sandiway Fong

LING/C SC/PSYC 438/538. Lecture 20 Sandiway Fong LING/C SC/PSYC 438/538 Lecture 20 Sandiway Fong Today's Topics SWI-Prolog installed? We will start to write grammars today Quick Homework 8 SWI Prolog Cheatsheet At the prompt?- 1. halt. 2. listing. listing(name).

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Section 2.2 Define push-down automata informally and formally Trace the computation

More information

Problems, Languages, Machines, Computability, Complexity

Problems, Languages, Machines, Computability, Complexity CS311 Computational Structures Problems, Languages, Machines, Computability, Complexity Lecture 1 Andrew P. Black Andrew Tolmach 1 The Geography Game Could you write a computer program to play the geography

More information

Theory of Programming Languages COMP360

Theory of Programming Languages COMP360 Theory of Programming Languages COMP360 Sometimes it is the people no one imagines anything of, who do the things that no one can imagine Alan Turing What can be computed? Before people even built computers,

More information

Quiz 1: Solutions J/18.400J: Automata, Computability and Complexity. Nati Srebro, Susan Hohenberger

Quiz 1: Solutions J/18.400J: Automata, Computability and Complexity. Nati Srebro, Susan Hohenberger 6.45J/8.4J: utomata, Computability and Complexity Quiz : Solutions Prof. Nancy Lynch Nati Srebro, Susan Hohenberger Please write your name in the upper corner of each page. (2 Points) Q- Problem : True

More information

CS402 Theory of Automata Solved Subjective From Midterm Papers. MIDTERM SPRING 2012 CS402 Theory of Automata

CS402 Theory of Automata Solved Subjective From Midterm Papers. MIDTERM SPRING 2012 CS402 Theory of Automata Solved Subjective From Midterm Papers Dec 07,2012 MC100401285 Moaaz.pk@gmail.com Mc100401285@gmail.com PSMD01 MIDTERM SPRING 2012 Q. Point of Kleen Theory. Answer:- (Page 25) 1. If a language can be accepted

More information

Final Exam 1, CS154. April 21, 2010

Final Exam 1, CS154. April 21, 2010 Final Exam 1, CS154 April 21, 2010 Exam rules. The exam is open book and open notes you can use any printed or handwritten material. However, no electronic devices are allowed. Anything with an on-off

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

CS103 Handout 13 Fall 2012 May 4, 2012 Problem Set 5

CS103 Handout 13 Fall 2012 May 4, 2012 Problem Set 5 CS103 Handout 13 Fall 2012 May 4, 2012 Problem Set 5 This fifth problem set explores the regular languages, their properties, and their limits. This will be your first foray into computability theory,

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016 Lecture 15 Ana Bove May 23rd 2016 More on Turing machines; Summary of the course. Overview of today s lecture: Recap: PDA, TM Push-down

More information

CS525 Winter 2012 \ Class Assignment #2 Preparation

CS525 Winter 2012 \ Class Assignment #2 Preparation 1 CS525 Winter 2012 \ Class Assignment #2 Preparation Ariel Stolerman 2.26) Let be a CFG in Chomsky Normal Form. Following is a proof that for any ( ) of length exactly steps are required for any derivation

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

HKN CS 374 Midterm 1 Review. Tim Klem Noah Mathes Mahir Morshed

HKN CS 374 Midterm 1 Review. Tim Klem Noah Mathes Mahir Morshed HKN CS 374 Midterm 1 Review Tim Klem Noah Mathes Mahir Morshed Midterm topics It s all about recognizing sets of strings! 1. String Induction 2. Regular languages a. DFA b. NFA c. Regular expressions 3.

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Lecture 01 Introduction to Finite Automata Welcome everybody. This is

More information

To illustrate what is intended the following are three write ups by students. Diagonalization

To illustrate what is intended the following are three write ups by students. Diagonalization General guidelines: You may work with other people, as long as you write up your solution in your own words and understand everything you turn in. Make sure to justify your answers they should be clear

More information

Context-Free Grammars

Context-Free Grammars Context-Free Grammars Describing Languages We've seen two models for the regular languages: Automata accept precisely the strings in the language. Regular expressions describe precisely the strings in

More information

TAFL 1 (ECS-403) Unit- V. 5.1 Turing Machine. 5.2 TM as computer of Integer Function

TAFL 1 (ECS-403) Unit- V. 5.1 Turing Machine. 5.2 TM as computer of Integer Function TAFL 1 (ECS-403) Unit- V 5.1 Turing Machine 5.2 TM as computer of Integer Function 5.2.1 Simulating Turing Machine by Computer 5.2.2 Simulating Computer by Turing Machine 5.3 Universal Turing Machine 5.4

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR, PERAMBALUR DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR, PERAMBALUR DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR, PERAMBALUR-621113 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Third Year CSE( Sem:V) CS2303- THEORY OF COMPUTATION PART B-16

More information

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers Contents STRAND B: Number Theory Unit 7 Number System and Bases Student Text Contents Section 7. Number System 7.2 Binary Numbers 7.3 Adding and Subtracting Binary Numbers 7.4 Multiplying Binary Numbers

More information

Regular Languages (14 points) Solution: Problem 1 (6 points) Minimize the following automaton M. Show that the resulting DFA is minimal.

Regular Languages (14 points) Solution: Problem 1 (6 points) Minimize the following automaton M. Show that the resulting DFA is minimal. Regular Languages (14 points) Problem 1 (6 points) inimize the following automaton Show that the resulting DFA is minimal. Solution: We apply the State Reduction by Set Partitioning algorithm (särskiljandealgoritmen)

More information

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFR08008 INFORMATICS 2A: PROCESSING FORMAL AND NATURAL LANGUAGES

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFR08008 INFORMATICS 2A: PROCESSING FORMAL AND NATURAL LANGUAGES UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFR08008 INFORMATICS 2A: PROCESSING FORMAL AND NATURAL LANGUAGES Saturday 10 th December 2016 09:30 to 11:30 INSTRUCTIONS

More information

Theory of Computation, Homework 3 Sample Solution

Theory of Computation, Homework 3 Sample Solution Theory of Computation, Homework 3 Sample Solution 3.8 b.) The following machine M will do: M = "On input string : 1. Scan the tape and mark the first 1 which has not been marked. If no unmarked 1 is found,

More information

CS6160 Theory of Computation Problem Set 2 Department of Computer Science, University of Virginia

CS6160 Theory of Computation Problem Set 2 Department of Computer Science, University of Virginia CS6160 Theory of Computation Problem Set 2 Department of Computer Science, University of Virginia Gabriel Robins Please start solving these problems immediately, and work in study groups. Please prove

More information

Announcements. CS243: Discrete Structures. Strong Induction and Recursively Defined Structures. Review. Example (review) Example (review), cont.

Announcements. CS243: Discrete Structures. Strong Induction and Recursively Defined Structures. Review. Example (review) Example (review), cont. Announcements CS43: Discrete Structures Strong Induction and Recursively Defined Structures Işıl Dillig Homework 4 is due today Homework 5 is out today Covers induction (last lecture, this lecture, and

More information

QUESTION BANK. Formal Languages and Automata Theory(10CS56)

QUESTION BANK. Formal Languages and Automata Theory(10CS56) QUESTION BANK Formal Languages and Automata Theory(10CS56) Chapter 1 1. Define the following terms & explain with examples. i) Grammar ii) Language 2. Mention the difference between DFA, NFA and εnfa.

More information

Homework. Context Free Languages. Before We Start. Announcements. Plan for today. Languages. Any questions? Recall. 1st half. 2nd half.

Homework. Context Free Languages. Before We Start. Announcements. Plan for today. Languages. Any questions? Recall. 1st half. 2nd half. Homework Context Free Languages Homework #2 returned Homework #3 due today Homework #4 Pg 133 -- Exercise 1 (use structural induction) Pg 133 -- Exercise 3 Pg 134 -- Exercise 8b,c,d Pg 135 -- Exercise

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Reflection in the Chomsky Hierarchy

Reflection in the Chomsky Hierarchy Reflection in the Chomsky Hierarchy Henk Barendregt Venanzio Capretta Dexter Kozen 1 Introduction We investigate which classes of formal languages in the Chomsky hierarchy are reflexive, that is, contain

More information

Math 485, Graph Theory: Homework #3

Math 485, Graph Theory: Homework #3 Math 485, Graph Theory: Homework #3 Stephen G Simpson Due Monday, October 26, 2009 The assignment consists of Exercises 2129, 2135, 2137, 2218, 238, 2310, 2313, 2314, 2315 in the West textbook, plus the

More information

CS402 - Theory of Automata Glossary By

CS402 - Theory of Automata Glossary By CS402 - Theory of Automata Glossary By Acyclic Graph : A directed graph is said to be acyclic if it contains no cycles. Algorithm : A detailed and unambiguous sequence of instructions that describes how

More information

Chapter 18: Decidability

Chapter 18: Decidability Chapter 18: Decidability Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu Please read the corresponding chapter before

More information

Yet More CFLs; Turing Machines. CS154 Chris Pollett Mar 8, 2006.

Yet More CFLs; Turing Machines. CS154 Chris Pollett Mar 8, 2006. Yet More CFLs; Turing Machines CS154 Chris Pollett Mar 8, 2006. Outline Algorithms for CFGs Pumping Lemma for CFLs Turing Machines Introduction to Cocke-Younger- Kasami (CYK) algorithm (1960) This is an

More information

Solutions to Homework 10

Solutions to Homework 10 CS/Math 240: Intro to Discrete Math 5/3/20 Instructor: Dieter van Melkebeek Solutions to Homework 0 Problem There were five different languages in Problem 4 of Homework 9. The Language D 0 Recall that

More information

Succinctness counts. You may receive as little as 0 points for an answer that, even

Succinctness counts. You may receive as little as 0 points for an answer that, even CS154 and CS154N Final Examination Wednesday, March 15, 2000, 12:15í3:15PM Directions The exam is open book; any written materials may be used. Succinctness counts. You may receive as little as 0 points

More information

Context Free Languages and Pushdown Automata

Context Free Languages and Pushdown Automata Context Free Languages and Pushdown Automata COMP2600 Formal Methods for Software Engineering Ranald Clouston Australian National University Semester 2, 2013 COMP 2600 Context Free Languages and Pushdown

More information

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic Chapter 3: Theory of Modular Arithmetic 1 Chapter 3: Theory of Modular Arithmetic SECTION A Introduction to Congruences By the end of this section you will be able to deduce properties of large positive

More information

Basic Triangle Congruence Lesson Plan

Basic Triangle Congruence Lesson Plan Basic Triangle Congruence Lesson Plan Developed by CSSMA Staff Drafted August 2015 Prescribed Learning Outcomes: Introduce students to the concept of triangle congruence and teach them about the congruency

More information

Lecture 6: Sequential Sorting

Lecture 6: Sequential Sorting 15-150 Lecture 6: Sequential Sorting Lecture by Dan Licata February 2, 2012 Today s lecture is about sorting. Along the way, we ll learn about divide and conquer algorithms, the tree method, and complete

More information

introduction to Programming in C Department of Computer Science and Engineering Lecture No. #40 Recursion Linear Recursion

introduction to Programming in C Department of Computer Science and Engineering Lecture No. #40 Recursion Linear Recursion introduction to Programming in C Department of Computer Science and Engineering Lecture No. #40 Recursion Linear Recursion Today s video will talk about an important concept in computer science which is

More information

Actually talking about Turing machines this time

Actually talking about Turing machines this time Actually talking about Turing machines this time 10/25/17 (Using slides adapted from the book) Administrivia HW due now (Pumping lemma for context-free languages) HW due Friday (Building TMs) Exam 2 out

More information

The CYK Algorithm. We present now an algorithm to decide if w L(G), assuming G to be in Chomsky Normal Form.

The CYK Algorithm. We present now an algorithm to decide if w L(G), assuming G to be in Chomsky Normal Form. CFG [1] The CYK Algorithm We present now an algorithm to decide if w L(G), assuming G to be in Chomsky Normal Form. This is an example of the technique of dynamic programming Let n be w. The natural algorithm

More information

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed:

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed: Math 3181 Dr. Franz Rothe September 29, 2016 All3181\3181_fall16h3.tex Names: Homework has to be turned in this handout. For extra space, use the back pages, or put blank pages between. The homework can

More information

ECS 120 Lesson 16 Turing Machines, Pt. 2

ECS 120 Lesson 16 Turing Machines, Pt. 2 ECS 120 Lesson 16 Turing Machines, Pt. 2 Oliver Kreylos Friday, May 4th, 2001 In the last lesson, we looked at Turing Machines, their differences to finite state machines and pushdown automata, and their

More information

Starting Boolean Algebra

Starting Boolean Algebra Boolean Algebra March 2, 27 Diagram for FunChip2 Here is a picture of FunChip2 that we created more or less randomly in class on /25 (used in various Activities): Starting Boolean Algebra Boolean algebra

More information

Automata Theory CS S-FR Final Review

Automata Theory CS S-FR Final Review Automata Theory CS411-2015S-FR Final Review David Galles Department of Computer Science University of San Francisco FR-0: Sets & Functions Sets Membership: a?{a,b,c} a?{b,c} a?{b,{a,b,c},d} {a,b,c}?{b,{a,b,c},d}

More information

CS103 Handout 16 Winter February 15, 2013 Problem Set 6

CS103 Handout 16 Winter February 15, 2013 Problem Set 6 CS103 Handout 16 Winter 2012-2013 February 15, 2013 Problem Set 6 How much firepower do context-free languages have? What are their limits? And just how awesome are PDAs? In this problem set, you'll get

More information

CS210 THEORY OF COMPUTATION QUESTION BANK PART -A UNIT- I

CS210 THEORY OF COMPUTATION QUESTION BANK PART -A UNIT- I CS210 THEORY OF COMPUTATION QUESTION BANK PART -A UNIT- I 1) Is it true that the language accepted by any NDFA is different from the regular language? Justify your answer. 2) Describe the following sets

More information

ONE-STACK AUTOMATA AS ACCEPTORS OF CONTEXT-FREE LANGUAGES *

ONE-STACK AUTOMATA AS ACCEPTORS OF CONTEXT-FREE LANGUAGES * ONE-STACK AUTOMATA AS ACCEPTORS OF CONTEXT-FREE LANGUAGES * Pradip Peter Dey, Mohammad Amin, Bhaskar Raj Sinha and Alireza Farahani National University 3678 Aero Court San Diego, CA 92123 {pdey, mamin,

More information

Normal Forms for CFG s. Eliminating Useless Variables Removing Epsilon Removing Unit Productions Chomsky Normal Form

Normal Forms for CFG s. Eliminating Useless Variables Removing Epsilon Removing Unit Productions Chomsky Normal Form Normal Forms for CFG s Eliminating Useless Variables Removing Epsilon Removing Unit Productions Chomsky Normal Form 1 Variables That Derive Nothing Consider: S -> AB, A -> aa a, B -> AB Although A derives

More information

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 CS 3512, Spring 2011 Instructor: Doug Dunham Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 Prerequisites: Calc I, CS2511 Rough course outline:

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information