Notes for Comp 454 Week 2

Size: px
Start display at page:

Download "Notes for Comp 454 Week 2"

Transcription

1 Notes for Comp 454 Week 2 This week we look at the material in chapters 3 and 4. Homework on Chapters 2, 3 and 4 is assigned (see end of notes). Answers to the homework problems are due by September 10th. Errata in Chapter 3: None known. Chapter 3 You are probably familiar with the concept of recursion from programming and/or math classes. In Chapter 3, Cohen shows how recursion is a powerful tool in defining languages. Recall from last week that a language is a set of strings. A typical recursive definition of a set will have three parts: 1. A base set of objects, 2. Rules for specifying how additional objects are defined in terms of existing ones, 3. A rule that states that the only objects in the set are those required by rules 1 and 2. Example 1. EVEN: the set of (positive) even numbers. 1. The numbers 2 and 4 are in EVEN, 2. If x is in EVEN then so is x+4, 3. Only those numbers required to be in EVEN by rules 1 and 2 are in EVEN. Example 2. TRIPLEX: the set of strings of Xs that have length which is a multiple of Λ, the empty string, is in TRIPLEX, 2. If the string w is in TRIPLEX then so is the string wxxx, 3. Only strings required to be in TRIPLEX by 1 and 2 are in TRIPLEX. Usually, the third rule is assumed so we do not bother including it in our definition. There are often many ways to define a particular set. Here is another definition of EVEN from Cohen page 22. Example 3. EVEN: the set of positive even numbers (a different definition than Example 1). 1. The number 2 is in EVEN, 2. If both x and y are in EVEN then so is x + y. x can be the same as y. Verify for yourself that this includes every positive even number. Comp 454 Notes Page 1 of 8 September 3, 2013

2 Example 4. INTEGERS: the set of integers. 1. The number 1 is in INTEGERS, 2. If x and y are in INTEGERS then so are x+y and x-y. x can be the same as y. Verify for yourself that this defines a set that includes 0, +3 and -4 Note the difficulty of using this recursive approach to define the set of real numbers. There is no smallest real number on which to base a definition. AE: The Language of Arithmetic Expressions. It is interesting to define the language of arithmetic expressions as they appear in most programming languages. Limiting ourselves to constants for the moment, here are three examples of arithmetic expressions: (3 + 4) / ( 12 * ( 8 3 )) -7 * (( ) / ( )) 23 / 0 Note that we are only concerned with expressions that are syntactically correct so we do not care that the value of the last example is mathematically undefined. Here is Cohen s definition of AE. 1. Any number is in AE, 2. If x is in AE then so are (x) and -x unless x starts with a minus sign, 3. If x and y are in AE then so are x + y (y must not begin with a sign character), x - y (y must not begin with a sign character), x * y, x / y, x^y, x**y (whatever operators your language supports). The language defined in this way permits an expression like 34/24/8 but is not concerned with whether it means (34/24)/8 or 34/(24/8). Question: could you extend the definition of AE to include (a) identifiers and (b) function calls? THEOREM 2 No string in AE can contain $. $ is not part of any number. None of our recursive rules contains $. Therefore there is no way that $ can appear in a string in AE. Comp 454 Notes Page 2 of 8 September 3, 2013

3 THEOREM 3 No string in AE can begin or end with /. / is not part of any number. Any string formed by a recursive rule must start with a parenthesis or a number or -. Any string formed by a recursive rule must end with a parenthesis or a number. Therefore there is no way that a member of AE begins or ends with /. THEOREM 4 No string in AE can contain //. Read Cohen s proof of this on page 27. Rather than simply use a variation on the proof of Theorem 3, he uses a proof by contradiction. He assumes that there is a string in AE containing // then shows that this must contradict Theorem 3. Proof by contradiction is another tool that Cohen uses in later chapters. The language of well-formed formulae (WFF) See page 28. The structure of this definition is similar to the one for AE, just different operators. Chapter 4 Errata in Chapter 4: Page lines from the end, delete either whether or if Page 41 penultimate line, delete. Regular expressions. Regular expressions might already be familiar to those of you who have used Unix shell commands. The name of the Unix pattern-matching utility grep is an acronym: global regular expression and print. The regular expression notation used by Cohen is a little different from Unix and is also somewhat different than used in most other computer theory textbooks. In regular expressions we have the notions of repetition, sequence and iteration. Repetition. Using the idea of the Kleene star, X* represents a sequence of zero or more X s. Thus, XSTRING = language(x*) = { Λ X XX XXX XXXX XXXXX } Comp 454 Notes Page 3 of 8 September 3, 2013

4 Sequence We use concatenation. For example, wx represents w followed by x. Note that pq* represents all strings where p is followed by any number of q s pq* = { p pq pqq pqqq pqqqq } and is different from (pq)* which represents strings that are zero or more repetitions of pq (pq)* = { Λ pq pqpq pqpqpq pqpqpqpq } If each string in our language is a sequence of one or more X s rather than zero or more X s then we can represent it XX* or X*X. To simplify matters we could define the + operator to represent one or more repetitions, thus X + is the same language as XX*. There are likely to be many ways to represent an infinite language. Each of the following regular expression represents the language of strings consisting of one or more x s: xx* x + xx*x* x*xx* x + x* x*x + x*x*x*xx* Convince yourself that each expression does define the language of one or more x s. What if the language were strings consisting of two or more x s? Are there correspondingly many ways to represent a finite language? Choice On page 34 Cohen introduces his or operator. Some books and Web sites use the Unix pipe operator for this. Thus, to represent either x or y Cohen: Others: x + y x y Now we have choice, sequence and iteration giving us a complete set of operators for regular expressions. Here are some examples of expressions and the set of strings that each represents. (x + y)z* = { x y xz yz xzz yzz }. (a+b)* = { Λ a b aa ab ba bb aaa }. a(a+b)*b = { ab aab abb aaab aabb abab abbb aaaab }. Comp 454 Notes Page 4 of 8 September 3, 2013

5 Formal Definition of Regular Expression (R.E.) We can use our ideas from recursive definitions to define a valid regular expression as follows. 1. Λ is a regular expression and every character in Σ is a regular expression. 2. If w is a regular expression then so are (w) and w*. 3. If w and v are regular expressions then so are wv and w+v. Example regular expressions. Assume that our alphabet is {a b}. There are often many different possible regular expressions for a particular language. Language of all words containing at least one a can be represented by (a+b)*a(a+b)*. Language of all words containing at least two a s can be represented by (a+b)*ab*ab*. Language of all words containing exactly two a s can be represented by b*ab*ab*. See the example on page 39 of how relatively tricky it turns out to be to devise an R.E. representing the set of strings that have at least one a and at least one b. The a might appear before the b or it might appear after it. Product set If S and T are both sets of strings then we define the product set of S and T, denoted ST, as the set of strings in which each member is a member of S concatenated with a member of T. Example 1 S = { cat dog } T = {fish house } ST = { catfish cathouse dogfish doghouse }. Example 2 S = { Λ a aa } T = { Λ b bbb bbbbb } ST = { Λ a b aa ab aab bbb abbb }. Languages associated with regular expressions. Suppose we have regular expression R1 defining a language and regular expression R2 defining a language, what is the language defined by R1+R2 and by R1R2? Again, Cohen takes a recursive approach. (1) If an R.E. is a single letter, the corresponding language is that one-letter word. (2) If R.E. R 1 defines language L 1 and R.E. R 2 defines language L 2 then (R 1 )(R 2 ) defines the product of L 1 and L 2, that is, a language in which each string is a string from L 1 followed by a string from L 2. Comp 454 Notes Page 5 of 8 September 3, 2013

6 (R 1 ) + (R 2 ) defines the union of L 1 and L 2, that is, a language in which each string is either in L 1 or in L 2. The language associated with (R 1 )* is the Kleene closure of L 1, that is a language in which each string is a sequence of zero or more strings drawn from L 1. This means that every regular expression defines a language; that is, it represents a set of strings. It is often quite tricky to determine the characteristics of the language given the regular expression. Cohen s example on page 39, slightly modified, is ( (a+b)*a(a+b)*b(a+b)* ) + bb*aa*. This represents the set of strings that have both a and b in them. The expression to the left of the top-level + represents the strings where the a precedes the b and the expression on the right of the + represents the strings omitted by the first term. THEOREM 5 All finite languages are regular. This is clearly true because we can list the strings in the set and devise the appropriate R.E. So if our language is { cat dog frog mouse } the R.E. is R = cat + dog + frog + mouse The understandability of regular expressions. The ease with which we can determine the language represented by an R.E. is highly-variable. Given that (a+b)* represents any string of a s and b s then clearly (a+b)*(aa+bb)(a+b)* represents strings that are guaranteed to have at least one instance of either aa or bb. But trying to define an expression for the inverse, that is strings that do not contain either aa or bb is tricky. See page 45. Try the extended example on page 46. See if you can determine what language is represented by the expression at the top of the page before reading Cohen s analysis. Note the observation on Page 47. It is unknown whether an algorithm exists that can transform an arbitrary regular expression to another equivalent one. Comp 454 Notes Page 6 of 8 September 3, 2013

7 The language EVEN-EVEN. (see page 48). The language EVEN-EVEN will appear at several points in the book. It is simply the set of strings where each string has an even number of a s and an even number of b s. Strings in EVEN-EVEN include Λ abba bbbbbb abbaababaa. Strings not in EVEN-EVEN include baa bababa bab aaaaa aaabbbb. The language is easily specified but what about devising a regular expression? Let us work backwards to the expression that Cohen gives. Every string that is in EVEN-EVEN can be split up into syllables where each syllable is of one of three types. 1: aa. 2: bb. 3: mismatch followed by any number of aa/bb strings followed by mismatch. Where mismatch means ab or ba. Note that in each syllable there is an even number of a s and an even number of b s (Zero is even). Examples of strings in EVEN-EVEN broken into syllables as defined above aaabaabbbabbaaaa : a a a b a a b b b a b b a a a a abbaabbbabaa : a b b a a b b b a b a a This leads us to the following R.E. for EVEN-EVEN EVEN-EVEN = [ aa + bb + (ab+ba)(aa+bb)*(ab+ba) ]*. Homework 1 There are 5 homework problems drawn from Chapters 2, 3 and 4. Each answer is worth a maximum of 20 points. Answers due 9/10/ Consider the language PALINDROME over the alphabet { a b } (a) Prove that if x is in PALIDROME, then so is x n for any n > 0 (b) Prove that if y 3 is in PALINDROME then so is y (c) Prove that PALINDROME has as many words of length 4 as it does of length 3 (d) Prove that PALINDROME has as many words of length 2n as it does of length 2n-1. Comp 454 Notes Page 7 of 8 September 3, 2013

8 2. Show that the following is another recursive definition of the set EVEN: Rule 1: 2 and 4 are in EVEN Rule 2: If x is in EVEN, then so is x Using the second recursive definition of EVEN (page 22), what is the smallest number of steps required to prove that 100 is EVEN? Describe a good method for showing that 2*n (for positive integer n) is in EVEN. 4. Construct a regular expression defining each of the following languages over the alphabet {a b}. (i) (ii) all words that do not have the substring ab all words that do not have both the substrings bba and abb. 5. Show that the following pairs of regular expressions define the same language over the alphabet Σ = {a b} (a) ((a + bb)*aa)* and Λ + (a + bb)*aa (b) a(aa)*(λ + a)b + b and a*b Reading Assignment Read Chapters 3 and 4. Next week s class notes will cover Chapters 5 and 6. Comp 454 Notes Page 8 of 8 September 3, 2013

Chapter 4: Regular Expressions

Chapter 4: Regular Expressions CSI 3104 /Winter 2011: Introduction to Formal Languages What are the languages with a finite representation? We start with a simple and interesting class of such languages. Dr. Nejib Zaguia CSI3104-W11

More information

CHAPTER TWO LANGUAGES. Dr Zalmiyah Zakaria

CHAPTER TWO LANGUAGES. Dr Zalmiyah Zakaria CHAPTER TWO LANGUAGES By Dr Zalmiyah Zakaria Languages Contents: 1. Strings and Languages 2. Finite Specification of Languages 3. Regular Sets and Expressions Sept2011 Theory of Computer Science 2 Strings

More information

Glynda, the good witch of the North

Glynda, the good witch of the North Strings and Languages It is always best to start at the beginning -- Glynda, the good witch of the North What is a Language? A language is a set of strings made of of symbols from a given alphabet. An

More information

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory Proof Techniques Alphabets, Strings, and Languages Foundations of Computer Science Theory Proof By Case Enumeration Sometimes the most straightforward way to prove that a property holds for all elements

More information

CMPSCI 250: Introduction to Computation. Lecture #28: Regular Expressions and Languages David Mix Barrington 2 April 2014

CMPSCI 250: Introduction to Computation. Lecture #28: Regular Expressions and Languages David Mix Barrington 2 April 2014 CMPSCI 250: Introduction to Computation Lecture #28: Regular Expressions and Languages David Mix Barrington 2 April 2014 Regular Expressions and Languages Regular Expressions The Formal Inductive Definition

More information

Languages and Strings. Chapter 2

Languages and Strings. Chapter 2 Languages and Strings Chapter 2 Let's Look at Some Problems int alpha, beta; alpha = 3; beta = (2 + 5) / 10; (1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc. (2)

More information

Strings, Languages, and Regular Expressions

Strings, Languages, and Regular Expressions Strings, Languages, and Regular Expressions Strings An alphabet sets is simply a nonempty set of things. We will call these things symbols. A finite string of lengthnover an alphabets is a total function

More information

Chapter Seven: Regular Expressions

Chapter Seven: Regular Expressions Chapter Seven: Regular Expressions Regular Expressions We have seen that DFAs and NFAs have equal definitional power. It turns out that regular expressions also have exactly that same definitional power:

More information

Automata Theory TEST 1 Answers Max points: 156 Grade basis: 150 Median grade: 81%

Automata Theory TEST 1 Answers Max points: 156 Grade basis: 150 Median grade: 81% Automata Theory TEST 1 Answers Max points: 156 Grade basis: 150 Median grade: 81% 1. (2 pts) See text. You can t be sloppy defining terms like this. You must show a bijection between the natural numbers

More information

CS402 - Theory of Automata FAQs By

CS402 - Theory of Automata FAQs By CS402 - Theory of Automata FAQs By Define the main formula of Regular expressions? Define the back ground of regular expression? Regular expressions are a notation that you can think of similar to a programming

More information

ITEC2620 Introduction to Data Structures

ITEC2620 Introduction to Data Structures ITEC2620 Introduction to Data Structures Lecture 9b Grammars I Overview How can a computer do Natural Language Processing? Grammar checking? Artificial Intelligence Represent knowledge so that brute force

More information

CS402 Theory of Automata Solved Subjective From Midterm Papers. MIDTERM SPRING 2012 CS402 Theory of Automata

CS402 Theory of Automata Solved Subjective From Midterm Papers. MIDTERM SPRING 2012 CS402 Theory of Automata Solved Subjective From Midterm Papers Dec 07,2012 MC100401285 Moaaz.pk@gmail.com Mc100401285@gmail.com PSMD01 MIDTERM SPRING 2012 Q. Point of Kleen Theory. Answer:- (Page 25) 1. If a language can be accepted

More information

1.3 Functions and Equivalence Relations 1.4 Languages

1.3 Functions and Equivalence Relations 1.4 Languages CSC4510 AUTOMATA 1.3 Functions and Equivalence Relations 1.4 Languages Functions and Equivalence Relations f : A B means that f is a function from A to B To each element of A, one element of B is assigned

More information

Finite Automata Part Three

Finite Automata Part Three Finite Automata Part Three Friday Four Square! Today at 4:15PM, Outside Gates. Announcements Problem Set 4 due right now. Problem Set 5 out, due next Friday, November 2. Play around with finite automata

More information

Welcome! CSC445 Models Of Computation Dr. Lutz Hamel Tyler 251

Welcome! CSC445 Models Of Computation Dr. Lutz Hamel Tyler 251 Welcome! CSC445 Models Of Computation Dr. Lutz Hamel Tyler 251 hamel@cs.uri.edu https://fbeedle.com/content/formal-language-practical-introduction-0 The Course Text: Formal Language, by Adam Book Webber,

More information

DVA337 HT17 - LECTURE 4. Languages and regular expressions

DVA337 HT17 - LECTURE 4. Languages and regular expressions DVA337 HT17 - LECTURE 4 Languages and regular expressions 1 SO FAR 2 TODAY Formal definition of languages in terms of strings Operations on strings and languages Definition of regular expressions Meaning

More information

Regular Languages. Regular Language. Regular Expression. Finite State Machine. Accepts

Regular Languages. Regular Language. Regular Expression. Finite State Machine. Accepts Regular Languages L Regular Language Regular Expression Accepts Finite State Machine Regular Expressions The regular expressions over an alphabet are all and only the strings that can be obtained as follows:

More information

Regular Expressions. Lecture 10 Sections Robb T. Koether. Hampden-Sydney College. Wed, Sep 14, 2016

Regular Expressions. Lecture 10 Sections Robb T. Koether. Hampden-Sydney College. Wed, Sep 14, 2016 Regular Expressions Lecture 10 Sections 3.1-3.2 Robb T. Koether Hampden-Sydney College Wed, Sep 14, 2016 Robb T. Koether (Hampden-Sydney College) Regular Expressions Wed, Sep 14, 2016 1 / 23 Outline 1

More information

Finite Automata Part Three

Finite Automata Part Three Finite Automata Part Three Recap from Last Time A language L is called a regular language if there exists a DFA D such that L( D) = L. NFAs An NFA is a Nondeterministic Finite Automaton Can have missing

More information

Chapter Seven: Regular Expressions. Formal Language, chapter 7, slide 1

Chapter Seven: Regular Expressions. Formal Language, chapter 7, slide 1 Chapter Seven: Regular Expressions Formal Language, chapter 7, slide The first time a young student sees the mathematical constant π, it looks like just one more school artifact: one more arbitrary symbol

More information

KHALID PERVEZ (MBA+MCS) CHICHAWATNI

KHALID PERVEZ (MBA+MCS) CHICHAWATNI FAQ's about Lectures 1 to 5 QNo1.What is the difference between the strings and the words of a language? A string is any combination of the letters of an alphabet where as the words of a language are the

More information

Alphabets, strings and formal. An introduction to information representation

Alphabets, strings and formal. An introduction to information representation Alphabets, strings and formal languages An introduction to information representation 1 Symbols Definition: A symbol is an object endowed with a denotation (i.e. literal meaning) Examples: Variables are

More information

Multiple Choice Questions

Multiple Choice Questions Techno India Batanagar Computer Science and Engineering Model Questions Subject Name: Formal Language and Automata Theory Subject Code: CS 402 Multiple Choice Questions 1. The basic limitation of an FSM

More information

Announcements. CS243: Discrete Structures. Strong Induction and Recursively Defined Structures. Review. Example (review) Example (review), cont.

Announcements. CS243: Discrete Structures. Strong Induction and Recursively Defined Structures. Review. Example (review) Example (review), cont. Announcements CS43: Discrete Structures Strong Induction and Recursively Defined Structures Işıl Dillig Homework 4 is due today Homework 5 is out today Covers induction (last lecture, this lecture, and

More information

Recursively Defined Functions

Recursively Defined Functions Section 5.3 Recursively Defined Functions Definition: A recursive or inductive definition of a function consists of two steps. BASIS STEP: Specify the value of the function at zero. RECURSIVE STEP: Give

More information

CS402 - Theory of Automata Glossary By

CS402 - Theory of Automata Glossary By CS402 - Theory of Automata Glossary By Acyclic Graph : A directed graph is said to be acyclic if it contains no cycles. Algorithm : A detailed and unambiguous sequence of instructions that describes how

More information

Compiler Construction

Compiler Construction Compiler Construction Exercises 1 Review of some Topics in Formal Languages 1. (a) Prove that two words x, y commute (i.e., satisfy xy = yx) if and only if there exists a word w such that x = w m, y =

More information

Assignment No.4 solution. Pumping Lemma Version I and II. Where m = n! (n-factorial) and n = 1, 2, 3

Assignment No.4 solution. Pumping Lemma Version I and II. Where m = n! (n-factorial) and n = 1, 2, 3 Assignment No.4 solution Question No.1 a. Suppose we have a language defined below, Pumping Lemma Version I and II a n b m Where m = n! (n-factorial) and n = 1, 2, 3 Some strings belonging to this language

More information

Computer Science 236 Fall Nov. 11, 2010

Computer Science 236 Fall Nov. 11, 2010 Computer Science 26 Fall Nov 11, 2010 St George Campus University of Toronto Assignment Due Date: 2nd December, 2010 1 (10 marks) Assume that you are given a file of arbitrary length that contains student

More information

Lexical Analysis. Sukree Sinthupinyo July Chulalongkorn University

Lexical Analysis. Sukree Sinthupinyo July Chulalongkorn University Sukree Sinthupinyo 1 1 Department of Computer Engineering Chulalongkorn University 14 July 2012 Outline Introduction 1 Introduction 2 3 4 Transition Diagrams Learning Objectives Understand definition of

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

Languages and Finite Automata

Languages and Finite Automata Languages and Finite Automata or how to talk to machines... Costas Busch - RPI 1 Languages A language is a set of strings String: A sequence of letters (a word) Examples: cat, dog, house, Defined over

More information

JNTUWORLD. Code No: R

JNTUWORLD. Code No: R Code No: R09220504 R09 SET-1 B.Tech II Year - II Semester Examinations, April-May, 2012 FORMAL LANGUAGES AND AUTOMATA THEORY (Computer Science and Engineering) Time: 3 hours Max. Marks: 75 Answer any five

More information

UNIT I PART A PART B

UNIT I PART A PART B OXFORD ENGINEERING COLLEGE (NAAC ACCREDITED WITH B GRADE) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS YEAR/SEM: III/V STAFF NAME: Dr. Sangeetha Senthilkumar SUB.CODE: CS6503 SUB.NAME:

More information

Solutions to Homework 10

Solutions to Homework 10 CS/Math 240: Intro to Discrete Math 5/3/20 Instructor: Dieter van Melkebeek Solutions to Homework 0 Problem There were five different languages in Problem 4 of Homework 9. The Language D 0 Recall that

More information

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012 CMPSCI 250: Introduction to Computation Lecture #7: Quantifiers and Languages 6 February 2012 Quantifiers and Languages Quantifier Definitions Translating Quantifiers Types and the Universe of Discourse

More information

1. Which of the following regular expressions over {0, 1} denotes the set of all strings not containing 100 as a sub-string?

1. Which of the following regular expressions over {0, 1} denotes the set of all strings not containing 100 as a sub-string? Multiple choice type questions. Which of the following regular expressions over {, } denotes the set of all strings not containing as a sub-string? 2. DFA has a) *(*)* b) ** c) ** d) *(+)* a) single final

More information

Formal Languages and Automata

Formal Languages and Automata Mobile Computing and Software Engineering p. 1/3 Formal Languages and Automata Chapter 3 Regular languages and Regular Grammars Chuan-Ming Liu cmliu@csie.ntut.edu.tw Department of Computer Science and

More information

1. (10 points) Draw the state diagram of the DFA that recognizes the language over Σ = {0, 1}

1. (10 points) Draw the state diagram of the DFA that recognizes the language over Σ = {0, 1} CSE 5 Homework 2 Due: Monday October 6, 27 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in

More information

1 Finite Representations of Languages

1 Finite Representations of Languages 1 Finite Representations of Languages Languages may be infinite sets of strings. We need a finite notation for them. There are at least four ways to do this: 1. Language generators. The language can be

More information

CMPSCI 250: Introduction to Computation. Lecture #1: Things, Sets and Strings David Mix Barrington 22 January 2014

CMPSCI 250: Introduction to Computation. Lecture #1: Things, Sets and Strings David Mix Barrington 22 January 2014 CMPSCI 250: Introduction to Computation Lecture #1: Things, Sets and Strings David Mix Barrington 22 January 2014 Things, Sets, and Strings The Mathematical Method Administrative Stuff The Objects of Mathematics

More information

ECS 120 Lesson 7 Regular Expressions, Pt. 1

ECS 120 Lesson 7 Regular Expressions, Pt. 1 ECS 120 Lesson 7 Regular Expressions, Pt. 1 Oliver Kreylos Friday, April 13th, 2001 1 Outline Thus far, we have been discussing one way to specify a (regular) language: Giving a machine that reads a word

More information

Finite Automata Part Three

Finite Automata Part Three Finite Automata Part Three Recap from Last Time A language L is called a regular language if there exists a DFA D such that L( D) = L. NFAs An NFA is a Nondeterministic Finite Automaton Can have missing

More information

Turing Machine Languages

Turing Machine Languages Turing Machine Languages Based on Chapters 23-24-25 of (Cohen 1997) Introduction A language L over alphabet is called recursively enumerable (r.e.) if there is a Turing Machine T that accepts every word

More information

MA/CSSE 474. Today's Agenda

MA/CSSE 474. Today's Agenda MA/CSSE 474 Theory of Computation Course Intro Today's Agenda Student questions Overview of yesterday's proof I placed online a "straight-line" writeup of the proof in detail, without the "here is how

More information

HKN CS 374 Midterm 1 Review. Tim Klem Noah Mathes Mahir Morshed

HKN CS 374 Midterm 1 Review. Tim Klem Noah Mathes Mahir Morshed HKN CS 374 Midterm 1 Review Tim Klem Noah Mathes Mahir Morshed Midterm topics It s all about recognizing sets of strings! 1. String Induction 2. Regular languages a. DFA b. NFA c. Regular expressions 3.

More information

8 ε. Figure 1: An NFA-ǫ

8 ε. Figure 1: An NFA-ǫ 0 1 2 3 4 a 6 5 7 8 9 10 LECTURE 27 Figure 1: An FA-ǫ 12.1 ǫ Transitions In all automata that we have seen so far, every time that it has to change from one state to another, it must use one input symol.

More information

Learn Smart and Grow with world

Learn Smart and Grow with world Learn Smart and Grow with world All Department Smart Study Materials Available Smartkalvi.com TABLE OF CONTENTS S.No DATE TOPIC PAGE NO. UNIT-I FINITE AUTOMATA 1 Introduction 1 2 Basic Mathematical Notation

More information

Languages and Compilers

Languages and Compilers Principles of Software Engineering and Operational Systems Languages and Compilers SDAGE: Level I 2012-13 3. Formal Languages, Grammars and Automata Dr Valery Adzhiev vadzhiev@bournemouth.ac.uk Office:

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain 1 2 Compiler Construction F6S Lecture - 2 1 3 4 Compiler Construction F6S Lecture - 2 2 5 #include.. #include main() { char in; in = getch ( ); if ( isalpha (in) ) in = getch ( ); else error (); while

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

Finite Automata. Dr. Nadeem Akhtar. Assistant Professor Department of Computer Science & IT The Islamia University of Bahawalpur

Finite Automata. Dr. Nadeem Akhtar. Assistant Professor Department of Computer Science & IT The Islamia University of Bahawalpur Finite Automata Dr. Nadeem Akhtar Assistant Professor Department of Computer Science & IT The Islamia University of Bahawalpur PhD Laboratory IRISA-UBS University of South Brittany European University

More information

A Formal Study of Practical Regular Expressions

A Formal Study of Practical Regular Expressions International Journal of Foundations of Computer Science c World Scientific Publishing Company A Formal Study of Practical Regular Expressions Cezar Câmpeanu Department of Mathematics and Computer Science,

More information

UNION-FREE DECOMPOSITION OF REGULAR LANGUAGES

UNION-FREE DECOMPOSITION OF REGULAR LANGUAGES UNION-FREE DECOMPOSITION OF REGULAR LANGUAGES Thesis submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering in Computer Science and Engineering Submitted

More information

Data Compression Fundamentals

Data Compression Fundamentals 1 Data Compression Fundamentals Touradj Ebrahimi Touradj.Ebrahimi@epfl.ch 2 Several classifications of compression methods are possible Based on data type :» Generic data compression» Audio compression»

More information

TOPIC PAGE NO. UNIT-I FINITE AUTOMATA

TOPIC PAGE NO. UNIT-I FINITE AUTOMATA TABLE OF CONTENTS SNo DATE TOPIC PAGE NO UNIT-I FINITE AUTOMATA 1 Introduction 1 2 Basic Mathematical Notation Techniques 3 3 Finite State systems 4 4 Basic Definitions 6 5 Finite Automaton 7 6 DFA NDFA

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

14.1 Encoding for different models of computation

14.1 Encoding for different models of computation Lecture 14 Decidable languages In the previous lecture we discussed some examples of encoding schemes, through which various objects can be represented by strings over a given alphabet. We will begin this

More information

Section 1.7 Sequences, Summations Cardinality of Infinite Sets

Section 1.7 Sequences, Summations Cardinality of Infinite Sets Section 1.7 Sequences, Summations Cardinality of Infinite Sets Definition: A sequence is a function from a subset of the natural numbers (usually of the form {0, 1, 2,... } to a set S. Note: the sets and

More information

Suffix Trees and Arrays

Suffix Trees and Arrays Suffix Trees and Arrays Yufei Tao KAIST May 1, 2013 We will discuss the following substring matching problem: Problem (Substring Matching) Let σ be a single string of n characters. Given a query string

More information

The Kuratowski Closure-Complement Theorem

The Kuratowski Closure-Complement Theorem By Greg Strabel The Kuratowski Closure-Complement Theorem, a result of basic point-set topology, was first posed and proven by the Polish mathematician Kazimierz Kuratowski in 1922. Since then, Kuratowski

More information

Name: Finite Automata

Name: Finite Automata Unit No: I Name: Finite Automata What is TOC? In theoretical computer science, the theory of computation is the branch that deals with whether and how efficiently problems can be solved on a model of computation,

More information

Automata Theory CS S-FR Final Review

Automata Theory CS S-FR Final Review Automata Theory CS411-2015S-FR Final Review David Galles Department of Computer Science University of San Francisco FR-0: Sets & Functions Sets Membership: a?{a,b,c} a?{b,c} a?{b,{a,b,c},d} {a,b,c}?{b,{a,b,c},d}

More information

Regular Expressions & Automata

Regular Expressions & Automata Regular Expressions & Automata CMSC 132 Department of Computer Science University of Maryland, College Park Regular expressions Notation Patterns Java support Automata Languages Finite State Machines Turing

More information

CIT3130: Theory of Computation. Regular languages

CIT3130: Theory of Computation. Regular languages ƒ CIT3130: Theory of Computation Regular languages ( M refers to the first edition of Martin and H to IALC by Hopcroft et al.) Definitions of regular expressions and regular languages: A regular expression

More information

Lecture 5: The Halting Problem. Michael Beeson

Lecture 5: The Halting Problem. Michael Beeson Lecture 5: The Halting Problem Michael Beeson Historical situation in 1930 The diagonal method appears to offer a way to extend just about any definition of computable. It appeared in the 1920s that it

More information

Lecture 6,

Lecture 6, Lecture 6, 4.16.2009 Today: Review: Basic Set Operation: Recall the basic set operator,!. From this operator come other set quantifiers and operations:!,!,!,! \ Set difference (sometimes denoted, a minus

More information

Section 2.4 Sequences and Summations

Section 2.4 Sequences and Summations Section 2.4 Sequences and Summations Definition: A sequence is a function from a subset of the natural numbers (usually of the form {0, 1, 2,... } to a set S. Note: the sets and {0, 1, 2, 3,..., k} {1,

More information

Skyup's Media. PART-B 2) Construct a Mealy machine which is equivalent to the Moore machine given in table.

Skyup's Media. PART-B 2) Construct a Mealy machine which is equivalent to the Moore machine given in table. Code No: XXXXX JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year I Semester Examinations (Common to CSE and IT) Note: This question paper contains two parts A and B. Part A is compulsory

More information

AUBER (Models of Computation, Languages and Automata) EXERCISES

AUBER (Models of Computation, Languages and Automata) EXERCISES AUBER (Models of Computation, Languages and Automata) EXERCISES Xavier Vera, 2002 Languages and alphabets 1.1 Let be an alphabet, and λ the empty string over. (i) Is λ in? (ii) Is it true that λλλ=λ? Is

More information

Regular Expressions. Chapter 6

Regular Expressions. Chapter 6 Regular Expressions Chapter 6 Regular Languages Generates Regular Language Regular Expression Recognizes or Accepts Finite State Machine Stephen Cole Kleene 1909 1994, mathematical logician One of many

More information

Formal Grammars and Abstract Machines. Sahar Al Seesi

Formal Grammars and Abstract Machines. Sahar Al Seesi Formal Grammars and Abstract Machines Sahar Al Seesi What are Formal Languages Describing the sentence structure of a language in a formal way Used in Natural Language Processing Applications (translators,

More information

1. Provide two valid strings in the languages described by each of the following regular expressions, with alphabet Σ = {0,1,2}.

1. Provide two valid strings in the languages described by each of the following regular expressions, with alphabet Σ = {0,1,2}. 1. Provide two valid strings in the languages described by each of the following regular expressions, with alphabet Σ = {0,1,2}. (a) 0(010) 1 Examples: 01, 00101, 00100101, 00100100100101 (b) (21 10) 0012

More information

Chapter Summary. Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms Chapter Summary Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms Section 5.1 Sec.on Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken

More information

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1 Introduction to Automata Theory BİL405 - Automata Theory and Formal Languages 1 Automata, Computability and Complexity Automata, Computability and Complexity are linked by the question: What are the fundamental

More information

Recursive Definitions Structural Induction Recursive Algorithms

Recursive Definitions Structural Induction Recursive Algorithms Chapter 4 1 4.3-4.4 Recursive Definitions Structural Induction Recursive Algorithms 2 Section 4.1 3 Principle of Mathematical Induction Principle of Mathematical Induction: To prove that P(n) is true for

More information

Automata & languages. A primer on the Theory of Computation. The imitation game (2014) Benedict Cumberbatch Alan Turing ( ) Laurent Vanbever

Automata & languages. A primer on the Theory of Computation. The imitation game (2014) Benedict Cumberbatch Alan Turing ( ) Laurent Vanbever Automata & languages A primer on the Theory of Computation The imitation game (24) Benedict Cumberbatch Alan Turing (92-954) Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) September, 2 27 Brief CV

More information

Last lecture CMSC330. This lecture. Finite Automata: States. Finite Automata. Implementing Regular Expressions. Languages. Regular expressions

Last lecture CMSC330. This lecture. Finite Automata: States. Finite Automata. Implementing Regular Expressions. Languages. Regular expressions Last lecture CMSC330 Finite Automata Languages Sets of strings Operations on languages Regular expressions Constants Operators Precedence 1 2 Finite automata States Transitions Examples Types This lecture

More information

Lamé s Theorem. Strings. Recursively Defined Sets and Structures. Recursively Defined Sets and Structures

Lamé s Theorem. Strings. Recursively Defined Sets and Structures. Recursively Defined Sets and Structures Lamé s Theorem Gabriel Lamé (1795-1870) Recursively Defined Sets and Structures Lamé s Theorem: Let a and b be positive integers with a b Then the number of divisions used by the Euclidian algorithm to

More information

Chapter 18: Decidability

Chapter 18: Decidability Chapter 18: Decidability Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu Please read the corresponding chapter before

More information

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31 Sets MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Sets Fall 2014 1 / 31 Outline 1 Sets Introduction Cartesian Products Subsets Power Sets Union, Intersection, Difference

More information

To illustrate what is intended the following are three write ups by students. Diagonalization

To illustrate what is intended the following are three write ups by students. Diagonalization General guidelines: You may work with other people, as long as you write up your solution in your own words and understand everything you turn in. Make sure to justify your answers they should be clear

More information

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or elements of the set. a) Use capital letters to stand for sets

More information

CSE 311 Lecture 21: Context-Free Grammars. Emina Torlak and Kevin Zatloukal

CSE 311 Lecture 21: Context-Free Grammars. Emina Torlak and Kevin Zatloukal CSE 311 Lecture 21: Context-Free Grammars Emina Torlak and Kevin Zatloukal 1 Topics Regular expressions A brief review of Lecture 20. Context-free grammars Syntax, semantics, and examples. 2 Regular expressions

More information

Lec-5-HW-1, TM basics

Lec-5-HW-1, TM basics Lec-5-HW-1, TM basics (Problem 0)-------------------- Design a Turing Machine (TM), T_sub, that does unary decrement by one. Assume a legal, initial tape consists of a contiguous set of cells, each containing

More information

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou COMP-421 Compiler Design Presented by Dr Ioanna Dionysiou Administrative! [ALSU03] Chapter 3 - Lexical Analysis Sections 3.1-3.4, 3.6-3.7! Reading for next time [ALSU03] Chapter 3 Copyright (c) 2010 Ioanna

More information

Regular Expressions. Regular Expressions. Regular Languages. Specifying Languages. Regular Expressions. Kleene Star Operation

Regular Expressions. Regular Expressions. Regular Languages. Specifying Languages. Regular Expressions. Kleene Star Operation Another means to describe languages accepted by Finite Automata. In some books, regular languages, by definition, are described using regular. Specifying Languages Recall: how do we specify languages?

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

CMSC 132: Object-Oriented Programming II

CMSC 132: Object-Oriented Programming II CMSC 132: Object-Oriented Programming II Regular Expressions & Automata Department of Computer Science University of Maryland, College Park 1 Regular expressions Notation Patterns Java support Automata

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

CS 403 Compiler Construction Lecture 3 Lexical Analysis [Based on Chapter 1, 2, 3 of Aho2]

CS 403 Compiler Construction Lecture 3 Lexical Analysis [Based on Chapter 1, 2, 3 of Aho2] CS 403 Compiler Construction Lecture 3 Lexical Analysis [Based on Chapter 1, 2, 3 of Aho2] 1 What is Lexical Analysis? First step of a compiler. Reads/scans/identify the characters in the program and groups

More information

CS 3100 Models of Computation Fall 2011 This assignment is worth 8% of the total points for assignments 100 points total.

CS 3100 Models of Computation Fall 2011 This assignment is worth 8% of the total points for assignments 100 points total. CS 3100 Models of Computation Fall 2011 This assignment is worth 8% of the total points for assignments 100 points total September 7, 2011 Assignment 3, Posted on: 9/6 Due: 9/15 Thursday 11:59pm 1. (20

More information

SC/MATH Boolean Formulae. Ref: G. Tourlakis, Mathematical Logic, John Wiley & Sons, York University

SC/MATH Boolean Formulae. Ref: G. Tourlakis, Mathematical Logic, John Wiley & Sons, York University SC/MATH 1090 1- Boolean Formulae Ref: G. Tourlakis, Mathematical Logic, John Wiley & Sons, 2008. York University Department of Computer Science and Engineering York University- MATH 1090 01-Boolean 1 Overview

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 4

CS321 Languages and Compiler Design I. Winter 2012 Lecture 4 CS321 Languages and Compiler Design I Winter 2012 Lecture 4 1 LEXICAL ANALYSIS Convert source file characters into token stream. Remove content-free characters (comments, whitespace,...) Detect lexical

More information

CMSC Theory of Algorithms Second Midterm

CMSC Theory of Algorithms Second Midterm NAME (please PRINT in large letters): SECTION: 01 02 (circle one) CMSC 27200 Theory of Algorithms Second Midterm 02-26-2015 The exam is closed book. Do not use notes. The use of ELECTRONIC DEVICES is strictly

More information

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Section 5.3 1 Recursion 2 Recursion Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Previously sequences were defined using a specific

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Sipser Ch 1.2, 1.3 Design NFA recognizing a given language Convert an NFA (with or without

More information

SIGNAL COMPRESSION Lecture Lempel-Ziv Coding

SIGNAL COMPRESSION Lecture Lempel-Ziv Coding SIGNAL COMPRESSION Lecture 5 11.9.2007 Lempel-Ziv Coding Dictionary methods Ziv-Lempel 77 The gzip variant of Ziv-Lempel 77 Ziv-Lempel 78 The LZW variant of Ziv-Lempel 78 Asymptotic optimality of Ziv-Lempel

More information

Structure of Programming Languages Lecture 3

Structure of Programming Languages Lecture 3 Structure of Programming Languages Lecture 3 CSCI 6636 4536 Spring 2017 CSCI 6636 4536 Lecture 3... 1/25 Spring 2017 1 / 25 Outline 1 Finite Languages Deterministic Finite State Machines Lexical Analysis

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information