Separation Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré. Australian National University Semester 2, 2016

Size: px
Start display at page:

Download "Separation Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré. Australian National University Semester 2, 2016"

Transcription

1 Separation Logic COMP2600 Formal Methods for Software Engineering Rajeev Goré Australian National University Semester 2, 2016 COMP 2600 Separation Logic 1

2 Motivation: Reasoning About Pointers Recall this example from Hoare Logic Lecture III. How is aliasing a problem? Suppose x and y refer to the same cell of memory. 1. {y + 1 = 5 y = 5} x:=y+1 {x = 5 y = 5} (Assignment) 2. {y = 4 y = 5} x:=y+1 {x = 5 y = 5} (1. PreEq) 3. {False} x:=y+1 {x = 5 y = 5} (2. PreEq) i.e. if initial state is inconsistent and x:=y+1 terminates then final state makes {x = 5 y = 5} true But also works for x = 6 y = 6 so our assignment rule is no longer as strong as possible. Problem: we need a way to say refers to the same/different cell of memory COMP 2600 Separation Logic 2

3 From Hoare Logic To Separation Logic Floyd 1967: gave some rules to reason about programs Sometimes, our Hoare Logic is called Floyd-Hoare Logic in recognition Many attempts made to extend Floyd-Hoare Logic to handle pointers Only really solved in the past 15 years by Reynolds, O Hearn and Yang around 2000 using a connective called separating conjunction The connective originally studied at ANU Philosophy in 1970s by Robert K Meyer... who started the Logic and Computation Group! But... to make the presentation less scary, we need to first extend Hoare Logic with an axiom due to Floyd COMP 2600 Separation Logic 3

4 Hoare Logic: syntax, semantics and calculus Syntax Semantics Calculus FOL N/A = + Arithmetic N/A := ; while if then else State maps variables to values (no pointers) N/A {P}S{Q} if initial state satisfies P and S terminates then final state satisfies Q 6 Inference Rules COMP 2600 Separation Logic 4

5 Store Assignment Axiom of Floyd Hoare Axiom: {Q(e)} x := e {Q(x)} (backward driven) Floyd Axiom: forward driven but equivalent to Hoare Axiom {x = v} x := e {x = e(v/x)} where v is an auxiliary variable which does not occur in e and e(v/x) means replace all occurrences of x in e by v Example Hoare Instance: {(x + 1 = 5)} x := x + 1 {x = 5} Example Floyd Instance: {x = v} x := x + 1 {x = (x + 1)(v/x)} i.e. {x = v} x := x + 1 {x = (v + 1)} i.e. if we want the post-condition x = 5 then instantiate v to be 4 {x = 4} x := x + 1 {x = 5} Note: does not solve the problem with pointers! COMP 2600 Separation Logic 5

6 Store Assignment Axiom of Floyd Hoare Axiom: {Q(e)} x := e {Q(x)} (backward driven) Floyd Axiom: forward driven but equivalent to Hoare Axiom {x = v} x := e {x = e(v/x)} where v is an auxiliary variable which does not occur in e and e(v/x) means replace all occurrences of x in e by v Example Hoare Instance: {(1 = 1)} x := 1 {x = 1} Example Floyd Instance: {x = v} x := 1 {x = (1)(v/x)} i.e. {x = v} x := 1 {x = 1} i.e. if we want the pre-condition 1 = 1 (i.e. True) then instantiate v to x {x = x} x := 1 {x = 1} Separation Logic: based on such forward reasoning zero-premise rules COMP 2600 Separation Logic 6

7 My Policy To Make This Material Accessible Honest: the two really are equivalent but I am hiding the gory details of the first order logic proof that they are equivalent Credits: my notes are based upon a set of notes written by Michael Gordon Beware: he uses heavy duty logic and his notes are for a third year course! Promise: I will tell the truth. I may not tell the whole truth, but I will not lie. Name clash: Separation Logic is used for both the extension of Hoare Logic and the extension of first-order logic upon which it is based! Search: separation logic and you will get many technical papers, most of which will be impenetrable, so beware! COMP 2600 Separation Logic 7

8 Hoare Logic + Floyd Axiom: syntax, semantics and calculus Syntax Semantics Calculus FOL N/A = + Arithmetic N/A := ; while if then else State maps variables to values (no pointers) N/A {P}S{Q} if initial state satisfies P and S terminates then final state satisfies Q 6 Inference Rules + Floyd Axiom COMP 2600 Separation Logic 8

9 COMP 2600 Separation Logic 9

10 Separation Logic: syntax, semantics and calculus Syntax Semantics Calculus emp SL N/A FOL N/A = + Arithmetic N/A := ; while if then else [.] dispose(.) cons(.) State is a pair (Store,Heap) St(.) maps variables to values H p(.) maps locations to values N/A if initial state satisfies P {P}S{Q} and S terminates More Inference then S does not fault and Rules COMP 2600 Separation Logic 10 final state satisfies Q

11 Our Computation Model Background: a function maps members of a domain to members of a range Assume: Num Val Assume: nil Val but not in Num numbers will be memory locations nil not a memory location Same as before: Store maps Variables to Values i.e. we can ask St(x) and we will get back a Value New: Heap maps a finite subset of Numbers to Values i.e. we can ask H p(l) where l is a number and we will get back a Value if this location has been allocated Old State = Store New: State = (Store, Heap) COMP 2600 Separation Logic 11

12 Evaluating Expressions in the Store of a State Strictly speaking, the store gives values to variables only. But we need a way to say value of an expression in a store so we will abuse notation and use St(e) for this as below: St(n) where n is a number is just its usual value St(1) = 1 St(x + n) where n is a number and x is a variable is St(x) + St(n) = St(x) + n St(e 1 = e 2 ) is true if St(e 1 ) = St(e 2 ) This is supposed to be intuitive, so please complain if it isn t! COMP 2600 Separation Logic 12

13 COMP 2600 Separation Logic 13

14 Separation Logic: syntax, semantics and calculus Syntax Semantics Calculus emp SL N/A FOL N/A = + Arithmetic N/A := ; while if then else [.] dispose(.) cons(.) State is a pair (Store,Heap) St(.) maps variables to values H p(.) maps locations to values N/A if initial state satisfies P {P}S{Q} and S terminates More Inference then S does not fault and Rules COMP 2600 Separation Logic 14 final state satisfies Q

15 Extra Programming Constructs: Syntax and Intuitions Fetch: v := [e] evaluate expression e in current state to get location l fault if location l is not in the current heap otherwise variable v is assigned the contents of location l Example: x := [y + 1] St H p x := [y + 1] St H p y = y = x = Non Examples: x := [[y + 1]] x := [y] + 1 COMP 2600 Separation Logic 15

16 Extra Programming Constructs: Syntax and Intuitions Heap Assignment/Mutation: [e] := e 1 evaluate e (in the current state) as location l fault if location l is not in the current heap otherwise make the contents of location l the value of expression e 1 Example [y + 1] := 5 St H p [y + 1] := 5 St H p y = y = Non-examples: [[x]] := 5 [x] + 1 := 5 COMP 2600 Separation Logic 16

17 Extra Programming Constructs: Syntax and Intuitions Allocation: v := cons(e 1,e 2,,e n ) extend the heap with n consecutive new locations l,l +1,,l +n 1 put values of e 1,,e n into locations l,,l + n 1 respectively extend the store by assigning v the value l (never faults) Example: p := cons(3,7) St H p p := cons(3,7) St H p p = Example: p := cons(q,q + 1) St H p p := cons(q,q + 1) St H p q = 5 q = p = COMP 2600 Separation Logic 17

18 Extra Programming Constructs: Syntax and Intuitions Deallocation: dispose(e) evaluate e to get some number l fault if location l is not in the heap otherwise remove location l from the heap Example: dispose(q) St H p dispose(q) St H p q = q = p = p = Example: dispose(p) St H p dispose(p) St H p q = q = p = p = COMP 2600 Separation Logic 18

19 COMP 2600 Separation Logic 19

20 Separation Logic: syntax, semantics and calculus Syntax Semantics Calculus emp SL N/A FOL N/A = + Arithmetic N/A := ; while if then else [.] dispose(.) cons(.) State is a pair (Store,Heap) St(.) maps variables to values H p(.) maps locations to values N/A if initial state satisfies P {P}S{Q} and S terminates More Inference then S does not fault and Rules COMP 2600 Separation Logic 20 final state satisfies Q

21 Semantics of Separation Logic Store : Var Val Heap : Num f in Val State = Store Heap St(e) value of an expression in a store as explained earlier (St,H p) = emp if dom(h p) = /0 i.e. a state (St,H p) makes the formula emp true if the heap is empty COMP 2600 Separation Logic 21

22 Store Assignment Axiom For Separation Logic Hoare Axiom: {Q(e)} x := e {Q(x)} Floyd Axiom: {x = v} x := e {x = e(v/x)} where v is an auxiliary variable which does not occur in e Store Assignment Axiom for Separation Logic: {x = v emp} x := e {x = e(v/x) emp} where v is an auxiliary variable which does not occur in e New: atomic formula emp to say that the heap is empty Why: we want to track the smallest amount of heap information COMP 2600 Separation Logic 22

23 Store Assignment Axiom for Separation Logic Store Assignment Axiom for Separation Logic: {x = v emp} x := e {x = e(v/x) emp} where v is an auxiliary variable which does not occur in e Example Instance: {x = v emp} x := 1 {x = (1)(v/x) emp} i.e. {x = v emp} x := 1 {x = 1 emp} i.e. if we want the pre-condition 1 = 1 (i.e. True) then instantiate v to x {x = x emp} x := 1 {x = 1 emp} COMP 2600 Separation Logic 23

24 Fetch Assignment Axiom of Separation Logic {(x = v 1 ) (e v 2 )} x := [e] {(x = v 2 ) (e(v 1 /x) v 2 )} where v 1 and v 2 are auxiliary variables which do not occur in e Example: x := [y] St H p x := [y] St H p y = y = x = 1 1 e is y: so {(x = v 1 ) (y v 2 )} x := [y] {(x = v 2 ) (e(v 1 /x) v 2 )} v 2 is 1: so {(x = v 1 ) (y 1)} x := [y] {(x = 1) (e(v 1 /x) 1)} e(v 1 /x) is y: since there are no occurrences of x in y so {(x = v 1 ) (y 1)} x := [y] {(x = 1) (y 1)} COMP 2600 Separation Logic 24

25 COMP 2600 Separation Logic 25

26 Separation Logic: syntax, semantics and calculus Syntax Semantics Calculus emp SL N/A FOL N/A = + Arithmetic N/A := ; while if then else [.] dispose(.) cons(.) State is a pair (Store,Heap) St(.) maps variables to values H p(.) maps locations to values N/A if initial state satisfies P {P}S{Q} and S terminates More Inference then S does not fault and Rules COMP 2600 Separation Logic 26 final state satisfies Q

Separation Logic: syntax, semantics and calculus

Separation Logic: syntax, semantics and calculus Separation Logic: syntax, semantics and calculus Syntax Semantics Calculus emp SL N/A FOL N/A = + Arithmetic N/A := ; while if then else [.] dispose(.) cons(.) State is a pair (Store,Heap) St(.) maps variables

More information

Hoare Logic and Model Checking

Hoare Logic and Model Checking Hoare Logic and Model Checking Kasper Svendsen University of Cambridge CST Part II 2016/17 Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft Pointers Pointers and

More information

The Rule of Constancy(Derived Frame Rule)

The Rule of Constancy(Derived Frame Rule) The Rule of Constancy(Derived Frame Rule) The following derived rule is used on the next slide The rule of constancy {P } C {Q} {P R} C {Q R} where no variable assigned to in C occurs in R Outline of derivation

More information

Hoare Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré

Hoare Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré Hoare Logic COMP2600 Formal Methods for Software Engineering Rajeev Goré Australian National University Semester 2, 2016 (Slides courtesy of Ranald Clouston) COMP 2600 Hoare Logic 1 Australian Capital

More information

Hoare logic. WHILE p, a language with pointers. Introduction. Syntax of WHILE p. Lecture 5: Introduction to separation logic

Hoare logic. WHILE p, a language with pointers. Introduction. Syntax of WHILE p. Lecture 5: Introduction to separation logic Introduction Hoare logic Lecture 5: Introduction to separation logic In the previous lectures, we have considered a language, WHILE, where mutability only concerned program variables. Jean Pichon-Pharabod

More information

Hoare logic. Lecture 5: Introduction to separation logic. Jean Pichon-Pharabod University of Cambridge. CST Part II 2017/18

Hoare logic. Lecture 5: Introduction to separation logic. Jean Pichon-Pharabod University of Cambridge. CST Part II 2017/18 Hoare logic Lecture 5: Introduction to separation logic Jean Pichon-Pharabod University of Cambridge CST Part II 2017/18 Introduction In the previous lectures, we have considered a language, WHILE, where

More information

Hoare triples. Floyd-Hoare Logic, Separation Logic

Hoare triples. Floyd-Hoare Logic, Separation Logic Hoare triples Floyd-Hoare Logic, Separation Logic 1. Floyd-Hoare Logic 1969 Reasoning about control Hoare triples {A} p {B} a Hoare triple partial correctness: if the initial state satisfies assertion

More information

Compilation and Program Analysis (#11) : Hoare triples and shape analysis

Compilation and Program Analysis (#11) : Hoare triples and shape analysis Compilation and Program Analysis (#11) : Hoare triples and shape analysis Laure Gonnord http://laure.gonnord.org/pro/teaching/capm1.html Laure.Gonnord@ens-lyon.fr Master 1, ENS de Lyon dec 2017 Inspiration

More information

Hoare Logic and Model Checking

Hoare Logic and Model Checking Hoare Logic and Model Checking Kasper Svendsen University of Cambridge CST Part II 2016/17 Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft Introduction In the

More information

Lecture 5 - Axiomatic semantics

Lecture 5 - Axiomatic semantics Program Verification March 2014 Lecture 5 - Axiomatic semantics Lecturer: Noam Rinetzky Scribes by: Nir Hemed 1.1 Axiomatic semantics The development of the theory is contributed to Robert Floyd, C.A.R

More information

BI as an Assertion Language for Mutable Data Structures

BI as an Assertion Language for Mutable Data Structures BI as an Assertion Language for Mutable Data Structures Samin Ishtiaq Peter W. O Hearn Queen Mary & Westfield College, London ABSTRACT Reynolds has developed a logic for reasoning about mutable data structures

More information

Hoare Logic and Model Checking. A proof system for Separation logic. Introduction. Separation Logic

Hoare Logic and Model Checking. A proof system for Separation logic. Introduction. Separation Logic Introduction Hoare Logic and Model Checking In the previous lecture we saw the informal concepts that Separation Logic is based on. Kasper Svendsen University of Cambridge CST Part II 2016/17 This lecture

More information

Induction and Semantics in Dafny

Induction and Semantics in Dafny 15-414 Lecture 11 1 Instructor: Matt Fredrikson Induction and Semantics in Dafny TA: Ryan Wagner Encoding the syntax of Imp Recall the abstract syntax of Imp: a AExp ::= n Z x Var a 1 + a 2 b BExp ::=

More information

Chapter 3: Propositional Languages

Chapter 3: Propositional Languages Chapter 3: Propositional Languages We define here a general notion of a propositional language. We show how to obtain, as specific cases, various languages for propositional classical logic and some non-classical

More information

Hoare logic. A proof system for separation logic. Introduction. Separation logic

Hoare logic. A proof system for separation logic. Introduction. Separation logic Introduction Hoare logic Lecture 6: Examples in separation logic In the previous lecture, we saw how reasoning about pointers in Hoare logic was problematic, which motivated introducing separation logic.

More information

Programming Languages Third Edition

Programming Languages Third Edition Programming Languages Third Edition Chapter 12 Formal Semantics Objectives Become familiar with a sample small language for the purpose of semantic specification Understand operational semantics Understand

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 19 Tuesday, April 3, 2018 1 Introduction to axiomatic semantics The idea in axiomatic semantics is to give specifications

More information

Proving the Correctness of Distributed Algorithms using TLA

Proving the Correctness of Distributed Algorithms using TLA Proving the Correctness of Distributed Algorithms using TLA Khushboo Kanjani, khush@cs.tamu.edu, Texas A & M University 11 May 2007 Abstract This work is a summary of the Temporal Logic of Actions(TLA)

More information

Variables. Substitution

Variables. Substitution Variables Elements of Programming Languages Lecture 4: Variables, binding and substitution James Cheney University of Edinburgh October 6, 2015 A variable is a symbol that can stand for another expression.

More information

Pierce Ch. 3, 8, 11, 15. Type Systems

Pierce Ch. 3, 8, 11, 15. Type Systems Pierce Ch. 3, 8, 11, 15 Type Systems Goals Define the simple language of expressions A small subset of Lisp, with minor modifications Define the type system of this language Mathematical definition using

More information

Outline. Data Definitions and Templates Syntax and Semantics Defensive Programming

Outline. Data Definitions and Templates Syntax and Semantics Defensive Programming Outline Data Definitions and Templates Syntax and Semantics Defensive Programming 1 Data Definitions Question 1: Are both of the following data definitions ok? ; A w-grade is either ; - num ; - posn ;

More information

CMSC 330: Organization of Programming Languages. Formal Semantics of a Prog. Lang. Specifying Syntax, Semantics

CMSC 330: Organization of Programming Languages. Formal Semantics of a Prog. Lang. Specifying Syntax, Semantics Recall Architecture of Compilers, Interpreters CMSC 330: Organization of Programming Languages Source Scanner Parser Static Analyzer Operational Semantics Intermediate Representation Front End Back End

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) 6.1 Instructional Objective Students should understand the advantages of first order logic as a knowledge representation language Students

More information

Lectures 20, 21: Axiomatic Semantics

Lectures 20, 21: Axiomatic Semantics Lectures 20, 21: Axiomatic Semantics Polyvios Pratikakis Computer Science Department, University of Crete Type Systems and Static Analysis Based on slides by George Necula Pratikakis (CSD) Axiomatic Semantics

More information

Lecture 1: Conjunctive Queries

Lecture 1: Conjunctive Queries CS 784: Foundations of Data Management Spring 2017 Instructor: Paris Koutris Lecture 1: Conjunctive Queries A database schema R is a set of relations: we will typically use the symbols R, S, T,... to denote

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Operational Semantics CMSC 330 Summer 2018 1 Formal Semantics of a Prog. Lang. Mathematical description of the meaning of programs written in that language

More information

COSC252: Programming Languages: Semantic Specification. Jeremy Bolton, PhD Adjunct Professor

COSC252: Programming Languages: Semantic Specification. Jeremy Bolton, PhD Adjunct Professor COSC252: Programming Languages: Semantic Specification Jeremy Bolton, PhD Adjunct Professor Outline I. What happens after syntactic analysis (parsing)? II. Attribute Grammars: bridging the gap III. Semantic

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 7b Andrew Tolmach Portland State University 1994-2017 Values and Types We divide the universe of values according to types A type is a set of values and

More information

λ calculus is inconsistent

λ calculus is inconsistent Content Rough timeline COMP 4161 NICTA Advanced Course Advanced Topics in Software Verification Gerwin Klein, June Andronick, Toby Murray λ Intro & motivation, getting started [1] Foundations & Principles

More information

A short manual for the tool Accumulator

A short manual for the tool Accumulator A short manual for the tool Accumulator ZHAO Jianhua State Key Laboratory of Novel Software Technology Dept. of Computer Sci. and Tech. Nanjing University Nanjing, Jiangsu, P.R.China 210093 zhaojh@nju.edu.cn

More information

Type Systems COMP 311 Rice University Houston, Texas

Type Systems COMP 311 Rice University Houston, Texas Rice University Houston, Texas 1 Type Systems for Programming Language were invented by mathematicians before electronic computers were invented. What is a type? A meaningful subset of the set of the domain

More information

COMP 4161 NICTA Advanced Course. Advanced Topics in Software Verification. Toby Murray, June Andronick, Gerwin Klein

COMP 4161 NICTA Advanced Course. Advanced Topics in Software Verification. Toby Murray, June Andronick, Gerwin Klein COMP 4161 NICTA Advanced Course Advanced Topics in Software Verification Toby Murray, June Andronick, Gerwin Klein λ 1 Last time... λ calculus syntax free variables, substitution β reduction α and η conversion

More information

Programming Languages Fall 2014

Programming Languages Fall 2014 Programming Languages Fall 2014 Lecture 7: Simple Types and Simply-Typed Lambda Calculus Prof. Liang Huang huang@qc.cs.cuny.edu 1 Types stuck terms? how to fix it? 2 Plan First I For today, we ll go back

More information

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #29 Arrays in C

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #29 Arrays in C Introduction to Programming in C Department of Computer Science and Engineering Lecture No. #29 Arrays in C (Refer Slide Time: 00:08) This session will learn about arrays in C. Now, what is the word array

More information

Hiding local state in direct style: a higher-order anti-frame rule

Hiding local state in direct style: a higher-order anti-frame rule 1 / 65 Hiding local state in direct style: a higher-order anti-frame rule François Pottier January 28th, 2008 2 / 65 Contents Introduction Basics of the type system A higher-order anti-frame rule Applications

More information

Chapter 3. Describing Syntax and Semantics ISBN

Chapter 3. Describing Syntax and Semantics ISBN Chapter 3 Describing Syntax and Semantics ISBN 0-321-49362-1 Chapter 3 Topics Describing the Meanings of Programs: Dynamic Semantics Copyright 2015 Pearson. All rights reserved. 2 Semantics There is no

More information

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence Knowledge Representation CS 486/686: Introduction to Artificial Intelligence 1 Outline Knowledge-based agents Logics in general Propositional Logic& Reasoning First Order Logic 2 Introduction So far we

More information

Note that in this definition, n + m denotes the syntactic expression with three symbols n, +, and m, not to the number that is the sum of n and m.

Note that in this definition, n + m denotes the syntactic expression with three symbols n, +, and m, not to the number that is the sum of n and m. CS 6110 S18 Lecture 8 Structural Operational Semantics and IMP Today we introduce a very simple imperative language, IMP, along with two systems of rules for evaluation called small-step and big-step semantics.

More information

On the C11 Memory Model and a Program Logic for C11 Concurrency

On the C11 Memory Model and a Program Logic for C11 Concurrency On the C11 Memory Model and a Program Logic for C11 Concurrency Manuel Penschuck Aktuelle Themen der Softwaretechnologie Software Engineering & Programmiersprachen FB 12 Goethe Universität - Frankfurt

More information

Static Program Analysis Part 9 pointer analysis. Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University

Static Program Analysis Part 9 pointer analysis. Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University Static Program Analysis Part 9 pointer analysis Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University Agenda Introduction to points-to analysis Andersen s analysis Steensgaards s

More information

Formal Syntax and Semantics of Programming Languages

Formal Syntax and Semantics of Programming Languages Formal Syntax and Semantics of Programming Languages Mooly Sagiv Reference: Semantics with Applications Chapter 2 H. Nielson and F. Nielson http://www.daimi.au.dk/~bra8130/wiley_book/wiley.html The While

More information

Lecture 15 CIS 341: COMPILERS

Lecture 15 CIS 341: COMPILERS Lecture 15 CIS 341: COMPILERS Announcements HW4: OAT v. 1.0 Parsing & basic code generation Due: March 28 th No lecture on Thursday, March 22 Dr. Z will be away Zdancewic CIS 341: Compilers 2 Adding Integers

More information

Overview. Why Pointers?

Overview. Why Pointers? Overview CS345H: Programming Languages Lecture 16: Imperative Languages II Thomas Dillig Last time, we have seen how we can give meaning to a simple imperative Specifically, we wrote operational semantics

More information

The story so far. Elements of Programming Languages. Pairs in various languages. Pairs

The story so far. Elements of Programming Languages. Pairs in various languages. Pairs Elements of Programming Languages Lecture 6: Data structures James Cheney University of Edinburgh October 9, 2017 The story so far We ve now covered the main ingredients of any programming language: Abstract

More information

CS 4110 Programming Languages & Logics. Lecture 17 Programming in the λ-calculus

CS 4110 Programming Languages & Logics. Lecture 17 Programming in the λ-calculus CS 4110 Programming Languages & Logics Lecture 17 Programming in the λ-calculus 10 October 2014 Announcements 2 Foster Office Hours 11-12 Enjoy fall break! Review: Church Booleans 3 We can encode TRUE,

More information

15-819M: Data, Code, Decisions

15-819M: Data, Code, Decisions 15-819M: Data, Code, Decisions 08: First-Order Logic André Platzer aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA André Platzer (CMU) 15-819M/08: Data, Code, Decisions 1 / 40 Outline 1

More information

Intro to semantics; Small-step semantics Lecture 1 Tuesday, January 29, 2013

Intro to semantics; Small-step semantics Lecture 1 Tuesday, January 29, 2013 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 1 Tuesday, January 29, 2013 1 Intro to semantics What is the meaning of a program? When we write a program, we use

More information

Software Quality Assurance

Software Quality Assurance Software Quality Assurance Every week we see new examples of: computer systems error/failure Here are some examples, taken from different industries Airport chaos after computer crash By Vanessa Allen,

More information

An Annotated Language

An Annotated Language Hoare Logic An Annotated Language State and Semantics Expressions are interpreted as functions from states to the corresponding domain of interpretation Operators have the obvious interpretation Free of

More information

Overview. CS389L: Automated Logical Reasoning. Lecture 6: First Order Logic Syntax and Semantics. Constants in First-Order Logic.

Overview. CS389L: Automated Logical Reasoning. Lecture 6: First Order Logic Syntax and Semantics. Constants in First-Order Logic. Overview CS389L: Automated Logical Reasoning Lecture 6: First Order Logic Syntax and Semantics Işıl Dillig So far: Automated reasoning in propositional logic. Propositional logic is simple and easy to

More information

Chapter 3 (part 3) Describing Syntax and Semantics

Chapter 3 (part 3) Describing Syntax and Semantics Chapter 3 (part 3) Describing Syntax and Semantics Chapter 3 Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Attribute Grammars Describing the Meanings

More information

A Small Interpreted Language

A Small Interpreted Language A Small Interpreted Language What would you need to build a small computing language based on mathematical principles? The language should be simple, Turing equivalent (i.e.: it can compute anything that

More information

Reasoning About Imperative Programs. COS 441 Slides 10

Reasoning About Imperative Programs. COS 441 Slides 10 Reasoning About Imperative Programs COS 441 Slides 10 The last few weeks Agenda reasoning about functional programming It s very simple and very uniform: substitution of equal expressions for equal expressions

More information

Checks and Balances - Constraint Solving without Surprises in Object-Constraint Programming Languages: Full Formal Development

Checks and Balances - Constraint Solving without Surprises in Object-Constraint Programming Languages: Full Formal Development Checks and Balances - Constraint Solving without Surprises in Object-Constraint Programming Languages: Full Formal Development Tim Felgentreff, Todd Millstein, Alan Borning and Robert Hirschfeld Viewpoints

More information

Specification and Verification I

Specification and Verification I Title: Lecturer: Class: Specification and Verification I Mike Gordon Computer Science Tripos, Part II Duration: Twelve lectures Specification and Verification I Mike Gordon Overview These lecture notes

More information

Semantic Analysis. Lecture 9. February 7, 2018

Semantic Analysis. Lecture 9. February 7, 2018 Semantic Analysis Lecture 9 February 7, 2018 Midterm 1 Compiler Stages 12 / 14 COOL Programming 10 / 12 Regular Languages 26 / 30 Context-free Languages 17 / 21 Parsing 20 / 23 Extra Credit 4 / 6 Average

More information

Reminder of the last lecture. Aliasing Issues: Call by reference, Pointer programs. Introducing Aliasing Issues. Home Work from previous lecture

Reminder of the last lecture. Aliasing Issues: Call by reference, Pointer programs. Introducing Aliasing Issues. Home Work from previous lecture Reminder of the last lecture Aliasing Issues: Call by reference, Pointer programs Claude Marché Cours MPRI 2-36-1 Preuve de Programme 18 janvier 2017 Additional features of the specification language Abstract

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2018 Lecture 7b Andrew Tolmach Portland State University 1994-2018 Dynamic Type Checking Static type checking offers the great advantage of catching errors early And

More information

Introduction to Axiomatic Semantics (1/2)

Introduction to Axiomatic Semantics (1/2) #1 Introduction to Axiomatic Semantics (1/2) How s The Homework Going? Remember: just do the counterexample guided abstraction refinement part of DPLL(T). If you notice any other errors, those are good

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Fall 2017 Lecture 7b Andrew Tolmach Portland State University 1994-2017 Type Inference Some statically typed languages, like ML (and to a lesser extent Scala), offer alternative

More information

Type Checking and Type Inference

Type Checking and Type Inference Type Checking and Type Inference Principles of Programming Languages CSE 307 1 Types in Programming Languages 2 Static Type Checking 3 Polymorphic Type Inference Version: 1.8 17:20:56 2014/08/25 Compiled

More information

Lists. Michael P. Fourman. February 2, 2010

Lists. Michael P. Fourman. February 2, 2010 Lists Michael P. Fourman February 2, 2010 1 Introduction The list is a fundamental datatype in most functional languages. ML is no exception; list is a built-in ML type constructor. However, to introduce

More information

1 Introduction. 3 Syntax

1 Introduction. 3 Syntax CS 6110 S18 Lecture 19 Typed λ-calculus 1 Introduction Type checking is a lightweight technique for proving simple properties of programs. Unlike theorem-proving techniques based on axiomatic semantics,

More information

Scheme: Data. CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Monday, April 3, Glenn G.

Scheme: Data. CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Monday, April 3, Glenn G. Scheme: Data CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Monday, April 3, 2017 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks ggchappell@alaska.edu

More information

Logic as a framework for NL semantics. Outline. Syntax of FOL [1] Semantic Theory Type Theory

Logic as a framework for NL semantics. Outline. Syntax of FOL [1] Semantic Theory Type Theory Logic as a framework for NL semantics Semantic Theory Type Theory Manfred Pinkal Stefan Thater Summer 2007 Approximate NL meaning as truth conditions. Logic supports precise, consistent and controlled

More information

Application: Programming Language Semantics

Application: Programming Language Semantics Chapter 8 Application: Programming Language Semantics Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 527 Introduction to Programming Language Semantics Programming Language

More information

CMSC 336: Type Systems for Programming Languages Lecture 5: Simply Typed Lambda Calculus Acar & Ahmed January 24, 2008

CMSC 336: Type Systems for Programming Languages Lecture 5: Simply Typed Lambda Calculus Acar & Ahmed January 24, 2008 CMSC 336: Type Systems for Programming Languages Lecture 5: Simply Typed Lambda Calculus Acar & Ahmed January 24, 2008 Contents 1 Solution to the Exercise 1 1.1 Semantics for lambda calculus.......................

More information

Introduction to Axiomatic Semantics

Introduction to Axiomatic Semantics Introduction to Axiomatic Semantics Meeting 10, CSCI 5535, Spring 2009 Announcements Homework 3 due tonight Homework 2 is graded 13 (mean), 14 (median), out of 21 total, but Graduate class: final project

More information

Mutable References. Chapter 1

Mutable References. Chapter 1 Chapter 1 Mutable References In the (typed or untyped) λ-calculus, or in pure functional languages, a variable is immutable in that once bound to a value as the result of a substitution, its contents never

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages CSE 307: Principles of Programming Languages Advanced Topics R. Sekar Topics 1 / 14 1. 2 / 14 Section 1 3 / 14 Semantics of Programs Syntax defines what programs are valid. Semantics defines what the valid

More information

Introduction to Axiomatic Semantics (1/2)

Introduction to Axiomatic Semantics (1/2) #1 Introduction to Axiomatic Semantics (1/2) How s The Homework Going? Remember that you can t just define a meaning function in terms of itself you must use some fixed point machinery. #2 #3 Observations

More information

2 Introduction to operational semantics

2 Introduction to operational semantics 2 Introduction to operational semantics This chapter presents the syntax of a programming language, IMP, a small language of while programs. IMP is called an "imperative" language because program execution

More information

Part II. Hoare Logic and Program Verification. Why specify programs? Specification and Verification. Code Verification. Why verify programs?

Part II. Hoare Logic and Program Verification. Why specify programs? Specification and Verification. Code Verification. Why verify programs? Part II. Hoare Logic and Program Verification Part II. Hoare Logic and Program Verification Dilian Gurov Props: Models: Specs: Method: Tool: safety of data manipulation source code logic assertions Hoare

More information

COMP 507: Computer-Aided Program Design

COMP 507: Computer-Aided Program Design Fall 2014 April 7, 2015 Goal: Correctness proofs Prove that an algorithm written in an imperative language is correct Induction for algorithmic correctness Induction for functional programs: The program

More information

SOFTWARE ENGINEERING DESIGN I

SOFTWARE ENGINEERING DESIGN I 2 SOFTWARE ENGINEERING DESIGN I 3. Schemas and Theories The aim of this course is to learn how to write formal specifications of computer systems, using classical logic. The key descriptional technique

More information

Lecture 14: Lower Bounds for Tree Resolution

Lecture 14: Lower Bounds for Tree Resolution IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 14: Lower Bounds for Tree Resolution David Mix Barrington and Alexis Maciel August

More information

CVO103: Programming Languages. Lecture 5 Design and Implementation of PLs (1) Expressions

CVO103: Programming Languages. Lecture 5 Design and Implementation of PLs (1) Expressions CVO103: Programming Languages Lecture 5 Design and Implementation of PLs (1) Expressions Hakjoo Oh 2018 Spring Hakjoo Oh CVO103 2018 Spring, Lecture 5 April 3, 2018 1 / 23 Plan Part 1 (Preliminaries):

More information

Separation Logic Tutorial

Separation Logic Tutorial Separation Logic Tutorial (To appear in Proceedings of ICLP 08) Peter O Hearn Queen Mary, University of London Separation logic is an extension of Hoare s logic for reasoning about programs that manipulate

More information

Variable Side Conditions and Greatest Relations in Algebraic Separation Logic

Variable Side Conditions and Greatest Relations in Algebraic Separation Logic Variable Side Conditions and Greatest Relations in Algebraic Separation Logic Han-Hing Dang and Peter Höfner Institut für Informatik, Universität Augsburg, D-86159 Augsburg, Germany {h.dang,hoefner}@informatik.uni-augsburg.de

More information

Reasoning About Programs Panagiotis Manolios

Reasoning About Programs Panagiotis Manolios Reasoning About Programs Panagiotis Manolios Northeastern University March 22, 2012 Version: 58 Copyright c 2012 by Panagiotis Manolios All rights reserved. We hereby grant permission for this publication

More information

6.001 Notes: Section 6.1

6.001 Notes: Section 6.1 6.001 Notes: Section 6.1 Slide 6.1.1 When we first starting talking about Scheme expressions, you may recall we said that (almost) every Scheme expression had three components, a syntax (legal ways of

More information

Propositional Logic Formal Syntax and Semantics. Computability and Logic

Propositional Logic Formal Syntax and Semantics. Computability and Logic Propositional Logic Formal Syntax and Semantics Computability and Logic Syntax and Semantics Syntax: The study of how expressions are structured (think: grammar) Semantics: The study of the relationship

More information

Principles of Programming Pointers, Dynamic Memory Allocation, Character Arrays, and Buffer Overruns

Principles of Programming Pointers, Dynamic Memory Allocation, Character Arrays, and Buffer Overruns Pointers, Dynamic Memory Allocation, Character Arrays, and Buffer Overruns What is an array? Pointers Memory issues The name of the array is actually a memory address. You can prove this by trying to print

More information

Towards a Logical Reconstruction of Relational Database Theory

Towards a Logical Reconstruction of Relational Database Theory Towards a Logical Reconstruction of Relational Database Theory On Conceptual Modelling, Lecture Notes in Computer Science. 1984 Raymond Reiter Summary by C. Rey November 27, 2008-1 / 63 Foreword DB: 2

More information

Propositional Logic. Part I

Propositional Logic. Part I Part I Propositional Logic 1 Classical Logic and the Material Conditional 1.1 Introduction 1.1.1 The first purpose of this chapter is to review classical propositional logic, including semantic tableaux.

More information

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015 SCHEME 7 COMPUTER SCIENCE 61A October 29, 2015 1 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

Comp 311: Sample Midterm Examination

Comp 311: Sample Midterm Examination Comp 311: Sample Midterm Examination October 29, 2007 Name: Id #: Instructions 1. The examination is closed book. If you forget the name for a Scheme operation, make up a name for it and write a brief

More information

Inferring Invariants in Separation Logic for Imperative List-processing Programs

Inferring Invariants in Separation Logic for Imperative List-processing Programs Inferring Invariants in Separation Logic for Imperative List-processing Programs Stephen Magill Carnegie Mellon University smagill@cs.cmu.edu Aleksandar Nanevski Harvard University aleks@eecs.harvard.edu

More information

Type Systems. Today. 1. Organizational Matters. 1. Organizational Matters. Lecture 1 Oct. 20th, 2004 Sebastian Maneth. 1. Organizational Matters

Type Systems. Today. 1. Organizational Matters. 1. Organizational Matters. Lecture 1 Oct. 20th, 2004 Sebastian Maneth. 1. Organizational Matters Today Type Systems 1. Organizational Matters 2. What is this course about? 3. Where do types come from? 4. Def. of the small language Expr. Its syntax and semantics. Lecture 1 Oct. 20th, 2004 Sebastian

More information

Program Verification. Program Verification 307/434

Program Verification. Program Verification 307/434 Program Verification Program Verification 307/434 Outline Introduction: What and Why? Pre- and Postconditions Conditionals while-loops and Total Correctness Arrays Program Verification Introduction 308/434

More information

6. Hoare Logic and Weakest Preconditions

6. Hoare Logic and Weakest Preconditions 6. Hoare Logic and Weakest Preconditions Program Verification ETH Zurich, Spring Semester 07 Alexander J. Summers 30 Program Correctness There are many notions of correctness properties for a given program

More information

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find CS1622 Lecture 15 Semantic Analysis CS 1622 Lecture 15 1 Semantic Analysis How to build symbol tables How to use them to find multiply-declared and undeclared variables. How to perform type checking CS

More information

Overview. Probabilistic Programming. Dijkstra s guarded command language: Syntax. Elementary pgcl ingredients. Lecture #4: Probabilistic GCL

Overview. Probabilistic Programming. Dijkstra s guarded command language: Syntax. Elementary pgcl ingredients. Lecture #4: Probabilistic GCL Overview Lecture #4: Probabilistic GCL 1 Joost-Pieter Katoen 2 3 Recursion RWTH Lecture Series on 2018 Joost-Pieter Katoen 1/31 Joost-Pieter Katoen 2/31 Dijkstra s guarded command language: Syntax Elementary

More information

The semantics of a programming language is concerned with the meaning of programs, that is, how programs behave when executed on computers.

The semantics of a programming language is concerned with the meaning of programs, that is, how programs behave when executed on computers. Semantics The semantics of a programming language is concerned with the meaning of programs, that is, how programs behave when executed on computers. The semantics of a programming language assigns a precise

More information

CS558 Programming Languages. Winter 2013 Lecture 3

CS558 Programming Languages. Winter 2013 Lecture 3 CS558 Programming Languages Winter 2013 Lecture 3 1 NAMES AND BINDING One essential part of being a high-level language is having convenient names for things: variables constants types functions etc. classes

More information

On Garbage and Program Logic

On Garbage and Program Logic On Garbage and Program Logic Cristiano Calcagno 12 and Peter W. O Hearn 1 1 Queen Mary, University of London 2 DISI, University of Genova Abstract. Garbage collection relieves the programmer of the burden

More information

Resolution (14A) Young W. Lim 6/14/14

Resolution (14A) Young W. Lim 6/14/14 Copyright (c) 2013-2014. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free

More information

Semantics. There is no single widely acceptable notation or formalism for describing semantics Operational Semantics

Semantics. There is no single widely acceptable notation or formalism for describing semantics Operational Semantics There is no single widely acceptable notation or formalism for describing semantics Operational Describe the meaning of a program by executing its statements on a machine, either simulated or actual. The

More information

Principles of Programming Languages

Principles of Programming Languages Principles of Programming Languages Lecture 08 Control Semantics & Continuations Semantics of Control Flow Sequencers: commands that cause control transfers:! goto! return! exit! break! continue! resultis

More information