# Combinational Logic. Prof. Wangrok Oh. Dept. of Information Communications Eng. Chungnam National University. Prof. Wangrok Oh(CNU) 1 / 93

Size: px
Start display at page:

Download "Combinational Logic. Prof. Wangrok Oh. Dept. of Information Communications Eng. Chungnam National University. Prof. Wangrok Oh(CNU) 1 / 93"

Transcription

1 Combinational Logic Prof. Wangrok Oh Dept. of Information Communications Eng. Chungnam National University Prof. Wangrok Oh(CNU) / 93

2 Overview Introduction 2 Combinational Circuits 3 Analysis Procedure 4 Design Procedure 5 Binary Adder-Subtractor 6 Decimal Adder 7 Binary Multiplier 8 Magnitude Comparator 9 Decoders Encoders Multiplexer 2 HDL Models of Combinational Circuits Prof. Wangrok Oh(CNU) 2 / 93

3 Introduction Logic circuits for digital systems may be combinational or sequential Combinational logic circuit Outputs are determined from only the present combination of inputs Combinational circuit performs an operation that can be specified logically by a set of Boolean functions Sequential logic circuits Employ storage elements in addition to logic gates Outputs are a function of the inputs and the state of the storage elements Outputs depend both on present and past inputs Circuit behavior must be specified by a time sequence of inputs and internal states Prof. Wangrok Oh(CNU) Introduction 3 / 93

4 Combinational Circuits A combinational circuit consists of an interconnection of logic gates Chapter 4 Combinational Logic Block diagram of a combinational circuit n inputs Combinational circuit m outputs FIGURE 4. Block diagram n input of binary combinational variablescircuit come from an external source m output variables are produced by the internal combinational logic and go to an external destination destination Each are storage input and registers. output If variable the registers exists physically are included as an with analog the combinational signal gates, then the whose total values circuit are must interpreted be considered to be a sequential circuit. For n input variables, there are 2 n to be a binary signal that represents logic and logic possible combinations of the binary inputs. For each possible input In combination, many applications, there the is one source possible and destination value for each are output storage variable. registers Thus, a combinational If the circuit registers can be are specified included with with a the truth combinational table that lists gates, the then output the values for each combination total circuit of input must variables. be considered A combinational to be a sequential circuit also circuit can be described by m Boolean functions, one for each output variable. Each output function is expressed in terms of the n input variables. Prof. In Chapter Wangrok Oh(CNU), we learned about binary Combinational numbers Circuits and binary codes that represent discrete 4 / 93

5 Combinational Circuits For n input variables, there are 2 n possible combinations of the binary inputs A combinational circuit also can be described by Truth table m Boolean expression (One for each output variable) Each expression can be expressed with n input variables Prof. Wangrok Oh(CNU) Combinational Circuits 5 / 93

6 Analysis Procedure The first step in the analysis is to make sure that the given circuit is combinational and not sequential The diagram of a combinational circuit has logic gates with no feedback paths or memory elements Obtaining the Boolean function from a logic diagram Label all gate outputs that are a function of input variables 2 Determine the Boolean functions for each gate output 3 Label the gates that are a function of input variables and previously labeled gates 4 Find the Boolean functions for these gates 5 Repeat the process in step 3 and 4 until the outputs are obtained 6 By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables Prof. Wangrok Oh(CNU) Analysis Procedure 6 / 93

7 Analysis Procedure 28 Chapter 4 Combinational Logic A B C T 2 F A B C T T 3 F 2 A B A C F 2 B C FIGURE 4.2 Logic diagram for analysis example The circuit has 3 binary inputs and 2 binary outputs F 2 = AB + AC + BC If we want to pursue the investigation and determine the information transformation task achieved by this circuit, we can draw the circuit from the derived Boolean expressions and try to recognize = A + B + C T a familiar operation. The Boolean functions for F a n d F 2 implement a circuit discussed F in Section 4.5. Merely finding a Boolean representation of a circuit doesn t provide 2 = ABC insight into its behavior, but in this example we will observe that the Boolean equations and truth table for F a n d F 2 m a t c h t h o s e d e s c r i b i n g t h e Prof. Wangrok Oh(CNU) Analysis Procedure 7 / 93

8 Analysis Procedure Consider outputs that are a function of already defined symbols Obtain F with substitutions T 3 = F 2T F = T 3 + T 2 F = T 3 + T 2 = F 2T + ABC = (AB + AC + BC) (A + B + C) + ABC Prof. Wangrok Oh(CNU) Analysis Procedure 8 / 93

9 Analysis Procedure Truth table can be obtained once the Boolean functions are known Obtaining the truth table directly from the logic diagram Determine the number of input variables in the circuit 2 For n inputs, form the 2 n possible input combinations and list the binary numbers from to 2 n in a table 3 Label the outputs of selected gates with arbitrary symbols 4 Obtain the truth table for the outputs of those gates which are a function of the input variables only Section 4.4 Design Procedure 29 5 Proceed to obtain the truth table for the outputs of those gates which are Table a function 4. of previously defined values Truth Table for the Logic Diagram of Fig. 4.2 A B C F 2 F 2 T T 2 T 3 F Prof. Wangrok Oh(CNU) Analysis Procedure 9 / 93

10 Analysis Procedure Another way of analyzing a combinational circuit is by means of logic simulation This is not practical because the number of input patterns that might be needed to generate meaningful outputs could be very large Simulation has a very practical application in verifying that the functionality of a circuit actually matches its specification Prof. Wangrok Oh(CNU) Analysis Procedure / 93

11 Design Procedure Design procedure From the specifications, determine the required number of inputs and outputs and assign a symbol to each 2 Derive the truth table that defines the required relationship between inputs and outputs 3 Obtain the simplified Boolean functions for each output 4 Draw the logic diagram and verify the correctness of the design manually or by simulation Several constraints must be taken into consideration when designing integrated circuits Number of gates Number of inputs to a gate Propagation time of the signal through the gates Number of interconnections Limitations of the driving capability of each gate Prof. Wangrok Oh(CNU) Design Procedure / 93

12 Design Procedure Code Conversion Example Binary coded decimal (BCD) Excess-3 code Each code uses 4 bits to represent a decimal digit 4 input and 4 output variables Table 4.2 Truth Table for Code Conversion Example Input BCD Section 4.4 Design Procedure 3 Output Excess-3 Code A B C D w x y z Note that only combinations are listed 6 combinations are don t care combinations be four input variables and four output variables. We designate the four input binary Prof. Wangrok Oh(CNU) Design Procedure 2 / 93

13 Design Procedure 32 Chapter 4 Combinational Logic C CD AB m m m 3 m 2 AB CD C m m m 3 m 2 A m 4 m 5 m 7 m 6 m 2 m 3 m 5 m 4 X X X X m 8 m 9 m m X X B A m 4 m 5 m 7 m 6 m 2 m 3 m 5 m 4 X X X X m 8 m 9 m m X X B D z D C CD AB m m m 3 m 2 D y CD C D C CD AB m m m 3 m 2 A m 4 m 5 m 7 m 6 m 2 m 3 m 5 m 4 X X X X m 8 m 9 m m B A m 4 m 5 m 7 m 6 m 2 m 3 m 5 m 4 X X X X m 8 m 9 m m B X X X X D x B C B D BC D FIGURE 4.3 Maps for BCD-to-excess-3 code converter D w A BC BD Prof. Wangrok Oh(CNU) Design Procedure 3 / 93

14 Design Procedure z = D y = CD + C D = CD + (C + D) x = B C + B D + BC D = B (C + D) + BC D = B (C + D) + B(C + D) w = A + BC + BD = A + B(C + D) Implementation in sum-of-products form requires 7 AND gates and 3 OR gates Prof. Wangrok Oh(CNU) Design Procedure 4 / 93

15 Design Procedure Section 4.5 Binary Adder Subtractor 33 D z D C CD y (C D) C D B x A w FIGURE 4.4 Logic diagram for BCD-to-excess-3 code converter The implementation requires 4 AND gates, 4 OR gates, and one inverter implementation will require inverters for variables B, C, a n d D, and the second implementation will require inverters for variables B and D. Thus, the three-level logic Prof. Wangrok Oh(CNU) circuit requires fewer gates, all Design of which Procedure in turn require no more than two inputs. 5 / 93

18 Binary Adder-Subtractor Full Adder Addition of n-bit binary numbers requires the use of a full adder After the least significant bit, addition at each position adds not only the respective bits but must also consider a possible carry bit from the previous position Full adder is a combinational circuit that forms the arithmetic sum of three bits It consists of 3 inputs and 2 outputs Two of the input variables represent the two bits to be added The third input represents the carry from the previous lower significant position The two outputs are designated by the symbols S for sum and C for carry Prof. Wangrok Oh(CNU) Binary Adder-Subtractor 8 / 93

19 Binary Adder-Subtractor Table 4.4 Full Adder x y z C S 36 Chapter 4 Combinational Logic yz x y x yz y m m m 3 m 2 m m m 3 m 2 x m 4 m 5 m 7 m 6 m 4 x m 5 m 7 m 6 z z S = x y z + x yz + xy z + xyz (a) S x y z x yz xy z xyz FIGURE 4.6 C = xy + xz + yz K-Maps for full adder (b) C xy xz yz Prof. Wangrok Oh(CNU) Binary Adder-Subtractor 9 / 93

20 FIGURE 4.6 Binary Adder-Subtractor K-Maps for full adder x y z x y z x y z x y z FIGURE 4.7 Implementation of full adder in sum-of-products form S = x y z + x yz + xy z + xyz S in Fig The S output from = the z (xy second + x half y) adder + z(xy is the + x exclusive-or y ) of z and the output of the first half adder, giving = z (xy + x y) + z(xy + x y) S = z { x { y2 = z xy = z + x y2 (x + y) zxy + x y2 C = z xy = z(xy + x y2 + x + y) zxy + + xyx y 2 = xy z + x yz + xyz + x y z = z(x y) + xy The carry output is C = zxy + x y2 + xy = xy z + x yz + xy Prof. Wangrok Oh(CNU) Binary Adder-Subtractor 2 / 93 x y x z y z C

24 Binary Adder-Subtractor An obvious solution for reducing the carry propagation delay time is to employ faster gates with reduced delays Physical circuits have a limit to their capability of speed There are several techniques for reducing the carry propagation time in a parallel adder The most widely used technique employs the principle of carry lookahead logic P i = A i B i G i = A ib i Output sum and carry S i = P i C i C i+ = G i + P ic i G i is called a Carry generate and it produces a carry of when both A i and B i are regardless of the input carry C i P i is called a carry propagate It determines whether a carry into stage i will propagate into stage (i + ) Prof. Wangrok Oh(CNU) Binary Adder-Subtractor 24 / 93

25 Binary Adder-Subtractor Boolean functions for the carry outputs of each stage C : Input carry 2 C = G + P C 3 C 2 = G + P C = G + P (G + P C ) = G + P G + P P C 4 C 3 = G 2 + P 2 C 2 = G 2 + P 2 G + P 2 P G + P 2 P P C Boolean function for each output carry is expressed in sum-of-products form Can be implemented with one level of AND gates followed by an OR gate (or by a two-level NAND) Note that this circuit can add in less time because C 3 does not have to wait for C 2 and C to propagate This gain in speed of operation is achieved at the expense of additional complexity (hardware) Prof. Wangrok Oh(CNU) Binary Adder-Subtractor 25 / 93

26 are propagated through the carry lookahead generator (similar to that in Fig. 4. ) and applied as inputs to the second exclusive-or gate. All output carries are generated after Binary Adder-Subtractor C 3 P 2 G 2 C 2 P G P C G C FIGURE 4. Logic diagram of carry lookahead generator Prof. Wangrok Oh(CNU) Binary Adder-Subtractor 26 / 93

27 Binary Adder-Subtractor Section 4.5 Binary Adder Subtractor 4 C 4 C 4 B 3 P 3 A P 3 3 G 3 C 3 S 3 B 2 A 2 P 2 P 2 C 2 S 2 G 2 B A P Carry Lookahead Generator P C S G B A P P S G C C FIGURE 4.2 Four-bit adder with carry lookahead Prof. Wangrok Oh(CNU) Binary Adder-Subtractor 27 / 93

28 Binary Adder-Subtractor Each sum output requires two exclusive-or gates First exclusive-or generates P i and AND gate generates G i The carries are propagated through the carry lookahead generator and applied as inputs to the second exclusive-or gate All output carries are generated after a delay through two levels of gates Prof. Wangrok Oh(CNU) Binary Adder-Subtractor 28 / 93

29 Binary Adder-Subtractor Binary Subtractor Subtraction of unsigned binary numbers can be done most conveniently by means of complements Subtraction (A B) can be done by taking the 2 s complement of B and adding it to A 2 s complement can be obtained by taking the s complement and adding to the least significant pair of bits s complement can be implemented with inverters can be added to the sum through the input carry Circuit for subtracting (A B) consists of an adder with inverters (A B): A + ( s complement of B) + Prof. Wangrok Oh(CNU) Binary Adder-Subtractor 29 / 93

30 Binary Adder-Subtractor 42 Chapter 4 Combinational Logic B 3 A 3 B 2 A 2 B A B A M C C 4 FA C 3 FA C 2 FA C FA C V S 3 S 2 S S FIGURE 4.3 Binary numbers Four-bit adder subtractor in the signed-complement (with overflow detection) system are added and subtracted by the same basic addition and subtraction rules Computers need only one common hardware to handle both types The circuit for subtracting A - B consists of an adder with inverters placed between each data input B and the corresponding input of the full adder. The input carry C must User must be equal interpret to when subtraction the results is performed. of addition/subtraction The operation thus performed differently becomes A, depending plus the on s whether complement it of isb signed, plus. This or unsigned is equal to A plus the 2 s complement of B. For unsigned numbers, that gives A - B if A Ú B or the 2 s complement of B - A2 if A 6 B. For signed numbers, the result is A - B, provided that there is no overflow. (See Section.6.) Prof. Wangrok Oh(CNU) The addition and subtraction Binary Adder-Subtractor operations can be combined into one circuit with one 3 / 93

32 Decimal Adder Binary addition: it is sufficient to consider a pair of bits with a carry Decimal adder requires a minimum of 9 inputs and 5 outputs Input: Two 4-bit input and -bit carry-in Output: 4-bit output and -bit carry-out There is a wide variety of possible decimal adder circuits depending on the code used to represent the decimal digits Prof. Wangrok Oh(CNU) Decimal Adder 32 / 93

33 Decimal Adder BCD Adder Arithmetic addition of two decimal digits in BCD Section 4.6 Decimal Adder 45 Each input digit does not exceed 9 Sum cannot be greater than 9 (9+9+) Table 4.5 Derivation of BCD Adder Binary Sum BCD Sum Decimal K Z 8 Z 4 Z 2 Z C S 8 S 4 S 2 S Prof. Wangrok Oh(CNU) Decimal Adder 33 / 93

34 Decimal Adder When the binary sum is equal to or less than, the corresponding BCD number is identical No conversion is needed When the binary sum is greater than We obtain an invalid BCD representation Addition of binary 6 () to the binary sum converts it to the correct BCD representation and produces an output carry as required Correction is needed when the binary sum has an output carry K = and when the binary sum is in the range from to Condition for a correction and an output carry can be expressed by the Boolean function C = K + Z 8Z 4 + Z 8Z 2 When C =, it is necessary to add to the binary sum and provide an output carry for the next stage Prof. Wangrok Oh(CNU) Decimal Adder 34 / 93

35 Decimal 46 Adder Chapter 4 Combinational Logic Addend Augend Carry out K 4-bit binary adder Carry in Z 8 Z 4 Z 2 Z Output carry 4-bit binary adder S 8 S 4 S 2 S FIGURE 4.4 Prof. Wangrok Oh(CNU) Block diagram of a BCD adder Decimal Adder 35 / 93

36 Binary Multiplier Binary number multiplication is performed in the same way as decimal number multiplication Section 4.7 Binary Multiplier 47 B B A B B A A A B A B A B A B C 3 C 2 C C A B B HA HA FIGURE 4.5 Two-bit by two-bit binary multiplier C 3 C 2 C C Prof. Wangrok Oh(CNU) Binary Multiplier 36 / 93

37 Binary Multiplier Binary multiplier with more bits can be constructed in a similar fashion J-bit multiplier and K-bit multiplicand (J K) AND gates (J ) K-bit adders Product output will be a binary number with (J + K)-bits Prof. Wangrok Oh(CNU) Binary Multiplier 37 / 93

38 Binary Multiplier 48 Chapter 4 Combinational Logic A B 3 B 2 B B A B 3 B 2 B B Addend Augend 4-bit adder Sum and output carry A 2 B 3 B 2 B B Addend Augend 4-bit adder Sum and output carry C 6 C 5 C 4 C 3 C 2 C C FIGURE 4.6 Four-bit by three-bit binary multiplier Prof. Wangrok Oh(CNU) Binary Multiplier 38 / 93

39 Magnitude Comparator A magnitude comparator is a combinational circuit that compares two numbers A and B and determines their relative magnitudes Circuit for comparing two n-bit numbers has 2 2n entries in the truth table and becomes too complex Fortunately, a comparator circuit possesses a certain amount of regularity Two numbers A and B with 4 digits each A = A 3 A 2 A A B = B 3 B 2 B B Equality of each pair of bits (A i = B i ) can be expressed with an exclusive-nor x i = A i B i + A ib i To determine whether A is greater or less than B, we inspect the relative magnitudes of pairs of significant digits starting from the most significant position Prof. Wangrok Oh(CNU) Magnitude Comparator 39 / 93

40 Magnitude Comparator If the two digits of a pair are equal, we compare the next lower significant pair of digits The comparison continues until a pair of unequal digits is reached If the corresponding digit of A is and that of B is : A > B If the corresponding digit of A is and that of B is : A < B (A > B) = A 3 B 3 + x 3 A 2 B 2 + x 3 x 2 A B + x 3 x 2 x A B (A < B) = A 3B 3 + x 3 A 2B 2 + x 3 x 2 A B + x 3 x 2 x A B Prof. Wangrok Oh(CNU) Magnitude Comparator 4 / 93

41 Magnitude 5 Chapter Comparator 4 Combinational Logic A 3 x 3 B 3 A 2 x 2 B 2 (A B) A x B A x (A B) B (A B) FIGURE 4.7 Four-bit magnitude comparator Prof. Wangrok Oh(CNU) Magnitude Comparator 4 / 93

42 Decoders A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2 n unique output lines Decoders presented here are called n-to-m-line decoders m 2 n The name decoder is also used in conjunction with other code converters such as a BCD-to-seven-segment decoder Example: 3-to-8 line decoder The three inputs are decoded into eight outputs Each output represents one of the minterms of the three input variables A particular application of this decoder is binary-to-octal conversion 3-to-8 line decoder can be used for decoding any 3-bit code to provide eight outputs, one for each element of the code Prof. Wangrok Oh(CNU) Decoders 42 / 93

43 Decoders ber, and the outputs represent the eight digits of a number in the octal number system. However, a three-to-eight-line decoder can be used for decoding any three-bit code to provide eight outputs, one for each element of the code. D x y z z D x y z D 2 x yz y D 3 x yz x D 4 xy z D 5 xy z D 6 xyz D 7 xyz FIGURE 4.8 Three-to-eight-line decoder Prof. Wangrok Oh(CNU) Decoders 43 / 93

44 Decoders 52 Chapter 4 Combinational Logic Table 4.6 Truth Table of a Three-to-Eight-Line Decoder Inputs Outputs x y z D D D 2 D 3 D 4 D 5 D 6 D 7 For each possible input combination, there are 7 outputs equal to and only one equal to The operation of the decoder may be clarified by the truth table listed in Table 4.6. For each possible input combination, there are seven outputs that are equal to and only one that is equal to. The output whose value is equal to represents the minterm equivalent of the binary number currently available in the input lines. Some decoders are constructed with NAND gates. Since a NAND gate produces the AND operation with an inverted output, it becomes more economical to generate the decoder minterms in their complemented form. Furthermore, decoders include one or more enable inputs to control the circuit operation. A two-to-four-line decoder with an enable input constructed with NAND gates is shown in Fig The circuit operates with complemented outputs and a complement enable input. The decoder is enabled when E is equal to (i.e., active-low enable). As indicated by the truth table, only one The output whose value is equal to represents the minterm equivalent of the binary number currently available in the input lines Some decoders are constructed with NAND gates NAND produces the AND operation with an inverted output Some decoders include one or more enable inputs to control the circuit operation Prof. Wangrok Oh(CNU) Decoders 44 / 93 D

45 Decoders Example (2-to-4 line decoder constructed with NAND) D A B D D 2 E A B D D D 2 D 3 X X E D 3 Demultiplexer Circuit that receives information from a single line and directs it to one of 2 n possible output lines The selection of a specific output is controlled by the bit combination of n selection lines Prof. Wangrok Oh(CNU) Decoders 45 / 93

46 Decoders with enable inputs can be connected together to form a larger decoder circuit. Figure 4.2 shows two 3-to-8-line decoders with enable inputs connected to form a 4-to-6-line decoder. When w, the top decoder is enabled and the other is disabled The bottom decoder outputs are all s, and the top eight outputs generate minterm to. When w, the enable conditions are reversed: The bottom decoder Decoder with enable input can function as a demultiplexer outputs generate minterms to, while the outputs of the top decoder are al s. This Decoder example with demonstrates an enable: the Decoder-demultiplexer usefulness of enable inputs in decoders and other Decoders with enable inputs can be connected together to form a larger decoder Decoders x y z w 3 8 decoder E D to D decoder E D 8 to D 5 FIGURE * 6 decoder constructed with two 3 * 8 decoders Prof. Wangrok Oh(CNU) Decoders 46 / 93

47 Decoders Combinational Logic Implementation Decoder provides the 2 n minterms of n input variables Each output of the decoder is associated with a unique pattern of input bits Any Boolean function can be expressed in sum-of-minterms form Decoder that generates the minterms of the function together with an external OR gate provides a hardware implementation of the function Any combinational circuit with n inputs and m outputs can be implemented with an n-to-2 n -line decoder and m OR gates Prof. Wangrok Oh(CNU) Decoders 47 / 93

48 Decoders Example (Full Adder) S(x, y, z) = (, 2, 4, 7) C(x, y, z) = (3, 5, 6, 7) There are 3 inputs and eight minterms We need a three-to-eight-line decoder Prof. Wangrok Oh(CNU) Decoders 48 / 93

49 minterms for x, y, and z. The OR gate for output S forms the logical sum of minterms, Decoders 2, 4, and 7. The OR gate for output C forms the logical sum of minterms 3, 5, 6, and 7. x S y decoder 3 4 z C 7 FIGURE 4.2 Implementation Function with of a full a long adder list with of a minterms decoder Requiring an OR gate with a large number of inputs Function having k midterms can be expressed in its complemented form with 2 n k midterms If the number of midterms is greater than 2 n /2 F can be expressed with fewer midterms Use a NOR gate to sum the minterms of F Output of the NOR gate complements the sum and generates the normal output F! Prof. Wangrok Oh(CNU) Decoders 49 / 93

50 Decoders If NAND gates are used for the decoder External gates must be NAND gates instead of OR gates Two-level NAND gate circuit implements a sum-of-minterms and is equivalent to a two-level AND-OR circuit Prof. Wangrok Oh(CNU) Decoders 5 / 93

51 Encoders The encoder can be implemented with OR gates whose inputs are determined directly from the truth table. Output z is equal to when the input octal digit is, 3, 5, or 7. Output y is for octal digits 2, 3, 6, or 7, and output x is for digits 4, 5, 6, or 7. These conditions can be expressed by the following Boolean output functions: z = D + D 3 + D 5 + D 7 y = D Encoder: Digital circuit performs 2 + D the 3 + D inverse 6 + D 7 operation of a decoder Encoder has 2 n x = D 4 + D 5 + D 6 + D 7 (or fewer) input lines and n output lines The encoder can be implemented with three OR gates. The output lines generate the binary code corresponding to the input value Example: Table Octal-to-binary 4.7 encoder Truth Table of an Octal-to-Binary Encoder Inputs Outputs D D D 2 D 3 D 4 D 5 D 6 D 7 x y z Encoder can be implemented with OR gates z = D +D 3+D 5+D 7 y = D 2+D 3+D 6+D 7 x = D 4+D 5+D 6+D 7 Prof. Wangrok Oh(CNU) Encoders 5 / 93

52 Encoders has a third output designated by V ; this is a valid bit indicator that is set to when one or more inputs are equal to. If all inputs are, there is no valid input and V is equal to. The other two outputs are not inspected when V equals and are specified as don t-care conditions. Note that whereas X s in output columns represent don t-care conditions, the X s in the input columns are useful for representing a truth table in condensed form. Instead of listing all 6 minterms of four variables, the truth table uses an X to represent Limitations either If two or inputs. For example, are active X simultaneously, represents the two the minterms output produces and. an undefined combination Output with all s is generated when all the inputs are but this output is the same as when D is equal to Priority Encoder inputs are, and so on down the priority levels. Encoder circuit that includes the priority function If two or more inputs are equal to at the same time, the input having the highest Table priority 4.8 will be taken According to Table 4.8, the higher the subscript number, the higher the priority of the input. Input D 3 has the highest priority, so, regardless of the values of the other inputs, when this input is, the output for xy is (binary 3). D 2 has the next priority level. The output is if D 2 =, provided that D 3 =, regardless of the values of the other two lower priority inputs. The output for D is generated only if higher priority Truth Table of a Priority Encoder Inputs Outputs D D D 2 D 3 x y V X X X X X X X X Prof. Wangrok Oh(CNU) Encoders 52 / 93

53 D 3 D 3 x D Encoders 2 D 3 y D 3 D D 2 FIGURE 4.22 Section 4. Encoders 57 Maps for a priority encoder D 2 D 2 D 3 D 2 D 3 D D D D The maps for simplifying outputs x and y are shown in Fig The minterms for the m m m 3 m 2 m m m 3 m 2 two functions X are derived from Table 4.8. Although the table X has only five rows, when each X in a row is replaced first by and then by, we obtain all 6 possible input combinations. For example, the fourth row in the table, with inputs XX, represents 6 m 4 m 5 m 7 m 6 m 4 m 5 m 7 m the four minterms,,, and. The simplified Boolean expressions for the priority D m m m m D encoder are 2 obtained 3 5 from the 4 maps. The condition for output m 2 V m 3 is an mor 5 function m 4 of all the input variables. The priority encoder is implemented in Fig according to the following D m 8 Boolean m 9 functions: m m D m 8 m 9 m m X x = D 2 + D 3 D 3 y = D 3 + D D 2 D 3 x D 2 D 3 V = D + D + D 2 + D 3 y D 3 D D 2 FIGURE 4.22 Maps for a priority encoder D 3 y The maps D 2 for simplifying outputs x and y are shown in Fig The minterms for the two functions are derived from Table 4.8. Although the table has only five rows, when each X in Da row is replaced first by and then by, we obtain all 6 possible input combinations. For example, the fourth row in the table, with inputs XX, represents the four minterms,,, and. The simplified Boolean expressions for x the priority encoder are obtained from the maps. The condition for output V is an OR function of all the input variables. The priority encoder is implemented in Fig according to the following Boolean functions: V D x = D 2 + D 3 FIGURE 4.23 y = D 3 + D D Four-input priority encoder 2 Prof. Wangrok Oh(CNU) Encoders 53 / 93 D 2

54 Multiplexer to select a particular AND gate. The outputs of the AND gates are applied to a single OR gate that provides the one-line output. The function table lists the input that is passed to the output for each combination of the binary selection values. To demonstrate the operation of the circuit, consider the case when S S =. The AND gate associated with input I 2 has two of its inputs equal to and the third input connected to I 2. The other three AND gates have at least one input equal to, which makes their outputs equal to. The output of the OR gate is now equal to the value of I Multiplexer: Combinational circuit selects one of many 2, providing a path input lines from the selected input to the output. A multiplexer is also called a data selector, since and directs it selects it toone a of single many inputs output and steers linethe binary information to the output line. The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed, Selection they decode is controlled by a set of selection lines Normally, 2 n the selection input lines. In general, a 2 n -to--line multiplexer is constructed from an n -to-2 input n decoder lines by adding and 2 n input selection lines to it, lines one to each AND gate. The outputs of the AND gates are applied to a single OR gate. The size of a multiplexer is specified by Two-to-one-line multiplexer I I Y I MUX Y I S (a) Logic diagram S (b) Block diagram FIGURE 4.24 Two-to-one-line multiplexer Multiplexer acts like an electronic switch that selects one of two sources Multiplexer is often labeled MUX in block diagrams Prof. Wangrok Oh(CNU) Multiplexer 54 / 93

55 Multiplexer Four-to-one-line multiplexer Section 4. Multiplexers 59 I I Y I 2 I 3 S S Y S S (a) Logic diagram I I I 2 I 3 (b) Function table FIGURE 4.25 Prof. Wangrok Four-to-one-line Oh(CNU) multiplexer Multiplexer 55 / 93

56 Multiplexer Multiplexer is also called a data selector Multiple-bit 6 Chapter selection 4 Combinational logic Logic A Y A Y A 2 Y 2 A 3 Y 3 B B B 2 E S Output Y X all s select A select B Function table B 3 S (select) E (enable) FIGURE 4.26 Prof. Wangrok Oh(CNU) Quadruple two-to-one-line multiplexer Multiplexer 56 / 93

57 Multiplexer Boolean Function Implementation Decoder can be used to implement Boolean functions by employing external OR gates (Refer to P. 47-5) Multiplexer is essentially a decoder that includes the OR gate within the unit Minterms are generated in a multiplexer by the circuit associated with the selection inputs Individual minterms can be selected by the data inputs Boolean function of n variables can be implemented with a multiplexer that has n selection inputs and 2 n data inputs Actually, n variables Boolean function can be implemented with an (n ) selection input multiplexer The first n variables of the function are connected to the selection inputs of the multiplexer The remaining single variable of the function is used for the data inputs Prof. Wangrok Oh(CNU) Multiplexer 57 / 93

58 ables in the table are applied to the selection inputs of the multiplexer. For each combination of the selection variables, we evaluate the output as a function of the last variable. This function can be,, the variable, or the complement of the variable. These values are then applied to the data inputs in the proper order. As a second example, consider the implementation of the Boolean function Multiplexer Example (F (x, y, z) = (, 2, 6, 7)) F (A, B, C, D) = (, 3, 4,, 2, 3, 4, 5) This function is implemented with a multiplexer with three selection inputs as shown in Fig Note that the first variable A must be connected to selection input S 2 so that A, B, and C correspond to selection inputs S 2, S, and S, respectively. The values for the This function of three variables can be implemented with a four-to-one-line multiplexer 4 MUX x y z F F z y x S S F z F F z z 2 3 F (a) Truth table FIGURE 4.27 Implementing a Boolean function with a multiplexer (b) Multiplexer implementation Prof. Wangrok Oh(CNU) Multiplexer 58 / 93

59 Multiplexer General Procedure Make a truth table for a Boolean function 2 First (n ) variables in the table are applied to the selection inputs 3 For each combination of the selection variables, we evaluate the output as a function of the last variable This function can be,, the variable, or the complement of the variable 4 These values are then applied to the data inputs in the proper order Prof. Wangrok Oh(CNU) Multiplexer 59 / 93

60 Multiplexer Example (F (A, B, C, D) = (, 3, 4,, 2, 3, 4, 5)) This function is implemented with a multiplexer with three selection inputs 62 Chapter 4 Combinational Logic data inputs are determined from the truth table listed in the figure. The corresponding S S S MUX F C B A D A B C D F F D F D F D F F F D F F FIGURE 4.28 Implementing a four-input function with a multiplexer Prof. Wangrok Oh(CNU) Multiplexer 6 / 93

61 Multiplexer Tree-State Gates Three-state gate: Digital circuits that exhibit three states (, and High-impedance state) High-impedance state Logic behaves like an open circuit which means that the output appears to be disconnected Circuit has no logic significance Circuit connected to the output of the three-state gate is not affected by the inputs to the gate Three-state buffer gate Section 4. Multiplexers 63 Normal input A Output Y A if C High-impedance if C Control input C FIGURE 4.29 The high-impedance state provides a special feature not available in Graphic symbol for a three-state buffer other gates Several three-state gate outputs can be connected with wires to form a common line without endangering loading input is effects, the output is disabled and the gate goes to a high-impedance state, regardless of the value in the normal input. The high-impedance state of a three-state gate provides a special feature not available in other gates. Because of this feature, a large number o Prof. Wangrok Oh(CNU) Multiplexer 6 / 93

62 Multiplexer buffers and an inverter. The two outputs are connected together to form a single output line. (Note that this type of connection cannot be made with gates that do not have three-state outputs.) When the select input is, the upper buffer is enabled by its control input and the lower buffer is disabled. Output Y is then equal to input A. When the select input is, the lower buffer is enabled and Y is equal to B. The construction of a four-to-one-line multiplexer is shown in Fig. 4.3(b). The outputs of 4 three-state buffers are connected together to form a single output line. The control inputs to the buffers determine which one of the four normal inputs I through Construction of multiplexers with three-state buffers I Y I I 2 A Y I 3 B Select Select Enable S S EN 2 4 decoder 2 3 (a) 2-to--line mux FIGURE 4.3 Multiplexers with three-state gates (b) 4-to--line mux Prof. Wangrok Oh(CNU) Multiplexer 62 / 93

63 HDL Models of Combinational Circuits Module is the basic building block for modeling hardware with the Verilog HDL The logic of a module can be described in any one (or a combination) of the following modeling styles Gate-level modeling using instantiations of predefined and user-defined primitive gates Describing a circuit by specifying its gates and how they are connected with each other 2 Dataflow modeling using continuous assignments with the keyword assign Used mostly for describing the Boolean equations of combinational logic 3 Behavioral modeling using procedural assignments with the keyword always Used to describe combinational and sequential circuits at a higher level of abstraction 4 Switch-level modeling Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 63 / 93

64 HDL Models of Combinational Circuits Gate-Level Modeling Gate-level modeling provides a textual description of a schematic diagram Verilog HDL includes 2 basic gates as predefined primitives Four of the primitive gates are of the three-state type and, nand, or, nor, xor, xnor, not and buf Logic of each gate is based on a four-valued system Logic value Logic value Unknown: Denoted by x High impedance: Denoted by z Four-valued logic truth tables for the and, or, xor and not primitive Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 64 / 93

65 HDL Models 66 Chapter of4 Combinational Logic Circuits Table 4.9 Truth Table for Predefined Primitive Gates and x z or x z x x x x x x x x x x x x z x x x z x x x xor x z not input output x x x x x x x x x x x z x x x x z x Truth table for the other four gates is the same except that the outputs instantiate are the complemented gate. Think of instantiation as the HDL counterpart of placing and connecting parts on a circuit board. When We now a primitive present two gate examples is listed of gate-level in a module, modeling. we Both say examples that it use isidentifiers instantiated having multiple inbit the widths, module called vectors. The syntax specifying a vector includes within Insquare general, brackets component two numbers instantiations separated with a are colon. statements The following that Verilog reference statements specify two vectors: lower level components in the design, essentially creating unique copies output (or[: instances) 3] D; of those components in the higher level module wire [7: ] SUM; The first statement declares an output vector D with four bits, through 3. The second declares a wire vector SUM with eight bits numbered 7 through. ( Note : The first (left- Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 65 / 93

66 HDL Models of Combinational Circuits Module that uses a gate in its description is said to instantiate the gate Think of instantiation as the HDL counterpart of placing and connecting parts on a circuit board Specifying a vector output [:3] D; 2 wire [7:] SUM ; Statement in Line declares an output vector D with four bits, through 3 Statement in Line 2 declares a wire vector SUM with eight bits numbered 7 through Note that the first (left- most) number (array index) listed is always the most significant bit of the vector The individual bits are specified within square brackets: D[2] specifies bit 2 of D It is also possible to address parts (contiguous bits) of vectors: SUM[2:] specifies the three least significant bits of vector SUM Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 66 / 93

67 HDL Models of Combinational Circuits // Gate - level description of 2- to -4 - line decoder 2 // See Fig Note : The figure uses symbol E, but the 3 // Verilog model uses enable to clearly indicate functionality. 4 5 module decoder_2x4_gates (D, A, B, enable ); 6 output [:3] D; 7 input A, B; 8 input enable ; 9 wire A_not, B_not, enable_not ; not G ( A_not, A), 2 G2 ( B_not, B), 3 G3 ( enable_not, enable ); 4 nand 5 G4 ( D[], A_not, B_not, enable_not ), 6 G5 ( D[], A_not, B, enable_not ), 7 G6 ( D[2], A, B_not, enable_not ), 8 G7 ( D[3], A, B, enable_not ); 9 endmodule Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 67 / 93

68 HDL Models of Combinational Circuits D A B D D 2 E A B D D D 2 D 3 X X E D 3 Two or more modules can be combined to build a hierarchical description of a design Two basic types of design methodologies Top down 2 Bottom up Top-down design: Top-level block is defined and then the subblocks necessary to build the top-level block are identified Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 68 / 93

69 HDL Models of Combinational Circuits Bottom-up design: Building blocks are first identified and then combined to build the top-level block // Gate - level description of 4- bit 2 // ripple - carry adder 3 // Description of half adder 4 5 module half_adder ( output S, C, input x, y); 6 // Instantiate primitive gates 7 xor (S, x, y); 8 and (C, x, y); 9 endmodule module full_adder ( output S, C, input x, y, z); 2 wire S, C, C2; 3 4 // Instantiate half adders 5 half_adder HA ( S, C, x, y); 6 half_adder HA2 (S, C2, S, z); 7 or G (C, C2, C); 8 endmodule 9 2 // Description of 4- bit adder ( see Fig 4-9) Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 69 / 93

70 HDL Models of Combinational Circuits 2 module ripple_carry_4_bit_adder ( output [3:] Sum, output C4, input [3:] A, B, input C); 22 wire C, C2, C3; // Intermediate carries 23 // Instantiate chain of full adders 24 full_adder FA ( Sum [], C, A[], B[], C), 25 FA ( Sum [], C2, A[], B[], C), 26 FA2 ( Sum [2], C3, A[2], B[2], C2), 27 FA3 ( Sum [3], C4, A[3], B[3], C3); 28 endmodule Module definition cannot be inserted into the text between the module and endmodule of another module Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 7 / 93

71 As mentioned in Section 4., a three-state gate has a control input that can place the gate into a high-impedance state. The high-impedance state is symbolized by z in Verilog. There are four types of three-state gates, as shown in Fig The bufif gate behaves like a normal buffer if control =. The output goes to a high-impedance state z when control =. The bufif gate behaves in a similar fashion, except that the high-impedance Tree-state occurs Gates when control =. The two notif gates operate in a similar manner, except that the output is the complement of the input when the gate is not in a high-impedance state. Three-state The gates are gate instantiated has a control with the input statement that can place the gate into a high-impedance state gate name output, input, control2; The high-impedance state is symbolized by z in Verilog Four types of three-state gates HDL Models of Combinational Circuits in out in out control bufif control bufif in out in out control control notif notif FIGURE 4.32 Three-state The outputs gates of three-state gates can be connected together to form a common output line Verilog HDL uses the keyword tri Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 7 / 93

72 endmodule HDL Models of Combinational Circuits The 2 three-state buffers have the same output. In order to show that they have a common connection, it is necessary to declare m_out with the keyword tri. Keywords wire and tri are examples of a set of data types called nets, which represent connections between hardware elements. In simulation, their value is determined by a // Mux with three - state output continuous assignment 2 modulestatement mux_tri or by ( m_out the device, A, whose B, select output ); they represent. The word net is not a keyword, 3 output but represents m_out ; a class of data types, such as wir e, wor, wand, tri, supply, and supply. 4 input The wire A, declaration B, select is used ; most frequently. In fact, if an identifier is used, but not 5 declared, tri the language m_out ; specifies that it will be interpreted (by default) as a wire. The net 6 wor models the hardware implementation of the wired-or configuration 7 (emitter-coupled logic). bufif The ( wand m_out models, A, the select wired-and ); configuration (open-collector 8 bufif ( m_out, B, select ); technology; see Fig ). The nets supply a n d supply re p re s e n t p o w e r s u p p l y a n d 9 endmodule ground, respectively. They are used to hardwire an input of a device to either or. A m_out B select FIGURE 4.33 Keywords wire and tri are examples of a set of data types called nets Two-to-one-line multiplexer with three-state buffers which represent connections between hardware elements Prof. Wangrok Oh(CNU) HDL Models of Combinational Circuits 72 / 93

### Combinational Logic II

Combinational Logic II Ranga Rodrigo July 26, 2009 1 Binary Adder-Subtractor Digital computers perform variety of information processing tasks. Among the functions encountered are the various arithmetic

### EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE

EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE 1 Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables, logic gates, and output

### Combinational Circuits

Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables

### Chapter 4. Combinational Logic

Chapter 4. Combinational Logic Tong In Oh 1 4.1 Introduction Combinational logic: Logic gates Output determined from only the present combination of inputs Specified by a set of Boolean functions Sequential

### Combinational Logic Circuits

Combinational Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch- Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has

### COMBINATIONAL LOGIC CIRCUITS

COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic

### DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 3 DLD P VIDYA SAGAR

DLD UNIT III Combinational Circuits (CC), Analysis procedure, Design Procedure, Combinational circuit for different code converters and other problems, Binary Adder- Subtractor, Decimal Adder, Binary Multiplier,

### Chap.3 3. Chap reduces the complexity required to represent the schematic diagram of a circuit Library

3.1 Combinational Circuits 2 Chap 3. logic circuits for digital systems: combinational vs sequential Combinational Logic Design Combinational Circuit (Chap 3) outputs are determined by the present applied

### Chapter 3 Part 2 Combinational Logic Design

University of Wisconsin - Madison ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring 2002 Chapter 3 Part 2 Combinational Logic Design Originals by: Charles R. Kime and Tom

### Combinational Logic with MSI and LSI

1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010

### NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-II COMBINATIONAL CIRCUITS

NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203

### LOGIC CIRCUITS. Kirti P_Didital Design 1

LOGIC CIRCUITS Kirti P_Didital Design 1 Introduction The digital system consists of two types of circuits, namely (i) Combinational circuits and (ii) Sequential circuit A combinational circuit consists

### Verilog for Combinational Circuits

Verilog for Combinational Circuits Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2014 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/

UNIT II - COMBINATIONAL LOGIC Part A 2 Marks. 1. Define Combinational circuit A combinational circuit consist of logic gates whose outputs at anytime are determined directly from the present combination

### UNIT- V COMBINATIONAL LOGIC DESIGN

UNIT- V COMBINATIONAL LOGIC DESIGN NOTE: This is UNIT-V in JNTUK and UNIT-III and HALF PART OF UNIT-IV in JNTUA SYLLABUS (JNTUK)UNIT-V: Combinational Logic Design: Adders & Subtractors, Ripple Adder, Look

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

### COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital

Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital hardware modules that accomplish a specific information-processing task. Digital systems vary in

### Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals.

Department of Electrical and Computer Engineering University of Wisconsin - Madison ECE/C 352 Digital ystem Fundamentals Quiz #2 Thursday, March 7, 22, 7:15--8:3PM 1. (15 points) (a) (5 points) NAND, NOR

### Digital Systems and Binary Numbers

Digital Systems and Binary Numbers Prof. Wangrok Oh Dept. of Information Communications Eng. Chungnam National University Prof. Wangrok Oh(CNU) 1 / 51 Overview 1 Course Summary 2 Binary Numbers 3 Number-Base

### Chapter Three. Digital Components

Chapter Three 3.1. Combinational Circuit A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs. The binary values of the outputs are a function of the binary

### NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN

NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT 2 COMBINATIONAL LOGIC Combinational circuits Analysis

### UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT

UNIT-III 1 KNREDDY UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT Register Transfer: Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Micro operations Logic

### Combinational Circuit Design

Modeling Combinational Circuits with Verilog Prof. Chien-Nan Liu TEL: 3-42275 ext:34534 Email: jimmy@ee.ncu.edu.tw 3- Combinational Circuit Design Outputs are functions of inputs inputs Combinational Circuit

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

### Chapter 6 Combinational-Circuit Building Blocks

Chapter 6 Combinational-Circuit Building Blocks Commonly used combinational building blocks in design of large circuits: Multiplexers Decoders Encoders Comparators Arithmetic circuits Multiplexers A multiplexer

### Contents. Appendix D Verilog Summary Page 1 of 16

Appix D Verilog Summary Page 1 of 16 Contents Appix D Verilog Summary... 2 D.1 Basic Language Elements... 2 D.1.1 Keywords... 2 D.1.2 Comments... 2 D.1.3 Identifiers... 2 D.1.4 Numbers and Strings... 3

### 1. Mark the correct statement(s)

1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

### Chapter 3 Part 2 Combinational Logic Design

University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals Kewal K. aluja and u Hen Hu pring 2002 hapter 3 Part 2 ombinational Logic Design Originals by: harles R. Kime and Tom Kamisnski

### CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii)

CONTENTS Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CHAPTER 1: NUMBER SYSTEM 1.1 Digital Electronics... 1 1.1.1 Introduction... 1 1.1.2 Advantages of Digital Systems...

### IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs

Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs and an arbitrary truth table Analysis Procedure We

### Chapter 3. Gate-Level Minimization. Outlines

Chapter 3 Gate-Level Minimization Introduction The Map Method Four-Variable Map Five-Variable Map Outlines Product of Sums Simplification Don t-care Conditions NAND and NOR Implementation Other Two-Level

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

### CS8803: Advanced Digital Design for Embedded Hardware

CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

### B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN

B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is ----- Write the first 9 decimal digits in base 3. (c) What is meant by don

28 The McGraw-Hill Companies, Inc. All rights reserved. 28 The McGraw-Hill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science

www.vidyarthiplus.com Question Paper Code : 31298 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013. Third Semester Computer Science and Engineering CS 2202/CS 34/EC 1206 A/10144 CS 303/080230012--DIGITAL

### Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can

### DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

C H A P T E R 6 DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS OUTLINE 6- Binary Addition 6-2 Representing Signed Numbers 6-3 Addition in the 2 s- Complement System 6-4 Subtraction in the 2 s- Complement

### Verilog Design Principles

16 h7fex // 16-bit value, low order 4 bits unknown 8 bxx001100 // 8-bit value, most significant 2 bits unknown. 8 hzz // 8-bit value, all bits high impedance. Verilog Design Principles ECGR2181 Extra Notes

### END-TERM EXAMINATION

(Please Write your Exam Roll No. immediately) END-TERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA-103 Subject: Digital Electronics Time: 3 Hours Maximum

### QUESTION BANK FOR TEST

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

### VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS YEAR / SEMESTER: II / III ACADEMIC YEAR: 2015-2016 (ODD

### Department of Computer Science & Engineering. Lab Manual DIGITAL LAB. Class: 2nd yr, 3rd sem SYLLABUS

Department of Computer Science & Engineering Lab Manual 435 DIGITAL LAB Class: 2nd yr, 3rd sem SYLLABUS. Verification of Boolean theorems using digital logic gates. 2. Design and implementation of code

### Contents. Chapter 3 Combinational Circuits Page 1 of 34

Chapter 3 Combinational Circuits Page of 34 Contents Contents... 3 Combinational Circuits... 2 3. Analysis of Combinational Circuits... 2 3.. Using a Truth Table... 2 3..2 Using a Boolean unction... 4

### CS/COE 0447 Example Problems for Exam 2 Spring 2011

CS/COE 0447 Example Problems for Exam 2 Spring 2011 1) Show the steps to multiply the 4-bit numbers 3 and 5 with the fast shift-add multipler. Use the table below. List the multiplicand (M) and product

### Introduction to Verilog. Garrison W. Greenwood, Ph.D, P.E.

Introduction to Verilog Garrison W. Greenwood, Ph.D, P.E. November 11, 2002 1 Digital Design Flow Specification Functional Design Register Transfer Level Design Circuit Design Physical Layout Production

### Injntu.com Injntu.com Injntu.com R16

1. a) What are the three methods of obtaining the 2 s complement of a given binary (3M) number? b) What do you mean by K-map? Name it advantages and disadvantages. (3M) c) Distinguish between a half-adder

### Verilog Design Principles

16 h7fex // 16-bit value, low order 4 bits unknown 8 bxx001100 // 8-bit value, most significant 2 bits unknown. 8 hzz // 8-bit value, all bits high impedance. Verilog Design Principles ECGR2181 Extra Notes

### Gate Level Minimization Map Method

Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

### CO Computer Architecture and Programming Languages CAPL. Lecture 9

CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 9 Dr. Kinga Lipskoch Fall 2017 A Four-bit Number Circle CAPL Fall 2017 2 / 38 Functional Parts of an ALU CAPL Fall 2017 3 / 38 Addition

### SUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3

UNIT - I PART A (2 Marks) 1. Using Demorgan s theorem convert the following Boolean expression to an equivalent expression that has only OR and complement operations. Show the function can be implemented

### 3. The high voltage level of a digital signal in positive logic is : a) 1 b) 0 c) either 1 or 0

1. The number of level in a digital signal is: a) one b) two c) four d) ten 2. A pure sine wave is : a) a digital signal b) analog signal c) can be digital or analog signal d) neither digital nor analog

### HDL for Combinational Circuits. ENEL211 Digital Technology

HDL for Combinational Circuits ENEL211 Digital Technology Lecture Outline Vectors Modular design Tri-state gates Dataflow modelling Behavioural Modelling Vectors Often we want multi-bit quantities in digital

### Gate-Level Minimization

Gate-Level Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method

### Lecture 1: VHDL Quick Start. Digital Systems Design. Fall 10, Dec 17 Lecture 1 1

Lecture 1: VHDL Quick Start Digital Systems Design Fall 10, Dec 17 Lecture 1 1 Objective Quick introduction to VHDL basic language concepts basic design methodology Use The Student s Guide to VHDL or The

### R a) Simplify the logic functions from binary to seven segment display code converter (8M) b) Simplify the following using Tabular method

SET - 1 1. a) Convert the decimal number 250.5 to base 3, base 4 b) Write and prove de-morgan laws c) Implement two input EX-OR gate from 2 to 1 multiplexer (3M) d) Write the demerits of PROM (3M) e) What

### Introduction to Verilog HDL. Verilog 1

Introduction to HDL Hardware Description Language (HDL) High-Level Programming Language Special constructs to model microelectronic circuits Describe the operation of a circuit at various levels of abstraction

### Gate-Level Minimization

MEC520 디지털공학 Gate-Level Minimization Jee-Hwan Ryu School of Mechanical Engineering Gate-Level Minimization-The Map Method Truth table is unique Many different algebraic expression Boolean expressions may

### Boolean Algebra. BME208 Logic Circuits Yalçın İŞLER

Boolean Algebra BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 5 Boolean Algebra /2 A set of elements B There exist at least two elements x, y B s. t. x y Binary operators: +

### 60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design

60-265: Winter 2010 Computer Architecture I: Digital Design ANSWERS Exercise 4 Combinational Circuit Design Question 1. One-bit Comparator [ 1 mark ] Consider two 1-bit inputs, A and B. If we assume that

### Chapter 4 Arithmetic Functions

Logic and Computer Design Fundamentals Chapter 4 Arithmetic Functions Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Iterative combinational

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

### Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization

### REGISTER TRANSFER LANGUAGE

REGISTER TRANSFER LANGUAGE The operations executed on the data stored in the registers are called micro operations. Classifications of micro operations Register transfer micro operations Arithmetic micro

### 4. Write a sum-of-products representation of the following circuit. Y = (A + B + C) (A + B + C)

COP 273, Winter 26 Exercises 2 - combinational logic Questions. How many boolean functions can be defined on n input variables? 2. Consider the function: Y = (A B) (A C) B (a) Draw a combinational logic

### Gate level or structural modeling

Gate level or structural modeling Prerequisites Functioning of basic logic gates and basic understanding of Verilog coding is required. You are suggested to complete the previous unit before starting this

### EECS 270 Midterm Exam

EECS 270 Midterm Exam Fall 2009 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: NOTES: Problem # Points 1 /11 2 /4

### SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

### Topics. Midterm Finish Chapter 7

Lecture 9 Topics Midterm Finish Chapter 7 ROM (review) Memory device in which permanent binary information is stored. Example: 32 x 8 ROM Five input lines (2 5 = 32) 32 outputs, each representing a memory

### Chapter 4. Combinational Logic. Dr. Abu-Arqoub

Chapter 4 Combinational Logic Introduction N Input Variables Combinational Logic Circuit M Output Variables 2 Design Procedure The problem is stated 2 The number of available input variables & required

### 2. (a) Compare the characteristics of a floppy disk and a hard disk. (b) Discuss in detail memory interleaving. [8+7]

Code No: A109211202 R09 Set No. 2 1. (a) Explain the purpose of the following registers: i. IR ii. PC iii. MDR iv. MAR. (b) Explain with an example the steps in subtraction of two n-digit unsigned numbers.

### Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit

Nurul Hazlina 1 1. Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 2 Introduction 1. Digital circuits are frequently used for arithmetic operations 2. Fundamental

### R10. II B. Tech I Semester, Supplementary Examinations, May

SET - 1 1. a) Convert the following decimal numbers into an equivalent binary numbers. i) 53.625 ii) 4097.188 iii) 167 iv) 0.4475 b) Add the following numbers using 2 s complement method. i) -48 and +31

### Verilog Tutorial (Structure, Test)

Digital Circuit Design and Language Verilog Tutorial (Structure, Test) Chang, Ik Joon Kyunghee University Hierarchical Design Top-down Design Methodology Bottom-up Design Methodology Module START Example)

### CENG 241 Digital Design 1

CENG 241 Digital Design 1 Lecture 5 Amirali Baniasadi amirali@ece.uvic.ca This Lecture Lab Review of last lecture: Gate-Level Minimization Continue Chapter 3:XOR functions, Hardware Description Language

### 14:332:231 DIGITAL LOGIC DESIGN. Hardware Description Languages

14:332:231 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 2013 Lecture #22: Introduction to Verilog Hardware Description Languages Basic idea: Language constructs

### Chapter 1. Digital Systems and Binary Numbers

Chapter 1. Digital Systems and Binary Numbers Tong In Oh 1 1.1 Digital Systems Digital age Characteristic of digital system Generality and flexibility Represent and manipulate discrete elements of information

### register:a group of binary cells suitable for holding binary information flip-flops + gates

9 차시 1 Ch. 6 Registers and Counters 6.1 Registers register:a group of binary cells suitable for holding binary information flip-flops + gates control when and how new information is transferred into the

### ECE 2030D Computer Engineering Spring problems, 5 pages Exam Two 8 March 2012

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

### Question No: 1 ( Marks: 1 ) - Please choose one A SOP expression is equal to 1

ASSALAM O ALAIKUM all fellows ALL IN ONE Mega File CS302 Midterm PAPERS, MCQz & subjective Created BY Farhan& Ali BS (cs) 3rd sem Hackers Group Mandi Bahauddin Remember us in your prayers Mindhacker124@gmail.com

### structure syntax different levels of abstraction

This and the next lectures are about Verilog HDL, which, together with another language VHDL, are the most popular hardware languages used in industry. Verilog is only a tool; this course is about digital

### Here is a list of lecture objectives. They are provided for you to reflect on what you are supposed to learn, rather than an introduction to this

This and the next lectures are about Verilog HDL, which, together with another language VHDL, are the most popular hardware languages used in industry. Verilog is only a tool; this course is about digital

### Workshop on Digital Circuit Design in FPGA

Workshop on Digital Circuit Design in FPGA Session-1 Presented By Mohammed Abdul Kader Assistant Professor, Dept. of EEE, IIUC Email:kader05cuet@gmail.com Website: kader05cuet.wordpress.com The field-programmable

### Addition and multiplication

Addition and multiplication Arithmetic is the most basic thing you can do with a computer, but it s not as easy as you might expect! These next few lectures focus on addition, subtraction, multiplication

### ECE 2030B 1:00pm Computer Engineering Spring problems, 5 pages Exam Two 10 March 2010

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

### *Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits

Purdue IM:PACT* Fall 2018 Edition *Instruction Matters: Purdue Academic Course Transformation Introduction to Digital System Design Module 4 Arithmetic and Computer Logic Circuits Glossary of Common Terms

### Introduction to Verilog

Introduction to Verilog COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Hardware Description Language Logic Simulation versus Synthesis

### ECE Digital System Design & Synthesis Exercise 1 - Logic Values, Data Types & Operators - With Answers

ECE 601 - Digital System Design & Synthesis Exercise 1 - Logic Values, Data Types & Operators - With Answers Fall 2001 Final Version (Important changes from original posted Exercise 1 shown in color) Variables

### Fundamentals of Computer Systems

Fundamentals of Computer Systems Combinational Logic Martha. Kim Columbia University Spring 6 / Combinational Circuits Combinational circuits are stateless. Their output is a function only of the current

### ACS College of Engineering. Department of Biomedical Engineering. Logic Design Lab pre lab questions ( ) Cycle-1

ACS College of Engineering Department of Biomedical Engineering Logic Design Lab pre lab questions (2015-2016) Cycle-1 1. What is a combinational circuit? 2. What are the various methods of simplifying

### CHAPTER 4: Register Transfer Language and Microoperations

CS 224: Computer Organization S.KHABET CHAPTER 4: Register Transfer Language and Microoperations Outline Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations

### Chapter 4: Combinational Logic

Chapter 4: Combinational Logic Combinational Circuit Design Analysis Procedure (Find out nature of O/P) Boolean Expression Approach Truth Table Approach Design Procedure Example : BCD to Excess-3 code

### Date Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 09 MULTIPLEXERS

Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 09 MULTIPLEXERS OBJECTIVES: To experimentally verify the proper operation of a multiplexer.

### Boolean Logic CS.352.F12

Boolean Logic CS.352.F12 Boolean Algebra Boolean Algebra Mathematical system used to manipulate logic equations. Boolean: deals with binary values (True/False, yes/no, on/off, 1/0) Algebra: set of operations

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

### UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, Random-Access memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable