Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic


 Brandon Johns
 2 years ago
 Views:
Transcription
1 Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic Question 1: Due October 19 th, 2009 A convenient shorthand for specifying truth tables is to list the set of minterms (or maxterms) for which the corresponding Boolean function is true (or false). Consider the following truth table: A B C D F(A,B,C,D) d d F(A, B,C, D) = F(A, B,C, D) = 1 d 0 d 2,3, 5,10,11,13 + 0,8 1,4,6,7,9,12,14,15 + 0,8 The shorthand for the sumofproducts ( ) and productofsums ( ) forms is shown at the right of the truth table. Given this specification for a Boolean function, answer the following questions. a) Use algebraic methods to derive the minimal forms for both and assuming that don't cares are set to 0 for and 1 for. b) Repeat the above using Karnaugh maps. Here you may choose the don't cares to minimize the resulting expressions. c) Repeat the minimization, this time assuming don't cares are all 0, using any minimization method. Prove algebraically that the resulting forms are equal (same truth table).
2 Question 2 Write down the truth table for a full subtracter. Your truth table should be laid out in the following order: R i A i B i D i R o The structure is identical to that of the full adder, except that D i corresponds to the difference, R i to the borrow input, and R o to the borrow output respectively. In a non two's complement machine such a circuit would be required to implement the subtraction operation directly. Once you have determined the truth table, determine the minimal and forms corresponding to the borrow output, R o, respectively. Do this using both algebraic minimization and Karnaugh maps. Implement the corresponding circuits using NANDNAND and NORNOR logic in LogicWorks. Show that your circuits implement the specified truth tables. Question 3 Any Boolean function can be implemented using either NAND gates or NOR gates exclusively, provided that sufficient inputs are available (e.g. a 4input NAND gate can serve as a 3input NAND gate, a 2input NAND gate, and an inverter). Determine the maximum number of inputs for each of the circuits you designed in Question 2 and design the corresponding gates following the examples shown in the course notes. For this question use active pullups and pulldowns. Implement and test your gates using LogicWorks. You can then use the DEVICE SYMBOL option under the FILE menu to encapsulate your gate design for subsequent use. Test each of the 2 gates using LogicWorks (i.e. verify their truth tables). Next, reimplement each of the two circuits from Question 2 (NANDNAND and NORNOR), and verify their functionality using the same testing as applied in Question 2. Note: Since LogicWorks does not have an active(0) type of switch, use an inverter connected to the control input of an active(1) switch instead. If you want to be a bit more elegant, use the device editor to create an active(0) switch by modifying the active(1) switch (i.e. Xgate) by negating the control input. You can also use the drawing tools to place an inverter bubble on the gate symbol. MAKE SURE THAT YOU SAVE THE RESULT IN A DIFFERENT LIBRARY UNDER A DIFFERENT NAME so that you don't overwrite the existing part.
3 Question 4 Another way to implement a truth table is to use a multiplexer. A 2 to1 mux, like the one discussed in class, can select one of two inputs using a single control input. A 4 to 1 mux selects one of four inputs using two control inputs. Consider the following. By using the 2 control inputs as the table input variables and appropriately hard wiring the 4 inputs of the mux to 0 or 1, a 2 input truth table can be implemented. Using this approach, an n input truth table can be implemented using a n 2 to 1 mux. a) Using the gate types you designed in Question 3, design a 2 to 1 multiplexer. Verify its operation using LogicWorks. b) Now using the 2way routing switch as a building block (use the device editor in LogicWorks to encapsulate the 2way switch), design a multiplexer large enough to implement the truth table described in Question 2. Predict the propagation delay, T pd, of your multiplexer (you will need this to figure out how to space the inputs to your circuit in time). Test your multiplexer with appropriate waveforms and verify that the measured T pd is consistent with its predicted value. c) Hard wire the inputs to your multiplexer to implement the truth table described in Question 2. Verify its operation using LogicWorks. d) Explain the presence of any anomalous signals (glitches) in your output and give an example of an input transition that results in a glitch at the output. Show this example using LogicWorks. Question 5: Bonus The size of the multiplexer used to implement a truth table can be cut in half (e.g. 4 inputs instead of 8) if one of the variables is used as an input instead of being connected to a select line. For example, a truth table with inputs A, B, C, could be implemented using a 4input multiplexer with A and B connected to the 2 select lines. A and B would then be able to select 0, 1, C or C (assuming that an inverter is available for C). Figure out how to reimplement Question 3 this way and prove that your solution is correct with a LogicWorks simulation. FPF/October 5 th, 2009
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
1. Mark the correct statement(s)
1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another
More informationQUESTION BANK FOR TEST
CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice
More informationLogic Gates and Boolean Algebra ENT263
Logic Gates and Boolean Algebra ENT263 Logic Gates and Boolean Algebra Now that we understand the concept of binary numbers, we will study ways of describing how systems using binary logic levels make
More informationObjectives: 1. Design procedure. 2. Fundamental circuits. 1. Design procedure
Objectives: 1. Design procedure. 2. undamental circuits. 1. Design procedure Design procedure has five steps: o Specification. o ormulation. o Optimization. o Technology mapping. o Verification. Specification:
More informationChapter 2. Boolean Expressions:
Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean
More informationEXPERIMENT #8: BINARY ARITHMETIC OPERATIONS
EE 2 Lab Manual, EE Department, KFUPM EXPERIMENT #8: BINARY ARITHMETIC OPERATIONS OBJECTIVES: Design and implement a circuit that performs basic binary arithmetic operations such as addition, subtraction,
More informationB.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN
B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is  Write the first 9 decimal digits in base 3. (c) What is meant by don
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationChapter 3. GateLevel Minimization. Outlines
Chapter 3 GateLevel Minimization Introduction The Map Method FourVariable Map FiveVariable Map Outlines Product of Sums Simplification Don tcare Conditions NAND and NOR Implementation Other TwoLevel
More informationDepartment of Electrical and Computer Engineering University of Wisconsin  Madison. ECE/CS 352 Digital System Fundamentals.
Department of Electrical and Computer Engineering University of Wisconsin  Madison ECE/C 352 Digital ystem Fundamentals Quiz #2 Thursday, March 7, 22, 7:158:3PM 1. (15 points) (a) (5 points) NAND, NOR
More informationDIGITAL ELECTRONICS. P41l 3 HOURS
UNIVERSITY OF SWAZILAND FACUL TY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS MAIN EXAMINATION 2015/16 TITLE OF PAPER: COURSE NUMBER: TIME ALLOWED: INSTRUCTIONS: DIGITAL ELECTRONICS P41l 3 HOURS ANSWER
More informationCombinational Circuits
Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables
More informationExperiment 3: Logic Simplification
Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed ElSaied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions
More informationMidterm Exam Review. CS 2420 :: Fall 2016 Molly O'Neil
Midterm Exam Review CS 2420 :: Fall 2016 Molly O'Neil Midterm Exam Thursday, October 20 In class, pencil & paper exam Closed book, closed notes, no cell phones or calculators, clean desk 20% of your final
More informationGate Level Minimization Map Method
Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically
More information2008 The McGrawHill Companies, Inc. All rights reserved.
28 The McGrawHill Companies, Inc. All rights reserved. 28 The McGrawHill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28
More informationStandard Forms of Expression. Minterms and Maxterms
Standard Forms of Expression Minterms and Maxterms Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains:
More informationCombinational Circuits Digital Logic (Materials taken primarily from:
Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a
More informationCOMBINATIONAL LOGIC CIRCUITS
COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic
More informationSynthesis of combinational logic
Page 1 of 14 Synthesis of combinational logic indicates problems that have been selected for discussion in section, time permitting. Problem 1. A certain function F has the following truth table: A B C
More informationIncompletely Specified Functions with Don t Cares 2Level Transformation Review Boolean Cube KarnaughMap Representation and Methods Examples
Lecture B: Logic Minimization Incompletely Specified Functions with Don t Cares 2Level Transformation Review Boolean Cube KarnaughMap Representation and Methods Examples Incompletely specified functions
More informationAssignment (36) Boolean Algebra and Logic Simplification  General Questions
Assignment (36) Boolean Algebra and Logic Simplification  General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make
More informationLecture (05) Boolean Algebra and Logic Gates
Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either
More informationCS8803: Advanced Digital Design for Embedded Hardware
CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883
More informationGC03 Boolean Algebra
Why study? GC3 Boolean Algebra Computers transfer and process binary representations of data. Binary operations are easily represented and manipulated in Boolean algebra! Digital electronics is binary/boolean
More informationChapter 2 Boolean algebra and Logic Gates
Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions
More informationVALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS YEAR / SEMESTER: II / III ACADEMIC YEAR: 20152016 (ODD
More informationReview. EECS Components and Design Techniques for Digital Systems. Lec 05 Boolean Logic 9/404. Seq. Circuit Behavior. Outline.
Review EECS 150  Components and Design Techniques for Digital Systems Lec 05 Boolean Logic 9404 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley Design flow
More informationCombinational Logic Circuits
Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical
More informationChapter 6. Logic Design Optimization Chapter 6
Chapter 6 Logic Design Optimization Chapter 6 Optimization The second part of our design process. Optimization criteria: Performance Size Power Twolevel Optimization Manipulating a function until it is
More informationTWOLEVEL COMBINATIONAL LOGIC
TWOLEVEL COMBINATIONAL LOGIC OVERVIEW Canonical forms Tolevel simplification Boolean cubes Karnaugh maps QuineMcClusky (Tabulation) Method Don't care terms Canonical and Standard Forms Minterms and
More informationHANSABA COLLEGE OF ENGINEERING & TECHNOLOGY (098) SUBJECT: DIGITAL ELECTRONICS ( ) Assignment
Assignment 1. What is multiplexer? With logic circuit and function table explain the working of 4 to 1 line multiplexer. 2. Implement following Boolean function using 8: 1 multiplexer. F(A,B,C,D) = (2,3,5,7,8,9,12,13,14,15)
More informationGateLevel Minimization. BME208 Logic Circuits Yalçın İŞLER
GateLevel Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to
More informationCS470: Computer Architecture. AMD Quad Core
CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flipflops Functional bocks: Combinational, Sequential Instruction
More informationGateLevel Minimization
MEC520 디지털공학 GateLevel Minimization JeeHwan Ryu School of Mechanical Engineering GateLevel MinimizationThe Map Method Truth table is unique Many different algebraic expression Boolean expressions may
More informationBUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book
BUILDING BLOCKS OF A BASIC MICROPROCESSOR Part PowerPoint Format of Lecture 3 of Book Decoder Tristate device Full adder, full subtractor Arithmetic Logic Unit (ALU) Memories Example showing how to write
More informationSimplification of Boolean Functions
COM111 Introduction to Computer Engineering (Fall 20062007) NOTES 5  page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean
More informationChap2 Boolean Algebra
Chap2 Boolean Algebra Contents: My name Outline: My position, contact Basic information theorem and postulate of Boolean Algebra. or project description Boolean Algebra. Canonical and Standard form. Digital
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationDr. S. Shirani COE2DI4 Midterm Test #1 Oct. 14, 2010
Dr. S. Shirani COE2DI4 Midterm Test #1 Oct. 14, 2010 Instructions: This examination paper includes 9 pages and 20 multiplechoice questions starting on page 3. You are responsible for ensuring that your
More informationInjntu.com Injntu.com Injntu.com R16
1. a) What are the three methods of obtaining the 2 s complement of a given binary (3M) number? b) What do you mean by Kmap? Name it advantages and disadvantages. (3M) c) Distinguish between a halfadder
More informationCombinational Logic Worksheet
Combinational Logic Worksheet Concept Inventory: Truth tables sumofproducts equations implementation using NOT/AND/OR Demorgan s Law, implementation using NAND/NOR Simplification, truth tables w/ don
More informationCprE 281: Digital Logic
CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Minimization CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative
More informationEECS150 Homework 2 Solutions Fall ) CLD2 problem 2.2. Page 1 of 15
1.) CLD2 problem 2.2 We are allowed to use AND gates, OR gates, and inverters. Note that all of the Boolean expression are already conveniently expressed in terms of AND's, OR's, and inversions. Thus,
More informationDigital logic fundamentals. Question Bank. Unit I
Digital logic fundamentals Question Bank Subject Name : Digital Logic Fundamentals Subject code: CA102T Staff Name: R.Roseline Unit I 1. What is Number system? 2. Define binary logic. 3. Show how negative
More informationArithmeticlogic units
Arithmeticlogic units An arithmeticlogic unit, or ALU, performs many different arithmetic and logic operations. The ALU is the heart of a processor you could say that everything else in the CPU is there
More informationLECTURE 4. Logic Design
LECTURE 4 Logic Design LOGIC DESIGN The language of the machine is binary that is, sequences of 1 s and 0 s. But why? At the hardware level, computers are streams of signals. These signals only have two
More informationComputer Organization and Levels of Abstraction
Computer Organization and Levels of Abstraction Announcements PS8 Due today PS9 Due July 22 Sound Lab tonight bring machines and headphones! Binary Search Today Review of binary floating point notation
More informationSWITCHING THEORY AND LOGIC CIRCUITS
SWITCHING THEORY AND LOGIC CIRCUITS COURSE OBJECTIVES. To understand the concepts and techniques associated with the number systems and codes 2. To understand the simplification methods (Boolean algebra
More informationParallel logic circuits
Computer Mathematics Week 9 Parallel logic circuits College of Information cience and Engineering Ritsumeikan University last week the mathematics of logic circuits the foundation of all digital design
More informationCombinational Logic Circuits
Combinational Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has
More informationLast Name Student Number. Last Name Student Number
University of Toronto Faculty of Applied Science and Engineering Department of Electrical and Computer Engineering Midterm Examination ECE 241F  Digital Systems Wednesday October 13, 2004, 6:00pm [5]
More informationStudent Number: UTORid: Question 0. [1 mark] Read and follow all instructions on this page, and fill in all fields.
CSC 258H1 Y 2016 Midterm Test Duration 1 hour and 50 minutes Aids allowed: none Student Number: UTORid: Last Name: First Name: Question 0. [1 mark] Read and follow all instructions on this page, and fill
More informationCSE303 Logic Design II Laboratory 01
CSE303 Logic Design II Laboratory 01 # Student ID Student Name Grade (10) 1 Instructor signature 2 3 4 5 Delivery Date 1 / 15  Experiment 01 (Half adder) Objectives In the first experiment, a half adder
More informationLogic Design (Part 2) Combinational Logic Circuits (Chapter 3)
Digital Logic Circuits Logic Design (Part ) Combinational Logic Circuits (Chapter 3) ² We saw how we can build the simple logic gates using transistors ² Use these gates as building blocks to build more
More informationChapter 4. Combinational Logic
Chapter 4. Combinational Logic Tong In Oh 1 4.1 Introduction Combinational logic: Logic gates Output determined from only the present combination of inputs Specified by a set of Boolean functions Sequential
More informationDLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 3 DLD P VIDYA SAGAR
DLD UNIT III Combinational Circuits (CC), Analysis procedure, Design Procedure, Combinational circuit for different code converters and other problems, Binary Adder Subtractor, Decimal Adder, Binary Multiplier,
More informationPrinciples of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system.
Assignment No. 1 1. State advantages of digital system over analog system. 2. Convert following numbers a. (138.56) 10 = (?) 2 = (?) 8 = (?) 16 b. (1110011.011) 2 = (?) 10 = (?) 8 = (?) 16 c. (3004.06)
More informationSIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: IIB.Tech & ISem Course & Branch: B.Tech
More informationComputer Organization
Computer Organization (Logic circuits design and minimization) KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science and Engineering MBM Engineering
More informationIT 201 Digital System Design Module II Notes
IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More informationEECS 270 Midterm Exam
EECS 270 Midterm Exam Fall 2009 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: NOTES: Problem # Points 1 /11 2 /4
More informationBoolean Algebra and Logic Gates
Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can
More information數位系統 Digital Systems 朝陽科技大學資工系. Speaker: FuwYi Yang 楊伏夷. 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象, 視之不可見者曰夷
數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: FuwYi Yang 楊伏夷 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象,
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2011 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationAustin Herring Recitation 002 ECE 200 Project December 4, 2013
1. Fastest Circuit a. How Design Was Obtained The first step of creating the design was to derive the expressions for S and C out from the given truth tables. This was done using Karnaugh maps. The Karnaugh
More informationFinal Examination (Open Katz, asynchronous & test notes only, Calculators OK, 3 hours)
Your Name: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO Department of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA CRUZ CS
More informationDHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY
DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY Dept/Sem: II CSE/03 DEPARTMENT OF ECE CS8351 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT I BOOLEAN ALGEBRA AND LOGIC GATES PART A 1. How many
More informationDigital Techniques. Lecture 1. 1 st Class
Digital Techniques Lecture 1 1 st Class Digital Techniques Digital Computer and Digital System: Digital computer is a part of digital system, it based on binary system. A block diagram of digital computer
More informationTo write Boolean functions in their standard Min and Max terms format. To simplify Boolean expressions using Karnaugh Map.
3.1 Objectives To write Boolean functions in their standard Min and Max terms format. To simplify Boolean expressions using. 3.2 Sum of Products & Product of Sums Any Boolean expression can be simplified
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationSimplification of Boolean Functions
Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.
More informationR a) Simplify the logic functions from binary to seven segment display code converter (8M) b) Simplify the following using Tabular method
SET  1 1. a) Convert the decimal number 250.5 to base 3, base 4 b) Write and prove demorgan laws c) Implement two input EXOR gate from 2 to 1 multiplexer (3M) d) Write the demerits of PROM (3M) e) What
More informationENDTERM EXAMINATION
(Please Write your Exam Roll No. immediately) ENDTERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA103 Subject: Digital Electronics Time: 3 Hours Maximum
More informationEECS150, Fall 2004, Midterm 1, Prof. Culler. Problem 1 (15 points) 1.a. Circle the gatelevel circuits that DO NOT implement a Boolean AND function.
Problem 1 (15 points) 1.a. Circle the gatelevel circuits that DO NOT implement a Boolean AND function. 1.b. Show that a 2to1 MUX is universal (i.e. that any Boolean expression can be implemented with
More informationEECS 140/141 Introduction to Digital Logic Design Fall Semester 2016 Exam #1 Date: 3 October 2016
EECS 4/4 Introduction to Digital Logic Design Fall Semester 26 Exam # Date: 3 October 26 NAME: KUID: General Instructions. This exam is closedbook. You are allowed a noncommunicating calculator and one
More informationEE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE
EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE 1 Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables, logic gates, and output
More informationCh. 5 : Boolean Algebra &
Ch. 5 : Boolean Algebra & Reduction elektronik@fisika.ui.ac.id Objectives Should able to: Write Boolean equations for combinational logic applications. Utilize Boolean algebra laws and rules for simplifying
More informationBHARATHIDASAN ENGINEERING COLLEGE Degree / Branch : B.E./ECE Year / Sem : II/ III Sub.Code / Name : EC6302/DIGITAL ELECTRONICS
BHARATHIDASAN ENGINEERING COLLEGE Degree / Branch : B.E./ECE Year / Sem : II/ III Sub.Code / Name : EC6302/DIGITAL ELECTRONICS FREQUENTLY ASKED QUESTIONS UNIT I MINIMIZATION TECHNIQUES AND LOGIC GATES
More informationFundamentals of Computer Systems
Fundamentals of Computer Systems Combinational Logic Martha. Kim Columbia University Spring 6 / Combinational Circuits Combinational circuits are stateless. Their output is a function only of the current
More informationChap.3 3. Chap reduces the complexity required to represent the schematic diagram of a circuit Library
3.1 Combinational Circuits 2 Chap 3. logic circuits for digital systems: combinational vs sequential Combinational Logic Design Combinational Circuit (Chap 3) outputs are determined by the present applied
More informationUNIT4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.
UNIT4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?
More informationR07
www..com www..com SET  1 II B. Tech I Semester Supplementary Examinations May 2013 SWITCHING THEORY AND LOGIC DESIGN (Com. to EEE, EIE, BME, ECC) Time: 3 hours Max. Marks: 80 Answer any FIVE Questions
More informationR10. II B. Tech I Semester, Supplementary Examinations, May
SET  1 1. a) Convert the following decimal numbers into an equivalent binary numbers. i) 53.625 ii) 4097.188 iii) 167 iv) 0.4475 b) Add the following numbers using 2 s complement method. i) 48 and +31
More information2/8/2017. SOP Form Gives Good Performance. ECE 120: Introduction to Computing. KMaps Can Identify SingleGate Functions
University of Illinois at UrbanaChampaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing TwoLevel Logic SOP Form Gives Good Performance s you know, one can use a Kmap
More informationAnnouncements. Chapter 2  Part 1 1
Announcements If you haven t shown the grader your proof of prerequisite, please do so by 11:59 pm on 09/05/2018 (Wednesday). I will drop students that do not show us the prerequisite proof after this
More informationCombinational Logic II
Combinational Logic II Ranga Rodrigo July 26, 2009 1 Binary AdderSubtractor Digital computers perform variety of information processing tasks. Among the functions encountered are the various arithmetic
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science
More informationReview: Standard forms of expressions
Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and NOT. These operations can be combined to form complex expressions, which can
More informationRegister Transfer Language and Microoperations (Part 2)
Register Transfer Language and Microoperations (Part 2) Adapted by Dr. Adel Ammar Computer Organization 1 MICROOPERATIONS Computer system microoperations are of four types: Register transfer microoperations
More informationBOOLEAN ALGEBRA. 1. State & Verify Laws by using :
BOOLEAN ALGEBRA. State & Verify Laws by using :. State and algebraically verify Absorption Laws. (2) Absorption law states that (i) X + XY = X and (ii) X(X + Y) = X (i) X + XY = X LHS = X + XY = X( + Y)
More informationGate Level Minimization
Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =
More informationCENG 241 Digital Design 1
CENG 241 Digital Design 1 Lecture 5 Amirali Baniasadi amirali@ece.uvic.ca This Lecture Lab Review of last lecture: GateLevel Minimization Continue Chapter 3:XOR functions, Hardware Description Language
More informationIntroduction to Boole algebra. Binary algebra
Introduction to Boole algebra Binary algebra Boole algebra George Boole s book released in 1847 We have only two digits: true and false We have NOT, AND, OR, XOR etc operations We have axioms and theorems
More informationSpecifying logic functions
CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last
More informationLogic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 3 Additional Gates and Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hyperlinks are active in View
More informationSUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3
UNIT  I PART A (2 Marks) 1. Using Demorgan s theorem convert the following Boolean expression to an equivalent expression that has only OR and complement operations. Show the function can be implemented
More informationCS/COE 0447 Example Problems for Exam 2 Spring 2011
CS/COE 0447 Example Problems for Exam 2 Spring 2011 1) Show the steps to multiply the 4bit numbers 3 and 5 with the fast shiftadd multipler. Use the table below. List the multiplicand (M) and product
More informationLAB #1 BASIC DIGITAL CIRCUIT
LAB #1 BASIC DIGITAL CIRCUIT OBJECTIVES 1. To study the operation of basic logic gates. 2. To build a logic circuit from Boolean expressions. 3. To introduce some basic concepts and laboratory techniques
More informationDate Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 09 MULTIPLEXERS
Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 09 MULTIPLEXERS OBJECTIVES: To experimentally verify the proper operation of a multiplexer.
More information