System Software Assignment 1 Runtime Support for Procedures

Size: px
Start display at page:

Download "System Software Assignment 1 Runtime Support for Procedures"

Transcription

1 System Software Assignment 1 Runtime Support for Procedures Exercise 1: Nested procedures Some programming languages like Oberon and Pascal support nested procedures. 1. Find a run-time structure for such a language to handle the access to data in outer procedures. In each procedure stack frame we store an additional pointer (the static link or SL) to mark where the outer procedure stack frame is (note that this is not always the same as the caller). local variables dynamic link return address static link (SL) parameters Figure 1: Procedure activation frame. Figure 1 shows the procedure activation frame for an Oberon (or Pascal) procedure: in addition to the dynamic link and return address it includes the static link pointer to the outer procedure. Figure 2 shows a sample program with several levels of nested procedures. Figure 3 shows the stack layout after calling the procedures S, Q, Q, P, and E. The dynamic link pointer chain (formed by the frame pointers) links the frames in the activation order (E P Q Q S) while the static link pointer chain links the frames to their parent, or enclosing directory (E S, P Q, and Q S). Table 1 shows some examples procedure calls and accesses to local variables at various levels. 2. In Oberon only global procedures can be used as value for procedure variables (e.g., VAR proc var: PROCEDURE foo(i: INTEGER);). Explain, from the run-time system point of view, the reasons to introduce such a limitation. A local procedure assumes a context to be available through the static link (SL) pointer, but when invoked from a procedure variable the context may not exists; to avoid a security hole in the system, such procedures cannot be passed as variable. Figure 4 depicts a simple module with a procedure variable x and two nested procedures P and Q. In the procedure P we assign Q to the global variable x and after the execution of P x correspond to the inner procedure Q. This does not make any sense since Q only exists in the scope of Q. 1

2 MODULE Test; (* level 0 *) PROCEDURE S(); (* level 1 *) VAR a: INTEGER; PROCEDURE E(); (* level 2 *) (* the stack coming from *) (* S, Q, Q, P is depicted *) (* on the right *) END E; PROCEDURE Q(); (* level 2 *) VAR k: INTEGER; PROCEDURE P(); (* level 3 *) VAR j: INTEGER; E() END P; S a: INTEGER E Q k: INTEGER P j: INTEGER IF b THEN Q() ELSE P() END END Q; Q() END S; END Test. Figure 2: Nested procedures example. 2

3 E P Q Q S dynamic link static link Figure 3: Stack layout. Table 1: Local variables access examples Calling convention Access convention one level deeper: S Q S: a := 42; push FP mov a[fp], 42 call Q same level: E Q E: a := 42; push 8[FP] mov R0, 8[FP] call Q mov a[r0], 42 one level higher: P Q P: a := 42; mov R0, 8[FP] mov R0, 8[FP] push 8[R0] mov R1, 8[R0] call Q mov a[r1], 42 3

4 MODULE Test; VAR x: PROCEDURE(); PROCEDURE P(); PROCEDURE Q(); END Q; x := Q (* this is an illegal statement *) END P; P(); (* now x points to an invalid location! *) END Figure 4: Function pointer example. 4

5 Exercise 2: C calling conventions The C language supports open parameter lists (e.g., void foo(int a, int b,...);), in other words: the number of arguments is not fix and can be larger than the specified parameters (in our example two or more). 1. Which is the formula to compute the address of the parameters on the stack? Let s look at an example using the printf function (in C) which has an open list of parameters. printf("%i %i %i %i", p0, p1, p2, p3); If we pass the parameters p i left to right (like in Java or Oberon) the address of a parameter will be (Figure 5 shows the stack layout): addr(p i ) := F P + padding + size(p n ) + size(p n 1 ) size(p i+1 ) FP RET pn... p1 p0 Figure 5: Left to right parameter passing. To compute the address of a parameter we need the total number (n) of actual parameters which is unknown at compile time. If we pass the parameters right to left (like in C) the address of a parameter will be (Figure 6 shows the stack layout): addr(p i ) := F P + padding + size(p 0 ) + size(p 1 ) size(p i 1 ) posing no problem at compile time! FP RET p0 p1 p2... Figure 6: Right to left parameter passing. 2. Give the implementation of the actions call and return in pseudocode. 5

6 The only problem that is generated by the presence of a variable number of parameters is the size of procedure frame is not known at compile time. When a procedure returns, the parameters must be removed from the stack but their is unknown. To avoid this problem the old stack pointer is stored on the stack (as a last hidden parameter) and later used to restore the stack after the called procedure has returned. This is the implementation of call and return with a variable number of parameters (the problem s specific code is highlighted in bold) The only change in the implementation is of course the order of the parameters and the additional storage of the stack pointer. Call Return save registers push parameters (right to left) push SP save PC branch save FP FP := SP allocate locals Remove Locals restore FP restore PC restore the SP (remove parameters) restore registers 6

7 Exercise 3: Parameter passing 1. Why do compilers typically allocate space for arguments in the stack, even when they pass them in registers? In this way when a parameter has to be written to memory (if and additional register is needed) it can be written in the stack as all the other parameters without having to handle it in a special way. Let s look at an example: on the PowerPC architecture registers 3 to 10 can be used to pass arguments. void foo(int a, int b, int c) { while (a > 0) foo(a-1, b, c); } At the first call of foo the three parameters will be stored to R3-R5. When foo calls itself recursively the registers R3 to R5 are again needed to store the parameters. The old values of R3,R4 and R5 have to be written back to memory. In this case the three registers can safely be written on the stack as any other parameter. 2. How can complex variables (arrays and records) be passed to a procedure. Discuss two possibilities and comment their efficiency A first simple possibility is to copy these structures on the stack. This approach has two major drawbacks: a lot of time is required to copy all the data at every procedure invocation, and huge stack frames are generated (as an example the size of an ARRAY 1024,1024 OF LONGREAL is 8MB). Some languages only allow this type of variables to be passed by reference eliminating the problem. Some other language allow to pass records and arrays by reference read-only: in this way the structures can be passed by reference avoiding the copy. When the callee wants to write on these structures the data is copied to another location (lazy copy) 3. Which is the problem when passing a constant by reference? How could this problem be avoided? If a constant is passed by reference, the callee could modify it since the address of the memory location is passed on the stack and the called procedure cannot be aware of the fact the actual parameter is, in fact, a constant. To avoid the problem a constant should be copied to a temporary location and the address of this temporary location should be passed to the callee. 7

8 Exercise 4: Return values Functions can return a value to the caller (e.g., PROCEDURE foo(): INTEGER; in Oberon or int foo(); in C). In Oberon it is only possible to return a scalar value or a pointer, other languages like C allow more complex structures to be returned. 1. Describe a simple way to return a value from the callee to the caller in Oberon (scalars and pointers only). When only scalars and pointers can be returned the maximum size of the returned variable is known and fix (normally four or eight bytes). In this case one or two registers can be reserved to this scope (on PowerPC usually R3, on Intel EAX). 2. Explain what should be done to return complex structures like records and arrays. This can be solved in two ways: either the caller gives the address of the structure that will be used by return to the callee (this corresponds to an hidden parameter), or the callee returns a pointer to a static variable where the structure is stored. 8

CA Compiler Construction

CA Compiler Construction CA4003 - Compiler Construction David Sinclair When procedure A calls procedure B, we name procedure A the caller and procedure B the callee. A Runtime Environment, also called an Activation Record, is

More information

Design Issues. Subroutines and Control Abstraction. Subroutines and Control Abstraction. CSC 4101: Programming Languages 1. Textbook, Chapter 8

Design Issues. Subroutines and Control Abstraction. Subroutines and Control Abstraction. CSC 4101: Programming Languages 1. Textbook, Chapter 8 Subroutines and Control Abstraction Textbook, Chapter 8 1 Subroutines and Control Abstraction Mechanisms for process abstraction Single entry (except FORTRAN, PL/I) Caller is suspended Control returns

More information

Run-time Environments - 2

Run-time Environments - 2 Run-time Environments - 2 Y.N. Srikant Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture n What is run-time

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 4 Thomas Wies New York University Review Last week Control Structures Selection Loops Adding Invariants Outline Subprograms Calling Sequences Parameter

More information

Wednesday, October 15, 14. Functions

Wednesday, October 15, 14. Functions Functions Terms void foo() { int a, b;... bar(a, b); void bar(int x, int y) {... foo is the caller bar is the callee a, b are the actual parameters to bar x, y are the formal parameters of bar Shorthand:

More information

Procedure and Object- Oriented Abstraction

Procedure and Object- Oriented Abstraction Procedure and Object- Oriented Abstraction Scope and storage management cs5363 1 Procedure abstractions Procedures are fundamental programming abstractions They are used to support dynamically nested blocks

More information

CSC 8400: Computer Systems. Using the Stack for Function Calls

CSC 8400: Computer Systems. Using the Stack for Function Calls CSC 84: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

Compiler Design. Spring Run-Time Environments. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Run-Time Environments. Sample Exercises and Solutions. Prof. Pedro C. Diniz University of Southern California (USC) Computer Science Department Compiler Design Spring 2014 Run-Time Environments Sample Exercises and Solutions Prof. Pedro C. Diniz USC / Information Sciences Institute

More information

CIT Week13 Lecture

CIT Week13 Lecture CIT 3136 - Week13 Lecture Runtime Environments During execution, allocation must be maintained by the generated code that is compatible with the scope and lifetime rules of the language. Typically there

More information

Run-Time Environments

Run-Time Environments 1 Run-Time Environments Chapter 7 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2011 2 Procedure Activation and Lifetime A procedure is activated when called

More information

Systems I. Machine-Level Programming V: Procedures

Systems I. Machine-Level Programming V: Procedures Systems I Machine-Level Programming V: Procedures Topics abstraction and implementation IA32 stack discipline Procedural Memory Usage void swap(int *xp, int *yp) int t0 = *xp; int t1 = *yp; *xp = t1; *yp

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

CSE 504. Expression evaluation. Expression Evaluation, Runtime Environments. One possible semantics: Problem:

CSE 504. Expression evaluation. Expression Evaluation, Runtime Environments. One possible semantics: Problem: Expression evaluation CSE 504 Order of evaluation For the abstract syntax tree + + 5 Expression Evaluation, Runtime Environments + + x 3 2 4 the equivalent expression is (x + 3) + (2 + 4) + 5 1 2 (. Contd

More information

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control.

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control. C Flow Control David Chisnall February 1, 2011 Outline What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope Disclaimer! These slides contain a lot of

More information

Implementing Subprograms

Implementing Subprograms 1 Implementing Subprograms CS 315 Programming Languages Pinar Duygulu Bilkent University CS315 Programming Languages Pinar Duygulu The General Semantics of Calls and Returns 2 The subprogram call and return

More information

THEORY OF COMPILATION

THEORY OF COMPILATION Lecture 10 Activation Records THEORY OF COMPILATION EranYahav www.cs.technion.ac.il/~yahave/tocs2011/compilers-lec10.pptx Reference: Dragon 7.1,7.2. MCD 6.3,6.4.2 1 You are here Compiler txt Source Lexical

More information

Topic 7: Activation Records

Topic 7: Activation Records Topic 7: Activation Records Compiler Design Prof. Hanjun Kim CoreLab (Compiler Research Lab) POSTECH 1 Storage Organization Stack Free Memory Heap Static Code 2 ELF file format example Executable Object

More information

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017 143A: Principles of Operating Systems Lecture 4: Calling conventions Anton Burtsev October, 2017 Recap from last time Stack and procedure calls What is stack? Stack It's just a region of memory Pointed

More information

Implementing Subroutines. Outline [1]

Implementing Subroutines. Outline [1] Implementing Subroutines In Text: Chapter 9 Outline [1] General semantics of calls and returns Implementing simple subroutines Call Stack Implementing subroutines with stackdynamic local variables Nested

More information

Chapter 10. Implementing Subprograms ISBN

Chapter 10. Implementing Subprograms ISBN Chapter 10 Implementing Subprograms ISBN 0-321-33025-0 Chapter 10 Topics The General Semantics of Calls and Returns Implementing Simple Subprograms Implementing Subprograms with Stack-Dynamic Local Variables

More information

Lecture08: Scope and Lexical Address

Lecture08: Scope and Lexical Address Lecture08: Scope and Lexical Address Free and Bound Variables (EOPL 1.3.1) Given an expression E, does a particular variable reference x appear free or bound in that expression? Definition: A variable

More information

Principles of Programming Languages

Principles of Programming Languages Ting Zhang Iowa State University Computer Science Department Lecture Note 16 October 26, 2010 Control Abstraction: Subroutines 1 / 26 Outline 1 Subroutines 2 Parameter Passing 3 Generic Subroutines 2 /

More information

Run-time Environment

Run-time Environment Run-time Environment Prof. James L. Frankel Harvard University Version of 3:08 PM 20-Apr-2018 Copyright 2018, 2016, 2015 James L. Frankel. All rights reserved. Storage Organization Automatic objects are

More information

Compilation /15a Lecture 7. Activation Records Noam Rinetzky

Compilation /15a Lecture 7. Activation Records Noam Rinetzky Compilation 0368-3133 2014/15a Lecture 7 Activation Records Noam Rinetzky 1 Code generation for procedure calls (+ a few words on the runtime system) 2 Code generation for procedure calls Compile time

More information

143A: Principles of Operating Systems. Lecture 5: Calling conventions. Anton Burtsev January, 2017

143A: Principles of Operating Systems. Lecture 5: Calling conventions. Anton Burtsev January, 2017 143A: Principles of Operating Systems Lecture 5: Calling conventions Anton Burtsev January, 2017 Stack and procedure calls Stack Main purpose: Store the return address for the current procedure Caller

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

! Those values must be stored somewhere! Therefore, variables must somehow be bound. ! How?

! Those values must be stored somewhere! Therefore, variables must somehow be bound. ! How? A Binding Question! Variables are bound (dynamically) to values Subprogram Activation! Those values must be stored somewhere! Therefore, variables must somehow be bound to memory locations! How? Function

More information

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call Call without Parameter Value Transfer What are involved? ESP Stack Pointer Register Grows by 4 for EIP (return address) storage Stack -- Memory which holds register contents Will keep the EIP of the next

More information

ASSEMBLY III: PROCEDURES. Jo, Heeseung

ASSEMBLY III: PROCEDURES. Jo, Heeseung ASSEMBLY III: PROCEDURES Jo, Heeseung IA-32 STACK (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Implementing Subprograms

Implementing Subprograms Implementing Subprograms In Text: Chapter 10 Slide 1 Implementing Subprograms Call - Save registers - provide storage for parameters - provide storage for locals - save execution status of caller - provide

More information

Assembly III: Procedures. Jo, Heeseung

Assembly III: Procedures. Jo, Heeseung Assembly III: Procedures Jo, Heeseung IA-32 Stack (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls"

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls" 1 Lecture Goals! Challenges of supporting functions" Providing information for the called function" Function arguments and local variables" Allowing

More information

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 4 Robert Grimm, New York University 1 Review Last week Control Structures Selection Loops 2 Outline Subprograms Calling Sequences Parameter Passing

More information

CS 314 Principles of Programming Languages. Lecture 13

CS 314 Principles of Programming Languages. Lecture 13 CS 314 Principles of Programming Languages Lecture 13 Zheng Zhang Department of Computer Science Rutgers University Wednesday 19 th October, 2016 Zheng Zhang 1 CS@Rutgers University Class Information Reminder:

More information

Programming Languages: Lecture 12

Programming Languages: Lecture 12 1 Programming Languages: Lecture 12 Chapter 10: Implementing Subprograms Jinwoo Kim jwkim@jjay.cuny.edu Chapter 10 Topics 2 The General Semantics of Calls and Returns Implementing Simple Subprograms Implementing

More information

Course Administration

Course Administration Fall 2018 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture Introduction 4/4 Avinash Karanth Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701

More information

Code Generation. The Main Idea of Today s Lecture. We can emit stack-machine-style code for expressions via recursion. Lecture Outline.

Code Generation. The Main Idea of Today s Lecture. We can emit stack-machine-style code for expressions via recursion. Lecture Outline. The Main Idea of Today s Lecture Code Generation We can emit stack-machine-style code for expressions via recursion (We will use MIPS assembly as our target language) 2 Lecture Outline What are stack machines?

More information

Separate compilation. Topic 6: Runtime Environments p.1/21. CS 526 Topic 6: Runtime Environments The linkage convention

Separate compilation. Topic 6: Runtime Environments p.1/21. CS 526 Topic 6: Runtime Environments The linkage convention Runtime Environment The Procedure Abstraction and Separate Compilation Topics we will cover The procedure abstraction and linkage conventions Runtime storage convention Non-local data access (brief) These

More information

Calling Conventions. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See P&H 2.8 and 2.12

Calling Conventions. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See P&H 2.8 and 2.12 Calling Conventions Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See P&H 2.8 and 2.12 Goals for Today Calling Convention for Procedure Calls Enable code to be reused by allowing

More information

Functions and Procedures

Functions and Procedures Functions and Procedures Function or Procedure A separate piece of code Possibly separately compiled Located at some address in the memory used for code, away from main and other functions (main is itself

More information

We can emit stack-machine-style code for expressions via recursion

We can emit stack-machine-style code for expressions via recursion Code Generation The Main Idea of Today s Lecture We can emit stack-machine-style code for expressions via recursion (We will use MIPS assembly as our target language) 2 Lecture Outline What are stack machines?

More information

12/4/18. Outline. Implementing Subprograms. Semantics of a subroutine call. Storage of Information. Semantics of a subroutine return

12/4/18. Outline. Implementing Subprograms. Semantics of a subroutine call. Storage of Information. Semantics of a subroutine return Outline Implementing Subprograms In Text: Chapter 10 General semantics of calls and returns Implementing simple subroutines Call Stack Implementing subroutines with stackdynamic local variables Nested

More information

Q1: /20 Q2: /30 Q3: /24 Q4: /26. Total: /100

Q1: /20 Q2: /30 Q3: /24 Q4: /26. Total: /100 ECE 2035(B) Programming for Hardware/Software Systems Fall 2013 Exam Two October 22 nd 2013 Name: Q1: /20 Q2: /30 Q3: /24 Q4: /26 Total: /100 1/6 For functional call related questions, let s assume the

More information

CSc 520 Principles of Programming Languages. Questions. rocedures as Control Abstractions... 30: Procedures Introduction

CSc 520 Principles of Programming Languages. Questions. rocedures as Control Abstractions... 30: Procedures Introduction Procedures as Control Abstractions CSc 520 Principles of Programming Languages 30: Procedures Introduction Christian Collberg collberg@cs.arizona.edu Department of Computer Science University of Arizona

More information

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site)

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) Function Calls COS 217 Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) 1 Goals of Today s Lecture Finishing introduction to assembly language o EFLAGS register

More information

238P: Operating Systems. Lecture 3: Calling conventions. Anton Burtsev October, 2018

238P: Operating Systems. Lecture 3: Calling conventions. Anton Burtsev October, 2018 238P: Operating Systems Lecture 3: Calling conventions Anton Burtsev October, 2018 What does CPU do internally? (Remember Lecture 01 - Introduction?) CPU execution loop CPU repeatedly reads instructions

More information

Run Time Environment. Activation Records Procedure Linkage Name Translation and Variable Access

Run Time Environment. Activation Records Procedure Linkage Name Translation and Variable Access Run Time Environment Activation Records Procedure Linkage Name Translation and Variable Access Copyright 2015, Pedro C. Diniz, all rights reserved. Students enrolled in the Compilers class at the University

More information

G53CMP: Lecture 14. Run-Time Organisation I. Henrik Nilsson. University of Nottingham, UK. G53CMP: Lecture 14 p.1/37

G53CMP: Lecture 14. Run-Time Organisation I. Henrik Nilsson. University of Nottingham, UK. G53CMP: Lecture 14 p.1/37 G53CMP: Lecture 14 Run-Time Organisation I Henrik Nilsson University of Nottingham, UK G53CMP: Lecture 14 p.1/37 This Lecture One aspect of run-time organisation: stack-based storage allocation Lifetime

More information

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13 Run-time Environments Lecture 13 by Prof. Vijay Ganesh) Lecture 13 1 What have we covered so far? We have covered the front-end phases Lexical analysis (Lexer, regular expressions,...) Parsing (CFG, Top-down,

More information

This Lecture. G53CMP: Lecture 14 Run-Time Organisation I. Example: Lifetime (1) Storage Areas

This Lecture. G53CMP: Lecture 14 Run-Time Organisation I. Example: Lifetime (1) Storage Areas This Lecture G53CMP: Lecture 14 Run-Time Organisation I Henrik Nilsson University of Nottingham, UK One aspect of run-time organisation: stack-based storage allocation Lifetime and storage Basic stack

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls 1 Lecture Goals Challenges of supporting functions Providing information for the called function Function arguments and local variables Allowing the

More information

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri CS356: Discussion #6 Assembly Procedures and Arrays Marco Paolieri (paolieri@usc.edu) Procedures Functions are a key abstraction in software They break down a problem into subproblems. Reusable functionality:

More information

Procedure Call. Procedure Call CS 217. Involves following actions

Procedure Call. Procedure Call CS 217. Involves following actions Procedure Call CS 217 Procedure Call Involves following actions pass arguments save a return address transfer control to callee transfer control back to caller return results int add(int a, int b) { return

More information

Run Time Environment. Procedure Abstraction. The Procedure as a Control Abstraction. The Procedure as a Control Abstraction

Run Time Environment. Procedure Abstraction. The Procedure as a Control Abstraction. The Procedure as a Control Abstraction Procedure Abstraction Run Time Environment Records Procedure Linkage Name Translation and Variable Access Copyright 2010, Pedro C. Diniz, all rights reserved. Students enrolled in the Compilers class at

More information

CSE 3302 Notes 5: Memory Management

CSE 3302 Notes 5: Memory Management CSE 0 Notes 5: Memory Management (Last updated 10/7/15 1:6 PM) References: Gabbrielli-Martini: 5 Wirth: 4 5.1. IMPLEMENTING SIMPLE SUBPROGRAMS Historical FORTRAN and COBOL Simple = no recursion static

More information

Today's Topics. CISC 458 Winter J.R. Cordy

Today's Topics. CISC 458 Winter J.R. Cordy Today's Topics Last Time Semantics - the meaning of program structures Stack model of expression evaluation, the Expression Stack (ES) Stack model of automatic storage, the Run Stack (RS) Today Managing

More information

Compilers and Code Optimization EDOARDO FUSELLA

Compilers and Code Optimization EDOARDO FUSELLA Compilers and Code Optimization EDOARDO FUSELLA Contents Data memory layout Instruction selection Register allocation Data memory layout Memory Hierarchy Capacity vs access speed Main memory Classes of

More information

Procedure-Calling Conventions October 30

Procedure-Calling Conventions October 30 Procedure-Calling Conventions October 30 CSC201 Section 002 Fall, 2000 Saving registers Registers are inevitably used by subroutines; changes their! Registers have global scope; calling procedures also

More information

CSCI Compiler Design

CSCI Compiler Design CSCI 565 - Compiler Design Spring 2010 Final Exam - Solution May 07, 2010 at 1.30 PM in Room RTH 115 Duration: 2h 30 min. Please label all pages you turn in with your name and student number. Name: Number:

More information

Code Generation & Parameter Passing

Code Generation & Parameter Passing Code Generation & Parameter Passing Lecture Outline 1. Allocating temporaries in the activation record Let s optimize our code generator a bit 2. A deeper look into calling sequences Caller/Callee responsibilities

More information

CS558 Programming Languages Winter 2018 Lecture 4a. Andrew Tolmach Portland State University

CS558 Programming Languages Winter 2018 Lecture 4a. Andrew Tolmach Portland State University CS558 Programming Languages Winter 2018 Lecture 4a Andrew Tolmach Portland State University 1994-2018 Pragmatics of Large Values Real machines are very efficient at handling word-size chunks of data (e.g.

More information

Lexical Considerations

Lexical Considerations Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Fall 2005 Handout 6 Decaf Language Wednesday, September 7 The project for the course is to write a

More information

Lecture #16: Introduction to Runtime Organization. Last modified: Fri Mar 19 00:17: CS164: Lecture #16 1

Lecture #16: Introduction to Runtime Organization. Last modified: Fri Mar 19 00:17: CS164: Lecture #16 1 Lecture #16: Introduction to Runtime Organization Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 1 Status Lexical analysis Produces tokens Detects & eliminates illegal tokens Parsing Produces

More information

! What do we care about? n Fast program execution. n Efficient memory usage. n Avoid memory fragmentation. n Maintain data locality

! What do we care about? n Fast program execution. n Efficient memory usage. n Avoid memory fragmentation. n Maintain data locality Problem Chapter 10 Memory Model for Program Execution Original slides by Chris Wilcox, Colorado State University How do we allocate memory during the execution of a program written in C?! Programs need

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: February 28, 2018 at 06:32 CS429 Slideset 9: 1 Mechanisms in Procedures

More information

Example. program sort; var a : array[0..10] of integer; procedure readarray; : function partition (y, z :integer) :integer; var i, j,x, v :integer; :

Example. program sort; var a : array[0..10] of integer; procedure readarray; : function partition (y, z :integer) :integer; var i, j,x, v :integer; : Runtime Environment Relationship between names and data objects (of target machine) Allocation & de-allocation is managed by run time support package Each execution of a procedure is an activation of the

More information

CSCI565 Compiler Design

CSCI565 Compiler Design CSCI565 Compiler Design Spring 2011 Homework 4 Solution Due Date: April 6, 2011 in class Problem 1: Activation Records and Stack Layout [50 points] Consider the following C source program shown below.

More information

CS213. Machine-Level Programming III: Procedures

CS213. Machine-Level Programming III: Procedures CS213 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows toward

More information

Topic 3-a. Calling Convention 2/29/2008 1

Topic 3-a. Calling Convention 2/29/2008 1 Topic 3-a Calling Convention 2/29/2008 1 Calling Convention Calling convention is a standardized method for a program to pass parameters to a procedure and receive result values back from it. 2/29/2008

More information

Chapter 9. Def: The subprogram call and return operations of a language are together called its subprogram linkage

Chapter 9. Def: The subprogram call and return operations of a language are together called its subprogram linkage Def: The subprogram call and return operations of a language are together called its subprogram linkage Implementing FORTRAN 77 Subprograms Call Semantics: 1. Save the execution status of the caller 2.

More information

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly III: Procedures Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu IA-32 (1) Characteristics Region of memory managed with stack discipline

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Fall 2016 Lecture 4a Andrew Tolmach Portland State University 1994-2016 Pragmatics of Large Values Real machines are very efficient at handling word-size chunks of data (e.g.

More information

Memory Management and Run-Time Systems

Memory Management and Run-Time Systems TDDD55 Compilers and Interpreters TDDB44 Compiler Construction Memory Management and Run-Time Systems Part of the Attribute Grammar Material Presented at the Beginning of this Lecture Peter Fritzson IDA,

More information

Machine Programming 3: Procedures

Machine Programming 3: Procedures Machine Programming 3: Procedures CS61, Lecture 5 Prof. Stephen Chong September 15, 2011 Announcements Assignment 2 (Binary bomb) due next week If you haven t yet please create a VM to make sure the infrastructure

More information

MIPS Functions and the Runtime Stack

MIPS Functions and the Runtime Stack MIPS Functions and the Runtime Stack COE 301 Computer Organization Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline

More information

Lexical Considerations

Lexical Considerations Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Spring 2010 Handout Decaf Language Tuesday, Feb 2 The project for the course is to write a compiler

More information

Procedure Calls Main Procedure. MIPS Calling Convention. MIPS-specific info. Procedure Calls. MIPS-specific info who cares? Chapter 2.7 Appendix A.

Procedure Calls Main Procedure. MIPS Calling Convention. MIPS-specific info. Procedure Calls. MIPS-specific info who cares? Chapter 2.7 Appendix A. MIPS Calling Convention Chapter 2.7 Appendix A.6 Procedure Calls Main Procedure Call Procedure Call Procedure Procedure Calls Procedure must from any call Procedure uses that main was using We need a convention

More information

CSc 520 Principles of Programming Languages

CSc 520 Principles of Programming Languages CSc 520 Principles of Programming Languages 27 : Control Structures Procedures Christian Collberg Department of Computer Science University of Arizona collberg+520@gmail.com Copyright c 2008 Christian

More information

Concepts Introduced in Chapter 7

Concepts Introduced in Chapter 7 Concepts Introduced in Chapter 7 Storage Allocation Strategies Static Stack Heap Activation Records Access to Nonlocal Names Access links followed by Fig. 7.1 EECS 665 Compiler Construction 1 Activation

More information

Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University. See P&H 2.8 and 2.12, and A.

Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University. See P&H 2.8 and 2.12, and A. Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University See P&H 2.8 and 2.12, and A.5 6 compute jump/branch targets memory PC +4 new pc Instruction Fetch

More information

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 15-213 The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables class07.ppt

More information

COL728 Minor2 Exam Compiler Design Sem II, Answer all 5 questions Max. Marks: 20

COL728 Minor2 Exam Compiler Design Sem II, Answer all 5 questions Max. Marks: 20 COL728 Minor2 Exam Compiler Design Sem II, 2017-18 Answer all 5 questions Max. Marks: 20 1. Short questions a. Give an example of a program that is not a legal program if we assume static scoping, but

More information

1 Lexical Considerations

1 Lexical Considerations Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Spring 2013 Handout Decaf Language Thursday, Feb 7 The project for the course is to write a compiler

More information

Module 27 Switch-case statements and Run-time storage management

Module 27 Switch-case statements and Run-time storage management Module 27 Switch-case statements and Run-time storage management In this module we will discuss the pending constructs in generating three-address code namely switch-case statements. We will also discuss

More information

Run-time Environments - 3

Run-time Environments - 3 Run-time Environments - 3 Y.N. Srikant Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture n What is run-time

More information

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29 Procedure Calls Young W. Lim 2017-08-21 Mon Young W. Lim Procedure Calls 2017-08-21 Mon 1 / 29 Outline 1 Introduction Based on Stack Background Transferring Control Register Usage Conventions Procedure

More information

Stack Frames. September 2, Indiana University. Geoffrey Brown, Bryce Himebaugh 2015 September 2, / 15

Stack Frames. September 2, Indiana University. Geoffrey Brown, Bryce Himebaugh 2015 September 2, / 15 Stack Frames Geoffrey Brown Bryce Himebaugh Indiana University September 2, 2016 Geoffrey Brown, Bryce Himebaugh 2015 September 2, 2016 1 / 15 Outline Preserving Registers Saving and Restoring Registers

More information

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27 Procedure Calls Young W. Lim 2016-11-05 Sat Young W. Lim Procedure Calls 2016-11-05 Sat 1 / 27 Outline 1 Introduction References Stack Background Transferring Control Register Usage Conventions Procedure

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Supporting Nested Procedures James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Memory Layout

More information

Chapter 10 Memory Model for Program Execution. Problem

Chapter 10 Memory Model for Program Execution. Problem Chapter 10 Memory Model for Program Execution Original slides by Chris Wilcox, Colorado State University Problem How do we allocate memory during the execution of a program written in C?! Programs need

More information

Programming Languages

Programming Languages Programming Languages Tevfik Koşar Lecture - XX April 4 th, 2006 1 Roadmap Subroutines Allocation Strategies Calling Sequences Parameter Passing Generic Subroutines Exception Handling Co-routines 2 1 Review

More information

Scope, Functions, and Storage Management

Scope, Functions, and Storage Management Scope, Functions, and Storage Management Implementing Functions and Blocks cs3723 1 Simplified Machine Model (Compare To List Abstract Machine) Registers Code Data Program Counter (current instruction)

More information

Procedures: Advanced Topics Chapter 12

Procedures: Advanced Topics Chapter 12 Thi d t t d ith F M k 4 0 2 Procedures: Advanced Topics Chapter 12 The last chapter described how to create procedures, pass parameters, and allocate and access local variables. This chapter picks up where

More information

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon Carnegie Mellon Machine-Level Programming III: Procedures 15-213/18-213/14-513/15-513: Introduction to Computer Systems 7 th Lecture, September 18, 2018 Today Procedures Mechanisms Stack Structure Calling

More information

See P&H 2.8 and 2.12, and A.5-6. Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University

See P&H 2.8 and 2.12, and A.5-6. Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University See P&H 2.8 and 2.12, and A.5-6 Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University Upcoming agenda PA1 due yesterday PA2 available and discussed during lab section this week

More information

ECE260: Fundamentals of Computer Engineering. Supporting Procedures in Computer Hardware

ECE260: Fundamentals of Computer Engineering. Supporting Procedures in Computer Hardware Supporting Procedures in Computer Hardware James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy

More information

Code Generation. Lecture 12

Code Generation. Lecture 12 Code Generation Lecture 12 1 Lecture Outline Topic 1: Basic Code Generation The MIPS assembly language A simple source language Stack-machine implementation of the simple language Topic 2: Code Generation

More information

Storage in Programs. largest. address. address

Storage in Programs. largest. address. address Storage in rograms Almost all operand storage used by programs is provided by memory. Even though registers are more efficiently accessed by instructions, there are too few registers to hold the stored

More information