Handout 2 - Root Finding using MATLAB

Size: px
Start display at page:

Download "Handout 2 - Root Finding using MATLAB"

Transcription

1 Handout 2 - Root Finding using MATLAB Middle East Technical University MATLAB has couple of built-in root finding functions. In this handout we ll have a look at fzero, roots and solve functions. It is called as follows. fzero fzero(function, initial guess, options) It locates only one root. Function is given as a function of x. Inıtial guess can be a single value or an interval. The last options parameter is optional. To solve the Mars robot wheel example, we can first define the function as anonymous and then call fzero. f 0.4-x+sin(x); fzero(f, 0) The result is , which is exact. Or we can provide the function directly in fzero as a string in single quotes. fzero('0.4-x+sin(x)', 0) Warning: To see all digits of the result as given above, you need to first enter format long command on the command window. To see less details use format short. Warning: When you copy-paste things from Word document or a PDF file into MATLAB, MATLAB may complain about certain characters, such as the single quotes given above. You need to correct them in the way MATLAB wants to see them. Let s try to locate the first positive root of the vibrating cantilever beam problem fzero('cos(x)*cosh(x)+1', 0) The result is , which is the first negative root. To locate the first positive root, we either need to provide an initial guess that is closer to it such as 1, or we can provide an interval fzero('cos(x)*cosh(x)+1', [0, 5]) The result is , which is the exact first positive root. With fzero, it is NOT possible to locate multiple roots at once. We need to search for them one by one. fzero('cos(x)*cosh(x)+1', [3, 7]) fzero('cos(x)*cosh(x)+1', [7, 10]) This will find This will find

2 Warning: So, you need to know what you re doing. You cannot use fzero blindly. Middle East Technical University If you enter an interval with no root in it, you ll get an error message about the sign of the function being the same at the end points of the interval. fzero('cos(x)*cosh(x)+1', [0, 1]) What happens if you enter an interval that contains two (even number of) roots? fzero('cos(x)*cosh(x)+1', [0, 6]) Actually there are two roots inside [0, 6], but fzero cannot locate them. What happens if you enter an interval that contains three (odd number of) roots? fzero('cos(x)*cosh(x)+1', [0, 9]) Actually there are three roots inside [0, 9], and fzero finds the first one. It is unaware of the other too. Warning: So, you need to know what you re doing. Again. Let s try to find the root of the bungee jumper example fzero('sqrt(9.81*x/0.25)*tanh(sqrt(9.81*0.25/x)*4)-35', 0) The result is Not meaningful. Mass cannot be negative. Let s try a different initial guess. fzero('sqrt(9.81*x/0.25)*tanh(sqrt(9.81*0.25/x)*4)-35', 10) The result is , another negative number. Not physical. Warning: MATLAB knows nothing about bungee jumping, but you know. Let s try a different initial guess, which is closer to the root fzero('sqrt(9.81*x/0.25)*tanh(sqrt(9.81*0.25/x)*4)-35', 80) The result is This is what we are looking for. But finding it took many trials. Question: What s going on here? How does fzero work? 2

3 Let s try to set an option to see iteration details. We do this using the optimset command of MATLAB. We can set many different options with it. Below we set display option to iter, meaning that we want to see iteration details options = optimset('display', 'iter'); fzero(f,80, options) This will show the following details Search for an interval around 80 containing a sign change: Func-count a f(a) b f(b) Procedure initial interval search search search search search search search search Search for a zero in the interval [54.4, 105.6]: Func-count x f(x) Procedure initial interpolation e-06 interpolation e-09 interpolation interpolation Zero found in the interval [54.4, 105.6] ans = e+02 fzero uses a hybrid root finding technique known as Brent s method. You can read about it in your textbook but you are not responsible for it. It is a combination of several bracketing and open methods. When you provide fzero only a single initial guess, not an interval, it first tries to find an interval where the function changes sign. To find the interval, it goes to the right and to the left of the initial guess and check for sign changes. This is like incremental search, but more clever, i.e. the increment is not constant, adjusted automatically by looking at the properties of the function. Starting from the given initial guess of x = 80, it peforms many iterations and at iteration 17, it locates an interval [54.4, 105.6] where the sign changes. Than it uses a proper root finding method such as the bisection, the quadratic interpolation (see your textbook for this one, but you are not responsible for it) or the secant method. It decides on what to use by its own. Sometimes it uses a combination of these together. In the above example the convergence is achieved at iteration 21. The default tolerance value fzero uses for stopping is a low value around 10 16, which can be changed using the optimset command. 3

4 If instead of a single initial guess, we provide an interval, initial search part is skipped, as seen below fzero(f,[0,200], options) Func-count x f(x) Procedure initial interpolation bisection interpolation interpolation interpolation e-07 interpolation e-11 interpolation e-14 interpolation e-15 interpolation interpolation Here the root is found at 12 iterations by using bisection and quadratic interpolation methods. Exercise: Using the options argument as explained above, see what fzero actually did for the earlier cases where things went wrong. roots This function finds the roots of polynomials. Fzero can also be used to find roots of polynomials, but there are methods specially designed to find the roots of polynomials, such as the Müller s method or the Bairstow s method. See your textbook for details (you are not responsible for them). To find the roots of the polynomial 3x 2 2x 4 we use roots([3-2 -4]) The results is As seen the coefficients of the polynomial are provided as an array, starting from that of the highest order term. If one of the coefficients is zero do not skip it, instead give zero to it. For example to find the roots of 3x 2 4 we need to write roots([3 0-4]) If we do not write the middle zero, MATLAB will understand the polynomial to be 3x 4 4

5 solve This function solves equations and equation sets symbolically using the Symbolic Mathematics Toolbox of MATLAB. Therefore, it provides analytical (exact) answers To find the roots of the polynomial x 2 3x 4 we can use it as follows eqn = x^2-3*x - 4; The results are given as follows, which are exact and obtained without any numerical root finding procedure. 1/3-13^(1/2)/3 13^(1/2)/3 + 1/3 To find the root of sin(x) cos(x) = 0 function use it as follows eqn = sin(x) - cos(x); which gives the result as pi/4. This is the exact first negative root. Actually there are infinitely many roots. But the use of the solve function is limited. To find the root of the Mars robot wheel example, we can try to use it as follows, but it gives a warning and instead uses a numerical technique (probably the fzero function) to find the root. eqn = 0.4-x+sin(x); Warning: Unable to solve symbolically. Returning a numeric approximation instead. Same thing happens for the vibrating cantilever beam and bungee jumper examples, too. 5

Handout 4 - Interpolation Examples

Handout 4 - Interpolation Examples Handout 4 - Interpolation Examples Middle East Technical University Example 1: Obtaining the n th Degree Newton s Interpolating Polynomial Passing through (n+1) Data Points Obtain the 4 th degree Newton

More information

Lecture 7 Symbolic Computations

Lecture 7 Symbolic Computations Lecture 7 Symbolic Computations The focus of this course is on numerical computations, i.e. calculations, usually approximations, with floating point numbers. However, Matlab can also do symbolic computations,

More information

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn Today s class Roots of equation Finish up incremental search Open methods 1 False Position Method Although the interval [a,b] where the root becomes iteratively closer with the false position method, unlike

More information

Math F302: Octave Miscellany September 28, e 1 x3 dx. Here s how to find a numerical approximation with Octave

Math F302: Octave Miscellany September 28, e 1 x3 dx. Here s how to find a numerical approximation with Octave Definite Integrals Despite your training in Calculus, most definite integrals cannot be computed exactly, and must be approximated numerically. You learned a number of rules for doing this: the trapezoidal

More information

Assignment #2: False Position Method

Assignment #2: False Position Method University of Puerto Rico Mayaguez Campus Department of Electrical & Computer Engineering Assignment #2: False Position Method Osvaldo M. Cardona 841-08-0990 Diana Rivera Negrón 802-08-6908 Ricardo I.

More information

1.00 Lecture 19. Numerical Methods: Root Finding

1.00 Lecture 19. Numerical Methods: Root Finding 1.00 Lecture 19 Numerical Methods: Root Finding short int Remember Java Data Types Type byte long float double char boolean Size (bits) 8 16 32 64 32 64 16 1-128 to 127-32,768 to 32,767-2,147,483,648 to

More information

1.00 Lecture 25. Root Finding

1.00 Lecture 25. Root Finding 1.00 Lecture 25 Numerical Methods: Root Finding Reading for next time: Big Java: section 19.4 Root Finding Two cases: One dimensional function: f(x)= 0 Systems of equations (F(X)= 0), where X and 0 are

More information

Introduction to MATLAB for Economics

Introduction to MATLAB for Economics Introduction to MATLAB for Economics Introduction to Optimization in MATLAB Javier Barbero Universidad Autónoma de Madrid http://www.javierbarbero.net October 31, 2014 Javier Barbero (UAM) Introduction

More information

Remember Java Data Types

Remember Java Data Types 1.00 Lecture 19 October 24, 2005 Numerical Methods: Root Finding Remember Java Data Types Size Type (bits) Range byte 8-128 to 127 short 16-32,768 to 32,767 int 32-2,147,483,648 to 2,147,483,647 long 64-9,223,372,036,854,775,808L

More information

From: Robert Sharpley Subject: Homeworks #6 Date: February 22, :09:53 AM EST Cc: Robert Sharpley

From: Robert Sharpley Subject: Homeworks #6 Date: February 22, :09:53 AM EST Cc: Robert Sharpley From: Robert Sharpley Subject: Homeworks #6 Date: February 22, 2006 9:09:53 AM EST Cc: Robert Sharpley %% Homework #5 - Solutions %% Here is a matlab code

More information

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s.

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Using Monte Carlo to Estimate π using Buffon s Needle Problem An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Here s the problem (in a simplified form). Suppose

More information

1.00 Lecture 19. Packaging Functions in Objects

1.00 Lecture 19. Packaging Functions in Objects 1.00 Lecture 19 Numerical Methods: Root Finding Packaging Functions in Objects Consider writing method that finds root of function or evaluates a function, e.g., f(x)= 0 on some interval [a, b], or find

More information

MS213: Numerical Methods Computing Assignments with Matlab

MS213: Numerical Methods Computing Assignments with Matlab MS213: Numerical Methods Computing Assignments with Matlab SUBMISSION GUIDELINES & ASSIGNMENT ADVICE 1 Assignment Questions & Supplied Codes 1.1 The MS213 Numerical Methods assignments require students

More information

MATH2070: LAB 3: Roots of Equations

MATH2070: LAB 3: Roots of Equations MATH2070: LAB 3: Roots of Equations 1 Introduction Introduction Exercise 1 A Sample Problem Exercise 2 The Bisection Idea Exercise 3 Programming Bisection Exercise 4 Variable Function Names Exercise 5

More information

MATH2070: LAB 3: Roots of Equations

MATH2070: LAB 3: Roots of Equations MATH2070: LAB 3: Roots of Equations 1 Introduction Introduction Exercise 1 A Sample Problem Exercise 2 The Bisection Idea Exercise 3 Programming Bisection Exercise 4 Variable Function Names Exercise 5

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

Packages in Julia. Downloading Packages A Word of Caution Sawtooth, Revisited

Packages in Julia. Downloading Packages A Word of Caution Sawtooth, Revisited Packages in Julia Downloading Packages A Word of Caution Sawtooth, Revisited Downloading Packages Because Julia is an open-source language, there are a ton of packages available online that enable such

More information

In this chapter, we will discuss several general algorithms that find a solution of the following canonical equation. f(x) = 0 (1.

In this chapter, we will discuss several general algorithms that find a solution of the following canonical equation. f(x) = 0 (1. Chapter 1 Root finding algorithms 1.1 Root finding problem In this chapter, we will discuss several general algorithms that find a solution of the following canonical equation f(x) = 0 (1.1) Here f(x)

More information

Approximate First and Second Derivatives

Approximate First and Second Derivatives MTH229 Project 6 Exercises Approximate First and Second Derivatives NAME: SECTION: INSTRUCTOR: Exercise 1: Let f(x) = sin(x 2 ). We wish to find the derivative of f when x = π/4. a. Make a function m-file

More information

Computers in Engineering Root Finding Michael A. Hawker

Computers in Engineering Root Finding Michael A. Hawker Computers in Engineering COMP 208 Root Finding Michael A. Hawker Root Finding Many applications involve finding the roots of a function f(x). That is, we want to find a value or values for x such that

More information

Math 3 Coordinate Geometry Part 2 Graphing Solutions

Math 3 Coordinate Geometry Part 2 Graphing Solutions Math 3 Coordinate Geometry Part 2 Graphing Solutions 1 SOLVING SYSTEMS OF EQUATIONS GRAPHICALLY The solution of two linear equations is the point where the two lines intersect. For example, in the graph

More information

Maximizing an interpolating quadratic

Maximizing an interpolating quadratic Week 11: Monday, Apr 9 Maximizing an interpolating quadratic Suppose that a function f is evaluated on a reasonably fine, uniform mesh {x i } n i=0 with spacing h = x i+1 x i. How can we find any local

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Section 3.7 Notes. Rational Functions. is a rational function. The graph of every rational function is smooth (no sharp corners)

Section 3.7 Notes. Rational Functions. is a rational function. The graph of every rational function is smooth (no sharp corners) Section.7 Notes Rational Functions Introduction Definition A rational function is fraction of two polynomials. For example, f(x) = x x + x 5 Properties of Rational Graphs is a rational function. The graph

More information

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations COURSE: NUMERICAL ANALYSIS LESSON: Methods for Solving Non-Linear Equations Lesson Developer: RAJNI ARORA COLLEGE/DEPARTMENT: Department of Mathematics, University of Delhi Page No. 1 Contents 1. LEARNING

More information

Contents. Hilary Term. Summary of Numerical Analysis for this term. Sources of error in numerical calculation. Solving Problems

Contents. Hilary Term. Summary of Numerical Analysis for this term. Sources of error in numerical calculation. Solving Problems Contents Hilary Term 1 Root Finding 4 11 Bracketing and Bisection 5 111 Finding the root numerically 5 112 Pseudo BRACKET code 7 113 Drawbacks 8 114 Tips for success with Bracketing & Bisection 9 115 Virtues

More information

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers.

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers. 1 Purpose This lab illustrates the use of looping structures by introducing a class of programming problems called numerical algorithms. 1. Practice the use of the C ++ repetition constructs of for, while,

More information

A = [1, 6; 78, 9] Note: everything is case-sensitive, so a and A are different. One enters the above matrix as

A = [1, 6; 78, 9] Note: everything is case-sensitive, so a and A are different. One enters the above matrix as 1 Matlab Primer The purpose of these notes is a step-by-step guide to solving simple optimization and root-finding problems in Matlab To begin, the basic object in Matlab is an array; in two dimensions,

More information

Numerical Methods Lecture 7 - Optimization

Numerical Methods Lecture 7 - Optimization Numerical Methods Lecture 7 - Optimization Topics: numerical optimization - Newton again - Random search - Golden Section Search READING : text pgs. 331-349 Optimization - motivation What? Locating where

More information

5.5 Newton s Approximation Method

5.5 Newton s Approximation Method 498CHAPTER 5. USING DERIVATIVES TO ANALYZE FUNCTIONS; FURTHER APPLICATIONS 4 3 y = x 4 3 f(x) = x cosx y = cosx 3 3 x = cosx x cosx = 0 Figure 5.: Figure showing the existence of a solution of x = cos

More information

AC : MATHEMATICAL MODELING AND SIMULATION US- ING LABVIEW AND LABVIEW MATHSCRIPT

AC : MATHEMATICAL MODELING AND SIMULATION US- ING LABVIEW AND LABVIEW MATHSCRIPT AC 2012-4561: MATHEMATICAL MODELING AND SIMULATION US- ING LABVIEW AND LABVIEW MATHSCRIPT Dr. Nikunja Swain, South Carolina State University Nikunja Swain is a professor in the College of Science, Mathematics,

More information

Exercises C-Programming

Exercises C-Programming Exercises C-Programming Claude Fuhrer (claude.fuhrer@bfh.ch) 0 November 016 Contents 1 Serie 1 1 Min function.................................. Triangle surface 1............................... 3 Triangle

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

LECTURE 0: Introduction and Background

LECTURE 0: Introduction and Background 1 LECTURE 0: Introduction and Background September 10, 2012 1 Computational science The role of computational science has become increasingly significant during the last few decades. It has become the

More information

8 Piecewise Polynomial Interpolation

8 Piecewise Polynomial Interpolation Applied Math Notes by R. J. LeVeque 8 Piecewise Polynomial Interpolation 8. Pitfalls of high order interpolation Suppose we know the value of a function at several points on an interval and we wish to

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

An AD-Enabled Optimization ToolBox in LabVIEW TM

An AD-Enabled Optimization ToolBox in LabVIEW TM An AD-Enabled Optimization ToolBox in LabVIEW TM AD2012, July 23-27 2012 Shaun Forth 1 & Abhishek Kr. Gupta 2 1 Applied Mathematics and Scientific Computation Group S.A.Forth@cranfield.ac.uk 2 Department

More information

mathcad_homework_in_matlab.m Dr. Dave S#

mathcad_homework_in_matlab.m Dr. Dave S# Table of Contents Basic calculations - solution to quadratic equation: a*x^ + b*x + c = 0... 1 Plotting a function with automated ranges and number of points... Plotting a function using a vector of values,

More information

Green Globs And Graphing Equations

Green Globs And Graphing Equations Green Globs And Graphing Equations Green Globs and Graphing Equations has four parts to it which serve as a tool, a review or testing device, and two games. The menu choices are: Equation Plotter which

More information

MATLAB Lecture 4. Programming in MATLAB

MATLAB Lecture 4. Programming in MATLAB MATLAB Lecture 4. Programming in MATLAB In this lecture we will see how to write scripts and functions. Scripts are sequences of MATLAB statements stored in a file. Using conditional statements (if-then-else)

More information

Evaluating the polynomial at a point

Evaluating the polynomial at a point Evaluating the polynomial at a point Recall that we have a data structure for each piecewise polynomial (linear, quadratic, cubic and cubic Hermite). We have a routine that sets evenly spaced interpolation

More information

2.1 Basics of Functions and Their Graphs

2.1 Basics of Functions and Their Graphs .1 Basics of Functions and Their Graphs Section.1 Notes Page 1 Domain: (input) all the x-values that make the equation defined Defined: There is no division by zero or square roots of negative numbers

More information

Numerical Methods Lecture 4 - Inline Functions Inline functions - single equation functions within main program

Numerical Methods Lecture 4 - Inline Functions Inline functions - single equation functions within main program Numerical Methods Lecture 4 - Inline Functions Inline functions - single equation functions within main program Root finding methods require numerous evaluations of an equation in order to make a root

More information

Part I Matlab and Solving Equations

Part I Matlab and Solving Equations Part I Matlab and Solving Equations c Copyright, Todd Young and Martin Mohlenkamp, Mathematics Department, Ohio University, 2017 Lecture 1 Vectors, Functions, and Plots in Matlab In these notes > will

More information

After an "Hour of Code" now what?

After an Hour of Code now what? After an "Hour Code" now what? 2016 Curtis Center Mathematics and Teaching Conference Chris Anderson Pressor and Director the Program in Computing UCLA Dept. Mathematics March 5, 2016 New push in K-12

More information

Rendering Algebraic Surfaces CS348B Final Project

Rendering Algebraic Surfaces CS348B Final Project Rendering Algebraic Surfaces CS348B Final Project Gennadiy Chuyeshov Overview This project is devoted to the visualization of a class consisting of implicit algebraic surfaces in three-dimensional space,

More information

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Scripts and Functions: examples lesson 9 2012/04/16 Prof. Emiliano Casalicchio emiliano.casalicchio@uniroma2.it Agenda Examples Bisection method Locating roots Secant methods

More information

Limits at Infinity. as x, f (x)?

Limits at Infinity. as x, f (x)? Limits at Infinity as x, f (x)? as x, f (x)? Let s look at... Let s look at... Let s look at... Definition of a Horizontal Asymptote: If Then the line y = L is called a horizontal asymptote of the graph

More information

10.4 Linear interpolation method Newton s method

10.4 Linear interpolation method Newton s method 10.4 Linear interpolation method The next best thing one can do is the linear interpolation method, also known as the double false position method. This method works similarly to the bisection method by

More information

Graphical Approach to Solve the Transcendental Equations Salim Akhtar 1 Ms. Manisha Dawra 2

Graphical Approach to Solve the Transcendental Equations Salim Akhtar 1 Ms. Manisha Dawra 2 Graphical Approach to Solve the Transcendental Equations Salim Akhtar 1 Ms. Manisha Dawra 2 1 M.Tech. Scholar 2 Assistant Professor 1,2 Department of Computer Science & Engineering, 1,2 Al-Falah School

More information

Biostatistics 615/815 Lecture 13: Numerical Optimization

Biostatistics 615/815 Lecture 13: Numerical Optimization Biostatistics 615/815 Lecture 13: Numerical Optimization Hyun Min Kang October 27th, 2011 Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 27th, 2011 1 / 35 The Problem Hyun Min Kang Biostatistics

More information

W4260: Modeling the Universe. Lecture 4

W4260: Modeling the Universe. Lecture 4 W4260: Modeling the Universe Lecture 4 Overview Input and output (I/O) Files Scope Global variables More on functions The art of programming Before starting Program structure/layout Comments Root finding

More information

Aeroelastic Model for Flutter

Aeroelastic Model for Flutter Aeroelastic Model for Flutter Michael Tagare de Guzman March 18, 2011 1 Introduction For this project, worked on trying to create a numerical algorithm to express and understand the concept of flutter

More information

What Secret the Bisection Method Hides? by Namir Clement Shammas

What Secret the Bisection Method Hides? by Namir Clement Shammas What Secret the Bisection Method Hides? 1 What Secret the Bisection Method Hides? by Namir Clement Shammas Introduction Over the past few years I have modified the simple root-seeking Bisection Method

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

ChBE 354 Useful MATLAB Functions

ChBE 354 Useful MATLAB Functions ChBE 354 Useful MATLAB Functions Assignment Statements a = 10 Stores 10 in a a = solve Hf HxL - f HzL, zl solves the equation for z and stores it in a a = single H143 ê 91L returns a single precision decimal

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Lecture 10 Root Finding using Open Methods. Dr.Qi Ying

Lecture 10 Root Finding using Open Methods. Dr.Qi Ying Lecture 10 Root Finding using Open Methods Dr.Qi Ying Objectives Open methods Fixed point iteration Newton-Raphson Modified secant method Open Methods vs. Bracketing Methods Bracketing methods Root is

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY. 7.1 Minimum/Maximum, Recall: Completing the square

QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY. 7.1 Minimum/Maximum, Recall: Completing the square CHAPTER 7 QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY 7.1 Minimum/Maximum, Recall: Completing the square The completing the square method uses the formula x + y) = x + xy + y and forces

More information

Computer Simulations

Computer Simulations Computer Simulations A practical approach to simulation Semra Gündüç gunduc@ankara.edu.tr Ankara University Faculty of Engineering, Department of Computer Engineering 2014-2015 Spring Term Ankara University

More information

Example 1: Given below is the graph of the quadratic function f. Use the function and its graph to find the following: Outputs

Example 1: Given below is the graph of the quadratic function f. Use the function and its graph to find the following: Outputs Quadratic Functions: - functions defined by quadratic epressions (a 2 + b + c) o the degree of a quadratic function is ALWAYS 2 - the most common way to write a quadratic function (and the way we have

More information

Practice Reading if Constructs

Practice Reading if Constructs ME 350 Lab Exercise 4 Fall 2017 if constructs, while loops Practice Reading if Constructs What is the output of the following command sequences? Some of the sequences may print messages that are not correct

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Foundations of Math II

Foundations of Math II Foundations of Math II Unit 6b: Toolkit Functions Academics High School Mathematics 6.6 Warm Up: Review Graphing Linear, Exponential, and Quadratic Functions 2 6.6 Lesson Handout: Linear, Exponential,

More information

Homework #6 Brief Solutions 2012

Homework #6 Brief Solutions 2012 Homework #6 Brief Solutions %page 95 problem 4 data=[-,;-,;,;4,] data = - - 4 xk=data(:,);yk=data(:,);s=csfit(xk,yk,-,) %Using the program to find the coefficients S =.456 -.456 -.. -.5.9 -.5484. -.58.87.

More information

Algebra I Notes Graphs of Functions OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. F.IF.A.2.

Algebra I Notes Graphs of Functions OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. F.IF.A.2. OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element

More information

Graphing Polynomial Functions: The Leading Coefficient Test and End Behavior: For an n th n. degree polynomial function a 0, 0, then

Graphing Polynomial Functions: The Leading Coefficient Test and End Behavior: For an n th n. degree polynomial function a 0, 0, then Graphing Polynomial Functions: The Leading Coefficient Test and End Behavior: For an n th n n 1 degree polynomial function a 0, n If n is even and an 0, then f x a x a x a x a with n n 1 1 0 x If n is

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient Optimization Last time Root finding: definition, motivation Algorithms: Bisection, false position, secant, Newton-Raphson Convergence & tradeoffs Example applications of Newton s method Root finding in

More information

Lesson 4: Numerical Computations; Newton's method

Lesson 4: Numerical Computations; Newton's method Lesson 4: Numerical Computations; Newton's method restart; Catastrophic cancellation in the quadratic formula One case where roundoff error can be severe is if you subtract two numbers that are very close

More information

PART 2 DEVELOPING M-FILES

PART 2 DEVELOPING M-FILES PART 2 DEVELOPING M-FILES Presenter: Dr. Zalilah Sharer 2018 School of Chemical and Energy Engineering Universiti Teknologi Malaysia 17 September 2018 Topic Outcomes Week Topic Topic Outcomes 6-8 Creating

More information

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a Example: Solve using the square root property. a) x 2 144 = 0 b) x 2 + 144 = 0 c) (x + 1) 2 = 12 Completing

More information

Chapter 2: Polynomial and Rational Functions Power Standard #7

Chapter 2: Polynomial and Rational Functions Power Standard #7 Chapter 2: Polynomial and Rational s Power Standard #7 2.1 Quadratic s Lets glance at the finals. Learning Objective: In this lesson you learned how to sketch and analyze graphs of quadratic functions.

More information

1 Shapes of Power Functions

1 Shapes of Power Functions MA 1165 - Lecture 06 1 Wednesday, 1/28/09 1 Shapes of Power Functions I would like you to be familiar with the shape of the power functions, that is, the functions of the form f(x) = x n, (1) for n = 1,

More information

Homework #6 Brief Solutions 2011

Homework #6 Brief Solutions 2011 Homework #6 Brief Solutions %page 95 problem 4 data=[-,;-,;,;4,] data = - - 4 xk=data(:,);yk=data(:,);s=csfit(xk,yk,-,) %Using the program to find the coefficients S =.456 -.456 -.. -.5.9 -.5484. -.58.87.

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

Scope of Variables. In general, it is not a good practice to define many global variables. 1. Use global to declare x as a global variable.

Scope of Variables. In general, it is not a good practice to define many global variables. 1. Use global to declare x as a global variable. Scope of Variables The variables used in function m-files are known as local variables. Any variable defined within the function exists only for the function to use. The only way a function can communicate

More information

Maple for Math Majors. 14. Maple's Control Statements

Maple for Math Majors. 14. Maple's Control Statements Maple for Math Majors Roger Kraft Department of Mathematics, Computer Science, and Statistics Purdue University Calumet roger@calumet.purdue.edu 14.1. Introduction 14. Maple's Control Statements In order

More information

To start using Matlab, you only need be concerned with the command window for now.

To start using Matlab, you only need be concerned with the command window for now. Getting Started Current folder window Atop the current folder window, you can see the address field which tells you where you are currently located. In programming, think of it as your current directory,

More information

In this first example, we build a question that asks for the derivative of sec(x) and uses Maple to grade the response.

In this first example, we build a question that asks for the derivative of sec(x) and uses Maple to grade the response. Writing Maple-graded questions and questions with Maple plots Maple T.A. can use the Maple engine to grade students responses. One advantage of this is that the system will give credit for any response

More information

MAE 384 Numerical Methods for Engineers

MAE 384 Numerical Methods for Engineers MAE 384 Numerical Methods for Engineers Instructor: Huei-Ping Huang office: ERC 359, email: hp.huang@asu.edu (Huei rhymes with way ) Tu/Th 9:00-10:15 PM WGHL 101 Textbook: Numerical Methods for Engineers

More information

Bisection method. we can implement the bisection method using: a loop to iterate until f(c) is close to zero a function handle to the function f

Bisection method. we can implement the bisection method using: a loop to iterate until f(c) is close to zero a function handle to the function f Bisection method we can implement the bisection method using: a loop to iterate until f(c) is close to zero a function handle to the function f 1 function [root] = bisect(f, a, b, tol) %BISECT Root finding

More information

Simple shooting-projection method for numerical solution of two-point Boundary Value Problems

Simple shooting-projection method for numerical solution of two-point Boundary Value Problems Simple shooting-projection method for numerical solution of two-point Boundary Value Problems Stefan M. Filipo Ivan D. Gospodino a Department of Programming and Computer System Application, University

More information

Introduction to numerical algorithms

Introduction to numerical algorithms Introduction to numerical algorithms Given an algebraic equation or formula, we may want to approximate the value, and while in calculus, we deal with equations or formulas that are well defined at each

More information

4.0 Programming with MATLAB

4.0 Programming with MATLAB 4.0 Programming with MATLAB 4.1 M-files The term M-file is obtained from the fact that such files are stored with.m extension. M-files are alternative means of performing computations so as to expand MATLAB

More information

Answers to Homework 5: Interpolation: Polynomial Interpolation 2

Answers to Homework 5: Interpolation: Polynomial Interpolation 2 Math 18A Spring 00 Handout # 15 Sergey Fomel March 5, 00 Answers to Homework 5: Interpolation: Polynomial Interpolation 1. Consider n + 1 regularly spaced interpolation nodes x n, x n+1,..., x 1, x 0,

More information

1 Review of Functions Symmetry of Functions; Even and Odd Combinations of Functions... 42

1 Review of Functions Symmetry of Functions; Even and Odd Combinations of Functions... 42 Contents 0.1 Basic Facts...................................... 8 0.2 Factoring Formulas.................................. 9 1 Review of Functions 15 1.1 Functions.......................................

More information

Introduction to Programming for Engineers Spring Final Examination. May 10, Questions, 170 minutes

Introduction to Programming for Engineers Spring Final Examination. May 10, Questions, 170 minutes Final Examination May 10, 2011 75 Questions, 170 minutes Notes: 1. Before you begin, please check that your exam has 28 pages (including this one). 2. Write your name and student ID number clearly on your

More information

Lecture #6: Higher-Order Functions at Work

Lecture #6: Higher-Order Functions at Work Lecture #6: Higher-Order Functions at Work Announcents: Free drop-in tutoring from HKN, the EECS honor society. Weekdays 11am-5pm 345 Soda or 290 Cory. For more information see hkn.eecs.berkeley.edu. A

More information

6.001 SICP. Types. Types compound data. Types simple data. Types. Types procedures

6.001 SICP. Types. Types compound data. Types simple data. Types. Types procedures Today s topics Types of objects and procedures Procedural abstractions Capturing patterns across procedures Higher Order Procedures Types (+ 5 1) ==> 15 (+ "hi 5) ;The object "hi", passed as the first

More information

Multi-step transformations

Multi-step transformations October 6, 2016 Transformations (section 1.6) Day 4 page 1 Multi-step transformations Objective: Apply transformations involving multiple steps or multiple substitutions. Upcoming: We will have a test

More information

11/30/15 11:09 AM C:\websi...\mathcad_homework_in_Matlab.m 1 of 6

11/30/15 11:09 AM C:\websi...\mathcad_homework_in_Matlab.m 1 of 6 11/30/15 11:09 AM C:\websi...\mathcad_homework_in_Matlab.m 1 of 6 %% mathcad_homework_in_matlab.m Dr. Dave S# %% Basic calculations - solution to quadratic equation: a*x^2 + b*x + c = 0 clc % clear the

More information

HW DUE Floating point

HW DUE Floating point Numerical and Scientific Computing with Applications David F. Gleich CS 314, Purdue In this class: Understand the need for floating point arithmetic and some alternatives. Understand how the computer represents

More information

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013.

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. 1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. TANGENTS Suppose that Apple Computers notices that every time they raise (or lower) the price of a $5,000 Mac II by $100, the number

More information

Variables are used to store data (numbers, letters, etc) in MATLAB. There are a few rules that must be followed when creating variables in MATLAB:

Variables are used to store data (numbers, letters, etc) in MATLAB. There are a few rules that must be followed when creating variables in MATLAB: Contents VARIABLES... 1 Storing Numerical Data... 2 Limits on Numerical Data... 6 Storing Character Strings... 8 Logical Variables... 9 MATLAB S BUILT-IN VARIABLES AND FUNCTIONS... 9 GETTING HELP IN MATLAB...

More information

Top bar items. Current folder should be shown. Command Window This has the the prompt >>

Top bar items. Current folder should be shown. Command Window This has the the prompt >> MA1710: Week 2 for, if, else, break Getting started in session 2 With the Windows 7 operating system that we have in our Labs start Matlab as you did last week by clicking the mouse pointer on Start (bottom

More information

MATH 353 Engineering mathematics III

MATH 353 Engineering mathematics III MATH 353 Engineering mathematics III Instructor: Francisco-Javier Pancho Sayas Spring 2014 University of Delaware Instructor: Francisco-Javier Pancho Sayas MATH 353 1 / 20 MEET YOUR COMPUTER Instructor:

More information

MATH 2650/ Intro to Scientific Computation - Fall Lab 1: Starting with MATLAB. Script Files

MATH 2650/ Intro to Scientific Computation - Fall Lab 1: Starting with MATLAB. Script Files MATH 2650/3670 - Intro to Scientific Computation - Fall 2017 Lab 1: Starting with MATLAB. Script Files Content - Overview of Course Objectives - Use of MATLAB windows; the Command Window - Arithmetic operations

More information