2016 靜宜大學全國程式競賽題目. Problem1:Largest Square. Description

Size: px
Start display at page:

Download "2016 靜宜大學全國程式競賽題目. Problem1:Largest Square. Description"

Transcription

1 Problem1:Largest Square 2016 靜宜大學全國程式競賽題目 Given a rectangular grid of characters you have to find out the length of a side of the largest square such that all the characters of the square are same and the center [intersecting point of the two diagonals] of the square is at location (r,c). The height and width of the grid is M and N respectively. Upper left corner and lower right corner of the grid will be denoted by (0, 0) and (M-1,N-1) respectively. Consider the grid of characters given below. Given the location (1, 2) the length of a side of the largest square is 3. The input starts with a line containing a single integer T (< 21). This is followed by T test cases. The first line of each of them will contain three integers M, N and Q (< 21) separated by a space where M, N denotes the dimension of the grid. Next follows M lines each containing N characters. Finally, there will be Q lines each containing two integers r and c. The value of M and N will be at most 100. For each test case in the input produce Q + 1 lines of output. In the first line print the value of M, N and Q in that order separated by single space. In the next Q lines, output the length of a side of the largest square in the corresponding grid for each (r, c) pair in the input. Sample abbbaaaaaa abbbaaaaaa abbbaaaaaa aaaaaaaaaa aaaaaaaaaa aaccaaaaaa aaccaaaaaa

2 5 2 Sample Sample aab aab aaa Sample Hint

3 Problem2:Minesweeper Have you ever played Minesweeper? It's a cute little game which comes within a certain Operating System which name we can't really remember. Well, the goal of the game is to find where are all the mines within a M N field. To help you, the game shows a number in a square which tells you how many mines there are adjacent to that square. For instance, supose the following 4 4 field with 2 mines (which are represented by an `*' character): * *..... If we would represent the same field placing the hint numbers described above, we would end up with: * * As you may have already noticed, each square may have at most 8 adjacent squares. The input will consist of an arbitrary number of fields. The first line of each field contains two integers n and m (0 < n;m 100) which stands for the number of lines and columns of the field respectively. The next n lines contains exactly m characters and represent the eld. Each safe square is represented by an `.' character (without the quotes) and each mine square is represented by an `*' character (also without the quotes). The first field line where n = m = 0

4 represents the end of input and should not be processed. For each field, you must print the following message in a line alone: Field #x: Where x stands for the number of the field (starting from 1). The next n lines should contain the field with the `.' characters replaced by the number of adjacent mines to that square. There must be an empty line between field outputs. Sample * * Sample 1 Field #1: * *

5 Sample ** * Sample 2 Field #1: ** *100

6 Problem3:Simple Addition Lets define a simple recursive function F(n), where %10, if (n%10) > 0 0, if n = 0 /10, Otherwise Lets define another function S(p, q),, In this problem, you have to calculate S(p, q) on given values of p and q. The input file contains several lines of inputs. Each line contains two non-negative integers p and q (p q) separated by a single space. p and q will fit in 32 bit signed integer. is terminated by a line which contains two negative integers. This line should not be processed. For each set of input, print a single line of the value of S(p, q). Sample Sample 46 48

7 Problem4:{sum+=i++} to Reach N All the positive numbers can be expressed as a sum of one, two or more consecutive positive integers. For example, 9 can be expressed in three such ways, 2+3+4, 4+5 or 9. Given an integer less than ( ) or (9E14+1), you will have to determine in how many ways that this number can be expressed as summation of consecutive numbers. The input file contains less than 1100 lines of input. Each line contains a single integer N (0 N 9 14 ). is terminated by end of file. For each line of input produce one line of output. This line contains an integer which tells in how many ways N can be expressed as summation of consecutive integers. Sample 9 11 Sample 3 2

8 Problem5:Matryoshka Matryoshkas are sets of traditional Russian wooden dolls of decreasing size placed one inside the other. A matryoshka doll can be opened to reveal a smaller figure of the same sort inside, which has, in turn, another figure inside, and so on. Pictures from Wikimedia Commons The Russian Matryoshka Museum recently exhibited a collection of similarly designed matryoshka sets, differing only in the number of nested dolls in each set. Unfortunately, some over-zealous (and obviously unsupervised) children separated these sets, placing all the individual dolls in a row. There are n dolls in the row, each with an integer size. You need to reassemble the matryoshka sets, knowing neither the number of sets nor the number of dolls in each set. You know only that every complete set consists of dolls with consecutive sizes from 1 to some number m, which may vary between the different sets. When reassembling the sets, you must follow these rules: 1. You can put a doll or a nested group of dolls only inside a larger doll. 2. You can combine two groups of dolls only if they are adjacent in the row. 3. Once a doll becomes a member of a group, it cannot be transferred to another group or permanently separated from the group. It can be temporarily separated only when combining two groups. Your time is valuable, and you want to do this reassembly process as quickly as possible. The only time-consuming part of this task is opening and subsequently closing a doll, so you want to minimize how often you do this. For example, the minimum number of openings (and subsequent closings) when combining group [1, 2, 6] with the group [4] is two, since you have to open the dolls with sizes 6 and 4. When combining group [1, 2, 5] with the group [3, 4], you need to perform three openings.

9 Write a program to calculate the minimum number of openings required to combine all disassembled matryoshka sets. The input consists of several test cases. A test case consists of two lines. The first line contains one integer n representing the number of individual dolls in the row. The second line contains n positive integers specifying the sizes of the dolls in the order they appear in the row. Each size is between 1 and 500 inclusive. For each test case, display the minimum number of openings required when reassembling the matryoshka sets. If reassembling cannot be done (some of the kids might have been excessively zealous and taken some dolls), display the word `impossible'. Sample Sample 1 impossible Sample Sample 2 7

10 Problem6:n-Queens Problem We place n queens in an n*n chessboard. No two queens are in the same row, column, or diagonal. Write a program to solve the problem. n is the number of queens. (3< n < 15). The number of solutions. Sample 4 Sample 2

11 Problem7:Chained matrix multiplications To multiply a 3*2 matrix times a 2*4 matrix, the result is a 3*4 matrix. We use the simplest matrix multiplication method, we need 3*2*4=24 multiplications. Consider the multiplication of the following three matrices: M1(5*2) *M2(2*8) * M3(8*2) We have two different orders, (M1*M2)*M3 and M1*(M2*M3). We get the same result, but the number of multiplications ae different. (M1*M2)*M3: 5*2*8+5*8*2=160 M1*(M2*M3): 2*8*2+5*2*2=52 Write a program to compute the minimum number of multiplications for n matrices multiplication. n is an integer, the number of matrices. (1 < n < 20). d11 d12 (the dimension of first matrix; the first matrix is d11*d12) d21 d22 dn1 dn2 (the dimension of the nth matrix; the nth matrix is dn1*dn2) The minimum number of multiplications for n matrices multiplication Sample Sample 52

CS106X Handout 24 Winter 2018 February 9 th, 2018 CS106X Midterm Examination

CS106X Handout 24 Winter 2018 February 9 th, 2018 CS106X Midterm Examination CS106X Handout 24 Winter 2018 February 9 th, 2018 CS106X Midterm Examination This is an open-book, open-note, closed-electronic-device exam. You have 80 minutes to complete the exam. If you re taking the

More information

LESSON 1: INTRODUCTION TO COUNTING

LESSON 1: INTRODUCTION TO COUNTING LESSON 1: INTRODUCTION TO COUNTING Counting problems usually refer to problems whose question begins with How many. Some of these problems may be very simple, others quite difficult. Throughout this course

More information

第六屆 ACM ICPC 全國私立大專校院程式競賽. National Contest for Private Universities, Taiwan 2016 競賽題目

第六屆 ACM ICPC 全國私立大專校院程式競賽. National Contest for Private Universities, Taiwan 2016 競賽題目 第六屆 ACM ICPC 全國私立大專校院程式競賽 National Contest for Private Universities, Taiwan 016 競賽題目 Problem 1: Maximum Subsequence Sum Problem (Time Limit: 3 seconds) Given a sequence containing both negative and positive

More information

Math 4410 Fall 2010 Exam 3. Show your work. A correct answer without any scratch work or justification may not receive much credit.

Math 4410 Fall 2010 Exam 3. Show your work. A correct answer without any scratch work or justification may not receive much credit. Math 4410 Fall 2010 Exam 3 Name: Directions: Complete all six questions. Show your work. A correct answer without any scratch work or justification may not receive much credit. You may not use any notes,

More information

MIT Programming Contest Team Contest 1 Problems 2008

MIT Programming Contest Team Contest 1 Problems 2008 MIT Programming Contest Team Contest 1 Problems 2008 October 5, 2008 1 Edit distance Given a string, an edit script is a set of instructions to turn it into another string. There are four kinds of instructions

More information

Dr. Amotz Bar-Noy s Compendium of Algorithms Problems. Problems, Hints, and Solutions

Dr. Amotz Bar-Noy s Compendium of Algorithms Problems. Problems, Hints, and Solutions Dr. Amotz Bar-Noy s Compendium of Algorithms Problems Problems, Hints, and Solutions Chapter 1 Searching and Sorting Problems 1 1.1 Array with One Missing 1.1.1 Problem Let A = A[1],..., A[n] be an array

More information

CmpSci 187: Programming with Data Structures Spring 2015

CmpSci 187: Programming with Data Structures Spring 2015 CmpSci 187: Programming with Data Structures Spring 2015 Lecture #9 John Ridgway February 26, 2015 1 Recursive Definitions, Algorithms, and Programs Recursion in General In mathematics and computer science

More information

Central Europe Regional Contest 2016

Central Europe Regional Contest 2016 University of Zagreb Faculty of Electrical Engineering and Computing November 1820, 2016 A: Appearance Analysis.......... 1 B: Bipartite Blanket............. 2 C: Convex Contour............. D: Dancing

More information

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal. Chapter 8 out of 7 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal 8 Matrices Definitions and Basic Operations Matrix algebra is also known

More information

ELEC-270 Solutions to Assignment 5

ELEC-270 Solutions to Assignment 5 ELEC-270 Solutions to Assignment 5 1. How many positive integers less than 1000 (a) are divisible by 7? (b) are divisible by 7 but not by 11? (c) are divisible by both 7 and 11? (d) are divisible by 7

More information

1. Draw the state graphs for the finite automata which accept sets of strings composed of zeros and ones which:

1. Draw the state graphs for the finite automata which accept sets of strings composed of zeros and ones which: P R O B L E M S Finite Autom ata. Draw the state graphs for the finite automata which accept sets of strings composed of zeros and ones which: a) Are a multiple of three in length. b) End with the string

More information

CPSC 217 Assignment 3

CPSC 217 Assignment 3 CPSC 217 Assignment 3 Due: Monday November 23, 2015 at 12:00 noon Weight: 7% Sample Solution Length: 135 lines, including some comments (not including the provided code) Individual Work: All assignments

More information

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015 SCHEME 7 COMPUTER SCIENCE 61A October 29, 2015 1 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

UNC Charlotte 2010 Comprehensive

UNC Charlotte 2010 Comprehensive 00 Comprehensive March 8, 00. A cubic equation x 4x x + a = 0 has three roots, x, x, x. If x = x + x, what is a? (A) 4 (B) 8 (C) 0 (D) (E) 6. For which value of a is the polynomial P (x) = x 000 +ax+9

More information

MathZoom, Summer, 2014

MathZoom, Summer, 2014 A one-dimensional bug starts at the origin and each minute moves either left or right exactly one unit. Suppose it makes there moves with equal likelihood. That is the probability of a move to the left

More information

Recursion Problems. Warm Ups. Enumeration 1 / 7

Recursion Problems. Warm Ups. Enumeration 1 / 7 1 / 7 Recursion Problems Warm Ups 1. Write a recursive implementation of the factorial function. Recall that n! = 1 2 n, with the special case that 0! = 1. 2. Write a recursive function that, given a number

More information

Dynamic Programming. An Introduction to DP

Dynamic Programming. An Introduction to DP Dynamic Programming An Introduction to DP Dynamic Programming? A programming technique Solve a problem by breaking into smaller subproblems Similar to recursion with memoisation Usefulness: Efficiency

More information

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #16 Loops: Matrix Using Nested for Loop

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #16 Loops: Matrix Using Nested for Loop Introduction to Programming in C Department of Computer Science and Engineering Lecture No. #16 Loops: Matrix Using Nested for Loop In this section, we will use the, for loop to code of the matrix problem.

More information

Math 171 Proficiency Packet on Integers

Math 171 Proficiency Packet on Integers Math 171 Proficiency Packet on Integers Section 1: Integers For many of man's purposes the set of whole numbers W = { 0, 1, 2, } is inadequate. It became necessary to invent negative numbers and extend

More information

Exam 2 Review. 2. What the difference is between an equation and an expression?

Exam 2 Review. 2. What the difference is between an equation and an expression? Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? 2. What the difference is between an equation and an expression? 3. How to tell if an equation is linear? 4. How

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

Matrices. A Matrix (This one has 2 Rows and 3 Columns) To add two matrices: add the numbers in the matching positions:

Matrices. A Matrix (This one has 2 Rows and 3 Columns) To add two matrices: add the numbers in the matching positions: Matrices A Matrix is an array of numbers: We talk about one matrix, or several matrices. There are many things we can do with them... Adding A Matrix (This one has 2 Rows and 3 Columns) To add two matrices:

More information

CS 341 Homework 1 Basic Techniques

CS 341 Homework 1 Basic Techniques CS 341 Homework 1 Basic Techniques 1. What are these sets? Write them using braces, commas, numerals, (for infinite sets), and only. (a) ({1, 3, 5} {3, 1}) {3, 5, 7} (b) {{3}, {3, 5}, {{5, 7}, {7, 9}}}

More information

Fall 2018 Discussion 8: October 24, 2018 Solutions. 1 Introduction. 2 Primitives

Fall 2018 Discussion 8: October 24, 2018 Solutions. 1 Introduction. 2 Primitives CS 6A Scheme Fall 208 Discussion 8: October 24, 208 Solutions Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write

More information

CMPSCI 187: Programming With Data Structures. Lecture #15: Thinking Recursively David Mix Barrington 10 October 2012

CMPSCI 187: Programming With Data Structures. Lecture #15: Thinking Recursively David Mix Barrington 10 October 2012 CMPSCI 187: Programming With Data Structures Lecture #15: Thinking Recursively David Mix Barrington 10 October 2012 Thinking Recursively Recursive Definitions, Algorithms, and Programs Computing Factorials

More information

Recursion. move(64, 1, 2, 3);

Recursion. move(64, 1, 2, 3); Recursion Divide and conquer. One of the uses that we make of recursion of the form called divide and conquer, which can be defined generally as the method of solving a problem by dividing it into two

More information

Solving NP-hard Problems on Special Instances

Solving NP-hard Problems on Special Instances Solving NP-hard Problems on Special Instances Solve it in poly- time I can t You can assume the input is xxxxx No Problem, here is a poly-time algorithm 1 Solving NP-hard Problems on Special Instances

More information

Problem A. Interactive Smiley Face

Problem A. Interactive Smiley Face Problem A. Interactive Smiley Face 1 second Igor likes smiley faces a lot. He wrote a program that generates really large pictures of white and black pixels with smiley faces. Depending on Igor s mood,

More information

Assignment #4 Minesweeper

Assignment #4 Minesweeper Assignment #4 Minesweeper Date assigned: Friday, January 9, 2015 Date due: Java Minesweeper, Tuesday, January 13, 2015 Android Minesweeper, Friday, January 17, 2015 Points: 100 Java Minesweeper The game

More information

The Ultimate Maths Vocabulary List

The Ultimate Maths Vocabulary List The Ultimate Maths Vocabulary List The 96 Words Every Pupil Needs to Know by the End of Year 6 KS1 & KS2 How to Use This Resource An essential building block in pupil s understanding of maths is their

More information

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways.

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways. Grade 9 IGCSE A1: Chapter 9 Matrices and Transformations Materials Needed: Straightedge, Graph Paper Exercise 1: Matrix Operations Matrices are used in Linear Algebra to solve systems of linear equations.

More information

Lecture 3. Brute Force

Lecture 3. Brute Force Lecture 3 Brute Force 1 Lecture Contents 1. Selection Sort and Bubble Sort 2. Sequential Search and Brute-Force String Matching 3. Closest-Pair and Convex-Hull Problems by Brute Force 4. Exhaustive Search

More information

UNC Charlotte 2010 Comprehensive

UNC Charlotte 2010 Comprehensive 00 Comprehensive with solutions March 8, 00. A cubic equation x 4x x + a = 0 has three roots, x, x, x. If x = x + x, what is a? (A) 4 (B) 8 (C) 0 (D) (E) 6 Solution: C. Because the coefficient of x is

More information

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph Nechama Florans Mentor: Dr. Boram Park G: V 5 Vertex Clique Covers and Edge Clique Covers: Suppose we have a graph

More information

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University Counting the number of spanning tree Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University 目录 Contents 1 Complete Graph 2 Proof of the Lemma 3 Arbitrary Graph 4 Proof

More information

2-D Arrays. Of course, to set each grid location to 0, we have to use a loop structure as follows (assume i and j are already defined):

2-D Arrays. Of course, to set each grid location to 0, we have to use a loop structure as follows (assume i and j are already defined): 2-D Arrays We define 2-D arrays similar to 1-D arrays, except that we must specify the size of the second dimension. The following is how we can declare a 5x5 int array: int grid[5][5]; Essentially, this

More information

Problem A: Collatz Conjecture

Problem A: Collatz Conjecture Problem A: Collatz Conjecture The Collatz conjecture which is also known as the 3n + conjecture is a very well known and old conjecture in mathematics. The conjecture is as follows. Take any natural number

More information

2016 ACM ICPC Southeast USA Regional Programming Contest. Division 1

2016 ACM ICPC Southeast USA Regional Programming Contest. Division 1 206 ACM ICPC Southeast USA Regional Programming Contest Division Alphabet... Base Sums... 2 Buggy Robot... 3 Enclosure... 5 Illumination... 6 InTents... 7 Islands... 9 Paint... 0 Periodic Strings... Water...

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

Computer Graphics Hands-on

Computer Graphics Hands-on Computer Graphics Hands-on Two-Dimensional Transformations Objectives Visualize the fundamental 2D geometric operations translation, rotation about the origin, and scale about the origin Learn how to compose

More information

Prepared by Sa diyya Hendrickson. Package Summary

Prepared by Sa diyya Hendrickson. Package Summary Introduction Prepared by Sa diyya Hendrickson Name: Date: Package Summary Exponent Form and Basic Properties Order of Operations Using Divisibility Rules Finding Factors and Common Factors Primes, Prime

More information

CSE 3101 Design and Analysis of Algorithms Practice Test for Unit 1 Loop Invariants and Iterative Algorithms

CSE 3101 Design and Analysis of Algorithms Practice Test for Unit 1 Loop Invariants and Iterative Algorithms CSE 0 Design and Analysis of Algorithms Practice Test for Unit Loop Invariants and Iterative Algorithms Jeff Edmonds First learn the steps. Then try them on your own. If you get stuck only look at a little

More information

1. You have a complete bipartite graph where each part contains exactly n nodes, numbered from 0 to n - 1 inclusive.

1. You have a complete bipartite graph where each part contains exactly n nodes, numbered from 0 to n - 1 inclusive. 牛客网暑期 ACM 多校训练营 ( 第七场 ) 一. 编程题 1. You have a complete bipartite graph where each part contains exactly n nodes, numbered from 0 to n - 1 inclusive. The weight of the edge connecting two vertices with numbers

More information

I. Recursive Descriptions A phrase like to get the next term you add 2, which tells how to obtain

I. Recursive Descriptions A phrase like to get the next term you add 2, which tells how to obtain Mathematics 45 Describing Patterns in s Mathematics has been characterized as the science of patterns. From an early age students see patterns in mathematics, including counting by twos, threes, etc.,

More information

There are three questions on this exam. You have 2 hours to complete it. Please indent your program so that it is easy for the grader to read.

There are three questions on this exam. You have 2 hours to complete it. Please indent your program so that it is easy for the grader to read. There are three questions on this exam. You have 2 hours to complete it. Please indent your program so that it is easy for the grader to read. 1. Write a function named largestadjacentsum that iterates

More information

CS 261 Data Structures. Big-Oh Analysis: A Review

CS 261 Data Structures. Big-Oh Analysis: A Review CS 261 Data Structures Big-Oh Analysis: A Review Big-Oh: Purpose How can we characterize the runtime or space usage of an algorithm? We want a method that: doesn t depend upon hardware used (e.g., PC,

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

SCHEME 8. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. March 23, 2017

SCHEME 8. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. March 23, 2017 SCHEME 8 COMPUTER SCIENCE 61A March 2, 2017 1 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

OUTLINES. Variable names in MATLAB. Matrices, Vectors and Scalar. Entering a vector Colon operator ( : ) Mathematical operations on vectors.

OUTLINES. Variable names in MATLAB. Matrices, Vectors and Scalar. Entering a vector Colon operator ( : ) Mathematical operations on vectors. 1 LECTURE 3 OUTLINES Variable names in MATLAB Examples Matrices, Vectors and Scalar Scalar Vectors Entering a vector Colon operator ( : ) Mathematical operations on vectors examples 2 VARIABLE NAMES IN

More information

2.3 Algorithms Using Map-Reduce

2.3 Algorithms Using Map-Reduce 28 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK one becomes available. The Master must also inform each Reduce task that the location of its input from that Map task has changed. Dealing with a failure

More information

Computer Science 136 Spring 2004 Professor Bruce. Final Examination May 19, 2004

Computer Science 136 Spring 2004 Professor Bruce. Final Examination May 19, 2004 Computer Science 136 Spring 2004 Professor Bruce Final Examination May 19, 2004 Question Points Score 1 10 2 8 3 15 4 12 5 12 6 8 7 10 TOTAL 65 Your name (Please print) I have neither given nor received

More information

Math 221 Final Exam Review

Math 221 Final Exam Review Math 221 Final Exam Review Preliminary comment: Some of these problems a formulated using language and structures from graph theory. However they are generally self contained; no theorems from graph theory

More information

ACT Math test Plane Geometry Review

ACT Math test Plane Geometry Review Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test. If you ve taken high school geometry, you ve probably covered all of

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 1. O(logn) 2. O(n) 3. O(nlogn) 4. O(n 2 ) 5. O(2 n ) 2. [1 pt] What is the solution

More information

Problem Set 6. Part A:

Problem Set 6. Part A: Introduction to Algorithms: 6.006 Massachusetts Institute of Technology April 12, 2011 Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Problem Set 6 Problem Set 6 This problem set is divided into

More information

The Citizen s Guide to Dynamic Programming

The Citizen s Guide to Dynamic Programming The Citizen s Guide to Dynamic Programming Jeff Chen Stolen extensively from past lectures October 6, 2007 Unfortunately, programmer, no one can be told what DP is. You have to try it for yourself. Adapted

More information

Solutions. (a) Claim: A d-ary tree of height h has at most 1 + d +...

Solutions. (a) Claim: A d-ary tree of height h has at most 1 + d +... Design and Analysis of Algorithms nd August, 016 Problem Sheet 1 Solutions Sushant Agarwal Solutions 1. A d-ary tree is a rooted tree in which each node has at most d children. Show that any d-ary tree

More information

ACT SparkNotes Test Prep: Plane Geometry

ACT SparkNotes Test Prep: Plane Geometry ACT SparkNotes Test Prep: Plane Geometry Plane Geometry Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test If you ve taken

More information

6.3 Notes O Brien F15

6.3 Notes O Brien F15 CA th ed HL. Notes O Brien F. Solution of Linear Systems by ow Transformations I. Introduction II. In this section we will solve systems of first degree equations which have two or more variables. We will

More information

Introduction to Scientific Computing

Introduction to Scientific Computing Introduction to Scientific Computing Dr Hanno Rein Last updated: October 12, 2018 1 Computers A computer is a machine which can perform a set of calculations. The purpose of this course is to give you

More information

Millionaire. Input. Output. Problem limit seconds

Millionaire. Input. Output. Problem limit seconds Millionaire Congratulations! You were selected to take part in the TV game show Who Wants to Be a Millionaire! Like most people, you are somewhat risk-averse, so you might rather take $250,000 than a 50%

More information

Excel Basics Fall 2016

Excel Basics Fall 2016 If you have never worked with Excel, it can be a little confusing at first. When you open Excel, you are faced with various toolbars and menus and a big, empty grid. So what do you do with it? The great

More information

Maximum Density Still Life

Maximum Density Still Life The Hebrew University of Jerusalem Computer Science department Maximum Density Still Life Project in course AI 67842 Mohammad Moamen Table of Contents Problem description:... 3 Description:... 3 Objective

More information

Weighted Powers Ranking Method

Weighted Powers Ranking Method Weighted Powers Ranking Method Introduction The Weighted Powers Ranking Method is a method for ranking sports teams utilizing both number of teams, and strength of the schedule (i.e. how good are the teams

More information

Bulgarian Math Olympiads with a Challenge Twist

Bulgarian Math Olympiads with a Challenge Twist Bulgarian Math Olympiads with a Challenge Twist by Zvezdelina Stankova Berkeley Math Circle Beginners Group September 0, 03 Tasks throughout this session. Harder versions of problems from last time appear

More information

Lecture 5: Matrices. Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur

Lecture 5: Matrices. Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur Lecture 5: Matrices Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur 29 th July, 2008 Types of Matrices Matrix Addition and Multiplication

More information

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION 6 NEURAL NETWORK BASED PATH PLANNING ALGORITHM 61 INTRODUCTION In previous chapters path planning algorithms such as trigonometry based path planning algorithm and direction based path planning algorithm

More information

Fractions. 7th Grade Math. Review of 6th Grade. Slide 1 / 306 Slide 2 / 306. Slide 4 / 306. Slide 3 / 306. Slide 5 / 306.

Fractions. 7th Grade Math. Review of 6th Grade. Slide 1 / 306 Slide 2 / 306. Slide 4 / 306. Slide 3 / 306. Slide 5 / 306. Slide 1 / 06 Slide 2 / 06 7th Grade Math Review of 6th Grade 2015-01-14 www.njctl.org Slide / 06 Table of Contents Click on the topic to go to that section Slide 4 / 06 Fractions Decimal Computation Statistics

More information

SCHEME 10 COMPUTER SCIENCE 61A. July 26, Warm Up: Conditional Expressions. 1. What does Scheme print? scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

SCHEME 10 COMPUTER SCIENCE 61A. July 26, Warm Up: Conditional Expressions. 1. What does Scheme print? scm> (if (or #t (/ 1 0)) 1 (/ 1 0)) SCHEME 0 COMPUTER SCIENCE 6A July 26, 206 0. Warm Up: Conditional Expressions. What does Scheme print? scm> (if (or #t (/ 0 (/ 0 scm> (if (> 4 3 (+ 2 3 4 (+ 3 4 (* 3 2 scm> ((if (< 4 3 + - 4 00 scm> (if

More information

Spring 2017 #5 A. Two Buttons

Spring 2017 #5 A. Two Buttons 15-295 Spring 2017 #5 A. Two Buttons time limit per test: 2 seconds : standard : standard Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

Chapter 1: Number and Operations

Chapter 1: Number and Operations Chapter 1: Number and Operations 1.1 Order of operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply

More information

1 Introduction. Counting with Cubes. Barringer Winter MathCamp, 2016

1 Introduction. Counting with Cubes. Barringer Winter MathCamp, 2016 1 Introduction Consider a large cube made from unit cubes 1 Suppose our cube is n n n Look at the cube from a corner so that you can see three faces How many unit cubes are in your line of vision? Build

More information

5 Matchings in Bipartite Graphs and Their Applications

5 Matchings in Bipartite Graphs and Their Applications 5 Matchings in Bipartite Graphs and Their Applications 5.1 Matchings Definition 5.1 A matching M in a graph G is a set of edges of G, none of which is a loop, such that no two edges in M have a common

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 2. O(n) 2. [1 pt] What is the solution to the recurrence T(n) = T(n/2) + n, T(1)

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

How invariants help writing loops Author: Sander Kooijmans Document version: 1.0

How invariants help writing loops Author: Sander Kooijmans Document version: 1.0 How invariants help writing loops Author: Sander Kooijmans Document version: 1.0 Why this document? Did you ever feel frustrated because of a nasty bug in your code? Did you spend hours looking at the

More information

Practice Final Exam Solutions

Practice Final Exam Solutions 1 (1 points) For the following problem, the alphabet used is the standard -letter English alphabet, and vowels refers only to the letters A, E, I, O, and U (a) ( points) How many strings of five letters

More information

R - T (Gauss 2004) At the Gauss Store you earn 5 reward points for each $25 you spend. Stuart spent $200 and received points. Find.

R - T (Gauss 2004) At the Gauss Store you earn 5 reward points for each $25 you spend. Stuart spent $200 and received points. Find. R - T - 9 1. (Gauss 2004) t the Gauss Store you earn 5 reward points for each $25 you spend. Stuart spent $200 and received points. Find. 2. (Gauss 2009) How many numbers in list 11, 12, 13, 14, 15, 16,

More information

Algorithms Assignment 3 Solutions

Algorithms Assignment 3 Solutions Algorithms Assignment 3 Solutions 1. There is a row of n items, numbered from 1 to n. Each item has an integer value: item i has value A[i], where A[1..n] is an array. You wish to pick some of the items

More information

Objectives and Homework List

Objectives and Homework List MAC 1140 Objectives and Homework List Each objective covered in MAC1140 is listed below. Along with each objective is the homework list used with MyMathLab (MML) and a list to use with the text (if you

More information

CSci 231 Homework 7. Red Black Trees. CLRS Chapter 13 and 14

CSci 231 Homework 7. Red Black Trees. CLRS Chapter 13 and 14 CSci 31 Homework 7 Red Black Trees CLRS Chapter 13 and 14 1. Problem 13-1 (persistent dynamic sets).. Problem 13-3 (AVL trees) 3. In this problem we consider a data structure for maintaining a multi-set

More information

HMMT February 2018 February 10, 2018

HMMT February 2018 February 10, 2018 HMMT February 2018 February 10, 2018 Combinatorics 1. Consider a 2 3 grid where each entry is one of 0, 1, and 2. For how many such grids is the sum of the numbers in every row and in every column a multiple

More information

Sums and Geometry + =

Sums and Geometry + = Sums and Geometry Main idea: we will compute formulas for sums of consecutive numbers, or powers of consecutive numbers, and other related sums, by expressing them geometrically and trying to visualize

More information

Data Structures and Algorithms Key to Homework 1

Data Structures and Algorithms Key to Homework 1 Data Structures and Algorithms Key to Homework 1 January 31, 2005 15 Define an ADT for a set of integers (remember that a set may not contain duplicates) Your ADT should consist of the functions that can

More information

CS 787: Assignment 4, Stereo Vision: Block Matching and Dynamic Programming Due: 12:00noon, Fri. Mar. 30, 2007.

CS 787: Assignment 4, Stereo Vision: Block Matching and Dynamic Programming Due: 12:00noon, Fri. Mar. 30, 2007. CS 787: Assignment 4, Stereo Vision: Block Matching and Dynamic Programming Due: 12:00noon, Fri. Mar. 30, 2007. In this assignment you will implement and test some simple stereo algorithms discussed in

More information

S Postgraduate Course on Signal Processing in Communications, FALL Topic: Iteration Bound. Harri Mäntylä

S Postgraduate Course on Signal Processing in Communications, FALL Topic: Iteration Bound. Harri Mäntylä S-38.220 Postgraduate Course on Signal Processing in Communications, FALL - 99 Topic: Iteration Bound Harri Mäntylä harri.mantyla@hut.fi ate: 11.10.1999 1. INTROUCTION...3 2. ATA-FLOW GRAPH (FG) REPRESENTATIONS...4

More information

6.001 Notes: Section 8.1

6.001 Notes: Section 8.1 6.001 Notes: Section 8.1 Slide 8.1.1 In this lecture we are going to introduce a new data type, specifically to deal with symbols. This may sound a bit odd, but if you step back, you may realize that everything

More information

Problem Set. The 37 th Annual ACM International Collegiate Programming Contest ASIA Regional - Daejeon. A. Accelerator (2 pages)

Problem Set. The 37 th Annual ACM International Collegiate Programming Contest ASIA Regional - Daejeon. A. Accelerator (2 pages) ASIA Regional - Daejeon Problem Set Please check that you have 1 problems and 1 sheets (excluding additional materials). A. Accelerator ( pages) B. Contour Maps ( pages) C. Critical -Path ( pages) D. Dot

More information

COP Programming Assignment #7

COP Programming Assignment #7 1 of 5 03/13/07 12:36 COP 3330 - Programming Assignment #7 Due: Mon, Nov 21 (revised) Objective: Upon completion of this program, you should gain experience with operator overloading, as well as further

More information

Sample tasks from: Algebra Assessments Through the Common Core (Grades 6-12)

Sample tasks from: Algebra Assessments Through the Common Core (Grades 6-12) Sample tasks from: Algebra Assessments Through the Common Core (Grades 6-12) A resource from The Charles A Dana Center at The University of Texas at Austin 2011 About the Dana Center Assessments More than

More information

CSci 231 Final Review

CSci 231 Final Review CSci 231 Final Review Here is a list of topics for the final. Generally you are responsible for anything discussed in class (except topics that appear italicized), and anything appearing on the homeworks.

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 17 th February 2012 Outline 1 Graphs 2 Paths and cycles 3 Graphs and

More information

Locating Restricted Facilities on Binary Maps

Locating Restricted Facilities on Binary Maps Locating Restricted Facilities on Binary Maps Mugurel Ionut Andreica, Politehnica University of Bucharest, mugurel.andreica@cs.pub.ro Cristina Teodora Andreica, Commercial Academy Satu Mare Madalina Ecaterina

More information

CSci 231 Homework 7. Red Black Trees. CLRS Chapter 13 and 14

CSci 231 Homework 7. Red Black Trees. CLRS Chapter 13 and 14 CSci 31 Homework 7 Red Black Trees CLRS Chapter 13 and 14 Choose 4 problems from the list below. 1. (CLRS 13.1-6) What is the largest possible number of internal nodes in a red-black tree with black-height

More information

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or elements of the set. a) Use capital letters to stand for sets

More information

Network Flow. The network flow problem is as follows:

Network Flow. The network flow problem is as follows: Network Flow The network flow problem is as follows: Given a connected directed graph G with non-negative integer weights, (where each edge stands for the capacity of that edge), and two distinguished

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Winning Positions in Simplicial Nim

Winning Positions in Simplicial Nim Winning Positions in Simplicial Nim David Horrocks Department of Mathematics and Statistics University of Prince Edward Island Charlottetown, Prince Edward Island, Canada, C1A 4P3 dhorrocks@upei.ca Submitted:

More information