Fall Compiler Principles Lecture 3: Parsing part 2. Roman Manevich Ben-Gurion University

Size: px
Start display at page:

Download "Fall Compiler Principles Lecture 3: Parsing part 2. Roman Manevich Ben-Gurion University"

Transcription

1 Fall Compiler Principles Lecture 3: Parsing part 2 Roman Manevich Ben-Gurion University

2 Tentative syllabus Front End Intermediate Representation Optimizations Code Generation Scanning Lowering Local Optimizations Register Allocation Top-down Parsing (LL) Dataflow Analysis Instruction Selection Bottom-up Parsing (LR) Loop Optimizations Attribute Grammars mid-term exam 2

3 Previously Role of syntax analysis Context-free grammars refresher Top-down (predictive) parsing Recursive descent 3

4 Functions for nonterminals E LIT (E OP E) not E LIT true false OP and or xor E() { } if (current {TRUE, FALSE}) else if (current == LPAREN) else if (current == NOT) else LIT(); match(lparent); E(); OP(); E(); match(rparen); match(not); E(); error; LIT() { } if (current == TRUE) else if (current == FALSE) else match(true); match(false); error; OP() { } if (current == AND) else if (current == OR) else if (current == XOR) else match(and); match(or); match(xor); error; 4

5 Technical challenges with recursive descent 5

6 Recursive descent: problem 1 term ID indexed_elem indexed_elem ID [ expr ] With lookahead 1, the function for indexed_elem will never be tried What happens for input of the form ID[expr] 6

7 Recursive descent: problem 2 S A a b A a int S() { return A() && match(token( a )) && match(token( b )); } int A() { return match(token( a )) 1; } What happens for input ab? What happens if you flip order of alternatives and try aab? 7

8 Recursive descent: problem 3 p. 127 E E - term term int E() { } return E() && match(token( - )) && term(); What happens when we execute this procedure? Recursive descent parsers cannot handle left-recursive grammars 8

9 Agenda Predicting productions via FIRST/FOLLOW/NULLABLE sets Handling conflicts LL(k) via pushdown automata 9

10 How do we predict? E LIT (E OP E) not E LIT true false OP and or xor How can we decide which production of E to take? 10

11 FIRST sets For a nonterminal A, FIRST(A) is the set of terminals that can start in a sentence derived from A Formally: FIRST(A) = {t A * t ω} For a sentential form α, FIRST(α) is the set of terminals that can start in a sentence derived from α Formally: FIRST(α) = {t α * t ω} 11

12 FIRST sets example E LIT (E OP E) not E LIT true false OP and or xor FIRST(E) =? FIRST(LIT) =? FIRST(OP) =? 12

13 FIRST sets example E LIT (E OP E) not E LIT true false OP and or xor FIRST(E) = FIRST(LIT) FIRST(( E OP E )) FIRST(not E) FIRST(LIT) = { true, false } FIRST(OP) = {and, or, xor} A set of recursive equations How do we solve them? 13

14 Computing FIRST sets Assume no null productions (A ) 1. Initially, for all nonterminals A, set FIRST(A) = { t A t ω for some ω } 2. Repeat the following until no changes occur: for each nonterminal A for each production A α 1 α k FIRST(A) = FIRST(α 1 ) FIRST(α k ) This is known as a fixed-point algorithm We will see such iterative methods later in the course and learn to reason about them 14

15 Exercise: compute FIRST STMT if EXPR then STMT while EXPR do STMT EXPR ; EXPR TERM -> id zero? TERM not EXPR ++ id -- id TERM id constant STMT EXPR TERM 15

16 1. Initialization STMT if EXPR then STMT while EXPR do STMT EXPR ; EXPR TERM -> id zero? TERM not EXPR ++ id -- id TERM id constant STMT if while EXPR zero? Not TERM id constant 16

17 2. Iterate 1 STMT if EXPR then STMT while EXPR do STMT EXPR ; EXPR TERM -> id zero? TERM not EXPR ++ id -- id TERM id constant STMT if while zero? Not EXPR zero? Not TERM id constant 17

18 2. Iterate 2 STMT if EXPR then STMT while EXPR do STMT EXPR ; EXPR TERM -> id zero? TERM not EXPR ++ id -- id TERM id constant STMT if while zero? Not EXPR zero? Not id constant TERM id constant 18

19 2. Iterate 3 fixed-point STMT if EXPR then STMT while EXPR do STMT EXPR ; EXPR TERM -> id zero? TERM not EXPR ++ id -- id TERM id constant STMT if while zero? Not EXPR zero? Not id constant TERM id constant id constant 19

20 Reasoning about the algorithm Assume no null productions (A ) 1. Initially, for all nonterminals A, set FIRST(A) = { t A t ω for some ω } 2. Repeat the following until no changes occur: for each nonterminal A for each production A α 1 α k FIRST(A) = FIRST(α 1 ) FIRST(α k ) Is the algorithm correct? Does it terminate? (complexity) 20

21 Reasoning about the algorithm Termination: Correctness: 21

22 LL(1) Parsing of grammars without epsilon productions 22

23 Using FIRST sets Assume G has no epsilon productions and for every non-terminal X and every pair of productions X and X we have that FIRST( ) FIRST( ) = {} No intersection between FIRST sets => can always pick a single rule 23

24 Using FIRST sets In our Boolean expressions example FIRST( LIT ) = { true, false } FIRST( ( E OP E ) ) = { ( } FIRST( not E ) = { not } If the FIRST sets intersect, may need longer lookahead LL(k) = class of grammars in which production rule can be determined using a lookahead of k tokens LL(1) is an important and useful class What if there are epsilon productions? 24

25 Extending LL(1) Parsing for epsilon productions 25

26 FIRST, FOLLOW, NULLABLE sets For each non-terminal X FIRST(X) = set of terminals that can start in a sentence derived from X FIRST(X) = {t X * t ω} NULLABLE(X) if X * FOLLOW(X) = set of terminals that can follow X in some derivation FOLLOW(X) = {t S * X t } 26

27 Computing the NULLABLE set Lemma: NULLABLE( 1 k ) = NULLABLE( 1 ) NULLABLE( k ) 1. Initially NULLABLE(X) = false 2. For each non-terminal X if exists a production X then NULLABLE(X) = true 3. Repeat for each production Y 1 k if NULLABLE( 1 k ) then NULLABLE(Y) = true until NULLABLE stabilizes 27

28 Exercise: compute NULLABLE S A a b A a B A B C C b NULLABLE(S) = NULLABLE(A) NULLABLE(a) NULLABLE(b) NULLABLE(A) = NULLABLE(a) NULLABLE( ) NULLABLE(B) = NULLABLE(A) NULLABLE(B) NULLABLE(C) NULLABLE(C) = NULLABLE(b) NULLABLE( ) 28

29 FIRST with epsilon productions How do we compute FIRST( 1 k ) when epsilon productions are allowed? FIRST( 1 k ) =? 29

30 FIRST with epsilon productions How do we compute FIRST( 1 k ) when epsilon productions are allowed? FIRST( 1 k ) = if not NULLABLE( 1 ) then FIRST( 1 ) else FIRST( 1 ) FIRST ( 2 k ) 30

31 Exercise: compute FIRST S A c b A a NULLABLE(S) = NULLABLE(A) NULLABLE(c) NULLABLE(b) NULLABLE(A) = NULLABLE(a) NULLABLE( ) FIRST(S) = FIRST(A) FIRST(cb) FIRST(A) = FIRST(a) FIRST ( ) FIRST(S) = FIRST(A) {c} FIRST(A) = FIRST(a) 31

32 FOLLOW sets if X α Y then FOLLOW(Y)? if NULLABLE( ) or = then FOLLOW(Y)? p

33 FOLLOW sets if X α Y then FOLLOW(Y) FIRST( ) if NULLABLE( ) or = then FOLLOW(Y)? p

34 FOLLOW sets if X α Y then FOLLOW(Y) FIRST( ) if NULLABLE( ) or = then FOLLOW(Y) FOLLOW(X) p

35 FOLLOW sets p. 189 if X α Y then FOLLOW(Y) FIRST( ) if NULLABLE( ) or = then FOLLOW(Y) FOLLOW(X) Allows predicting epsilon productions: X when the lookahead token is in FOLLOW(X) S A c b A a What should we predict for input cb? What should we predict for input acb? 35

36 LL(k) grammars 36

37 Conflicts FIRST-FIRST conflict X α and X and If FIRST(α) FIRST(β) {} FIRST-FOLLOW conflict NULLABLE(X) If FIRST(X) FOLLOW(X) {} 37

38 LL(1) grammars A grammar is in the class LL(1) when it can be derived via: Top-down derivation Scanning the input from left to right (L) Producing the leftmost derivation (L) With lookahead of one token For every two productions A α and A β we have FIRST(α) FIRST(β) = {} and if NULLABLE(A) then FIRST(A) FOLLOW(A) = {} A language is said to be LL(1) when it has an LL(1) grammar 38

39 LL(k) grammars Generalizes LL(1) for k lookahead tokens Need to generalize FIRST and FOLLOW for k lookahead tokens 39

40 Agenda Predicting productions via FIRST/FOLLOW/NULLABLE sets Handling conflicts LL(k) via pushdown automata 40

41 Handling conflicts 41

42 Back to problem 1 term ID indexed_elem indexed_elem ID [ expr ] FIRST(term) = { ID } FIRST(indexed_elem) = { ID } FIRST-FIRST conflict 42

43 Solution: left factoring Rewrite the grammar to be in LL(1) term ID indexed_elem indexed_elem ID [ expr ] New grammar is more complex has epsilon production term ID after_id After_ID [ expr ] Intuition: just like factoring in algebra: x*y + x*z into x*(y+z) 43

44 Exercise: apply left factoring S if E then S else S if E then S T 44

45 Exercise: apply left factoring S if E then S else S if E then S T S if E then S S T S else S 45

46 Back to problem 2 S A a b A a FIRST(S) = { a } FOLLOW(S) = { } FIRST(A) = { a } FOLLOW(A) = { a } FIRST-FOLLOW conflict 46

47 Solution: substitution S A a b A a Substitute A in S S a a b a b 47

48 Solution: substitution S A a b A a Substitute A in S S a a b a b Left factoring S a after_a after_a a b b 48

49 Back to problem 3 E E - term term Left recursion cannot be handled with a bounded lookahead What can we do? 49

50 Left recursion removal p. 130 N Nα β N βn N αn G 1 G 2 L(G 1 ) = β, βα, βαα, βααα, L(G 2 ) = same For our 3 rd example: Can be done algorithmically. Problem 1: grammar becomes mangled beyond recognition Problem 2: grammar may not be LL(1) E E - term term E term TE term TE - term TE 50

51 Recap Given a grammar Compute for each non-terminal NULLABLE FIRST using NULLABLE FOLLOW using FIRST and NULLABLE Compute FIRST for each sentential form appearing on right-hand side of a production Check for conflicts If exist: attempt to remove conflicts by rewriting grammar 51

52 Agenda Predicting productions via FIRST/FOLLOW/NULLABLE sets Handling conflicts LL(k) via pushdown automata 52

53 LL(1) parsing: the automata approach By MG (talk contribs) (Own work) [GFDL ( or CC-BY-SA-3.0 ( via Wikimedia Commons 53

54 Marking end-of-file Sometimes it will be useful to transform a grammar G with start non-terminal S into a grammar G with a new start non-terminal S and a new production rule S S $ where $ is not part of the set of tokens To parse an input α with G we change it into α $ Simplifies top-down parsing with null productions and LR parsing 54

55 Another convention We will assume that all productions have been consecutively numbered (1) S E $ (2) E T (3) E E + T (4) T id (5) T ( E ) 55

56 LL(1) Parsers Recursive Descent Manual construction (parsing combinators make this easier, but ) Uses recursion Wanted A parser that can be generated automatically Does not use recursion 56

57 LL(1) parsing via pushdown automata Pushdown automaton uses Input stream Prediction stack Parsing table Nonterminal token production rule Entry indexed by nonterminal N and token t contains the alternative of N that must be predicated when current input starts with t Essentially, classic conversion from CFG to PDA The only difference is that we replace nondeterministic choice with the parsing table 57

58 Model of non-recursive predictive parser a + b $ Stack X Y Predictive Parsing program Output Z $ Parsing Table 58

59 LL(1) parsing algorithm Set stack=s$ While true Prediction When top of stack is nonterminal N pop N, lookup table[n,t] If table[n,t] is not empty, push table[n,t] on prediction stack Otherwise: return syntax error Match When top of prediction stack is a terminal t, must be equal to next input token t. If (t = t ), pop t and consume t. If (t t ): return syntax error End When prediction stack is empty If input is empty at that point: return success Otherwise: return syntax error 59

60 Nonterminals Example transition table (1) E LIT (2) E ( E OP E ) (3) E not E (4) LIT true (5) LIT false (6) OP and (7) OP or (8) OP xor ( FIRST(E) Input tokens Which rule should be used ( ) not true false and or xor $ E LIT 4 5 OP

61 Running parser example aacbb$ A aab c Input suffix Stack content Move aacbb$ A$ predict(a,a) = A aab aacbb$ aab$ match(a,a) acbb$ Ab$ predict(a,a) = A aab acbb$ aabb$ match(a,a) cbb$ Abb$ predict(a,c) = A c cbb$ cbb$ match(c,c) bb$ bb$ match(b,b) b$ b$ match(b,b) $ $ match($,$) success a b c A A aab A c 61

62 Illegal input example abcbb$ A aab c Input suffix Stack content Move abcbb$ A$ predict(a,a) = A aab abcbb$ aab$ match(a,a) bcbb$ Ab$ predict(a,b) = ERROR a b c A A aab A c 62

63 Creating the prediction table Let G be an LL(1) grammar Compute FIRST/NULLABLE/FOLLOW Check for conflicts For non-terminal N and token t predict: 63

64 Top-down parsing summary Recursive descent LL(k) grammars LL(k) parsing with pushdown automata Cannot deal with left recursion Left-recursion removal might result with complicated grammar 64

65 Next lecture: Bottom-up parsing

Fall Compiler Principles Lecture 2: LL parsing. Roman Manevich Ben-Gurion University of the Negev

Fall Compiler Principles Lecture 2: LL parsing. Roman Manevich Ben-Gurion University of the Negev Fall 2017-2018 Compiler Principles Lecture 2: LL parsing Roman Manevich Ben-Gurion University of the Negev 1 Books Compilers Principles, Techniques, and Tools Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman

More information

Fall Compiler Principles Lecture 2: LL parsing. Roman Manevich Ben-Gurion University of the Negev

Fall Compiler Principles Lecture 2: LL parsing. Roman Manevich Ben-Gurion University of the Negev Fall 2016-2017 Compiler Principles Lecture 2: LL parsing Roman Manevich Ben-Gurion University of the Negev 1 Books Compilers Principles, Techniques, and Tools Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman

More information

Compilation Lecture 3: Syntax Analysis: Top-Down parsing. Noam Rinetzky

Compilation Lecture 3: Syntax Analysis: Top-Down parsing. Noam Rinetzky Compilation 0368-3133 Lecture 3: Syntax Analysis: Top-Down parsing Noam Rinetzky 1 Recursive descent parsing Define a function for every nonterminal Every function work as follows Find applicable production

More information

Compila(on (Semester A, 2013/14)

Compila(on (Semester A, 2013/14) Compila(on 0368-3133 (Semester A, 2013/14) Lecture 4: Syntax Analysis (Top- Down Parsing) Modern Compiler Design: Chapter 2.2 Noam Rinetzky Slides credit: Roman Manevich, Mooly Sagiv, Jeff Ullman, Eran

More information

1 Introduction. 2 Recursive descent parsing. Predicative parsing. Computer Language Implementation Lecture Note 3 February 4, 2004

1 Introduction. 2 Recursive descent parsing. Predicative parsing. Computer Language Implementation Lecture Note 3 February 4, 2004 CMSC 51086 Winter 2004 Computer Language Implementation Lecture Note 3 February 4, 2004 Predicative parsing 1 Introduction This note continues the discussion of parsing based on context free languages.

More information

CS1622. Today. A Recursive Descent Parser. Preliminaries. Lecture 9 Parsing (4)

CS1622. Today. A Recursive Descent Parser. Preliminaries. Lecture 9 Parsing (4) CS1622 Lecture 9 Parsing (4) CS 1622 Lecture 9 1 Today Example of a recursive descent parser Predictive & LL(1) parsers Building parse tables CS 1622 Lecture 9 2 A Recursive Descent Parser. Preliminaries

More information

CA Compiler Construction

CA Compiler Construction CA4003 - Compiler Construction David Sinclair A top-down parser starts with the root of the parse tree, labelled with the goal symbol of the grammar, and repeats the following steps until the fringe of

More information

Top-Down Parsing and Intro to Bottom-Up Parsing. Lecture 7

Top-Down Parsing and Intro to Bottom-Up Parsing. Lecture 7 Top-Down Parsing and Intro to Bottom-Up Parsing Lecture 7 1 Predictive Parsers Like recursive-descent but parser can predict which production to use Predictive parsers are never wrong Always able to guess

More information

Types of parsing. CMSC 430 Lecture 4, Page 1

Types of parsing. CMSC 430 Lecture 4, Page 1 Types of parsing Top-down parsers start at the root of derivation tree and fill in picks a production and tries to match the input may require backtracking some grammars are backtrack-free (predictive)

More information

Parsers. Xiaokang Qiu Purdue University. August 31, 2018 ECE 468

Parsers. Xiaokang Qiu Purdue University. August 31, 2018 ECE 468 Parsers Xiaokang Qiu Purdue University ECE 468 August 31, 2018 What is a parser A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure

More information

CS502: Compilers & Programming Systems

CS502: Compilers & Programming Systems CS502: Compilers & Programming Systems Top-down Parsing Zhiyuan Li Department of Computer Science Purdue University, USA There exist two well-known schemes to construct deterministic top-down parsers:

More information

Top-Down Parsing and Intro to Bottom-Up Parsing. Lecture 7

Top-Down Parsing and Intro to Bottom-Up Parsing. Lecture 7 Top-Down Parsing and Intro to Bottom-Up Parsing Lecture 7 1 Predictive Parsers Like recursive-descent but parser can predict which production to use Predictive parsers are never wrong Always able to guess

More information

LL(k) Parsing. Predictive Parsers. LL(k) Parser Structure. Sample Parse Table. LL(1) Parsing Algorithm. Push RHS in Reverse Order 10/17/2012

LL(k) Parsing. Predictive Parsers. LL(k) Parser Structure. Sample Parse Table. LL(1) Parsing Algorithm. Push RHS in Reverse Order 10/17/2012 Predictive Parsers LL(k) Parsing Can we avoid backtracking? es, if for a given input symbol and given nonterminal, we can choose the alternative appropriately. his is possible if the first terminal of

More information

Wednesday, September 9, 15. Parsers

Wednesday, September 9, 15. Parsers Parsers What is a parser A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure of a program (think: diagramming a sentence) Agenda

More information

Parsers. What is a parser. Languages. Agenda. Terminology. Languages. A parser has two jobs:

Parsers. What is a parser. Languages. Agenda. Terminology. Languages. A parser has two jobs: What is a parser Parsers A parser has two jobs: 1) Determine whether a string (program) is valid (think: grammatically correct) 2) Determine the structure of a program (think: diagramming a sentence) Agenda

More information

Table-Driven Parsing

Table-Driven Parsing Table-Driven Parsing It is possible to build a non-recursive predictive parser by maintaining a stack explicitly, rather than implicitly via recursive calls [1] The non-recursive parser looks up the production

More information

Parsing. Roadmap. > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing

Parsing. Roadmap. > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing Roadmap > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing The role of the parser > performs context-free syntax analysis > guides

More information

3. Parsing. Oscar Nierstrasz

3. Parsing. Oscar Nierstrasz 3. Parsing Oscar Nierstrasz Thanks to Jens Palsberg and Tony Hosking for their kind permission to reuse and adapt the CS132 and CS502 lecture notes. http://www.cs.ucla.edu/~palsberg/ http://www.cs.purdue.edu/homes/hosking/

More information

Monday, September 13, Parsers

Monday, September 13, Parsers Parsers Agenda Terminology LL(1) Parsers Overview of LR Parsing Terminology Grammar G = (Vt, Vn, S, P) Vt is the set of terminals Vn is the set of non-terminals S is the start symbol P is the set of productions

More information

Compilers. Predictive Parsing. Alex Aiken

Compilers. Predictive Parsing. Alex Aiken Compilers Like recursive-descent but parser can predict which production to use By looking at the next fewtokens No backtracking Predictive parsers accept LL(k) grammars L means left-to-right scan of input

More information

Building a Parser III. CS164 3:30-5:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 6 1

Building a Parser III. CS164 3:30-5:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 6 1 Building a Parser III CS164 3:30-5:00 TT 10 Evans 1 Overview Finish recursive descent parser when it breaks down and how to fix it eliminating left recursion reordering productions Predictive parsers (aka

More information

LL parsing Nullable, FIRST, and FOLLOW

LL parsing Nullable, FIRST, and FOLLOW EDAN65: Compilers LL parsing Nullable, FIRST, and FOLLOW Görel Hedin Revised: 2014-09- 22 Regular expressions Context- free grammar ATribute grammar Lexical analyzer (scanner) SyntacKc analyzer (parser)

More information

Compiler construction in4303 lecture 3

Compiler construction in4303 lecture 3 Compiler construction in4303 lecture 3 Top-down parsing Chapter 2.2-2.2.4 Overview syntax analysis: tokens AST program text lexical analysis language grammar parser generator tokens syntax analysis AST

More information

Compiler construction lecture 3

Compiler construction lecture 3 Compiler construction in4303 lecture 3 Top-down parsing Chapter 2.2-2.2.4 Overview syntax analysis: tokens AST language grammar parser generator program text lexical analysis tokens syntax analysis AST

More information

Part 3. Syntax analysis. Syntax analysis 96

Part 3. Syntax analysis. Syntax analysis 96 Part 3 Syntax analysis Syntax analysis 96 Outline 1. Introduction 2. Context-free grammar 3. Top-down parsing 4. Bottom-up parsing 5. Conclusion and some practical considerations Syntax analysis 97 Structure

More information

Top down vs. bottom up parsing

Top down vs. bottom up parsing Parsing A grammar describes the strings that are syntactically legal A recogniser simply accepts or rejects strings A generator produces sentences in the language described by the grammar A parser constructs

More information

Administrativia. WA1 due on Thu PA2 in a week. Building a Parser III. Slides on the web site. CS164 3:30-5:00 TT 10 Evans.

Administrativia. WA1 due on Thu PA2 in a week. Building a Parser III. Slides on the web site. CS164 3:30-5:00 TT 10 Evans. Administrativia Building a Parser III CS164 3:30-5:00 10 vans WA1 due on hu PA2 in a week Slides on the web site I do my best to have slides ready and posted by the end of the preceding logical day yesterday,

More information

Abstract Syntax Trees & Top-Down Parsing

Abstract Syntax Trees & Top-Down Parsing Review of Parsing Abstract Syntax Trees & Top-Down Parsing Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree Issues: How do we recognize that s L(G)? A parse tree

More information

Abstract Syntax Trees & Top-Down Parsing

Abstract Syntax Trees & Top-Down Parsing Abstract Syntax Trees & Top-Down Parsing Review of Parsing Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree Issues: How do we recognize that s L(G)? A parse tree

More information

Abstract Syntax Trees & Top-Down Parsing

Abstract Syntax Trees & Top-Down Parsing Review of Parsing Abstract Syntax Trees & Top-Down Parsing Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree Issues: How do we recognize that s L(G)? A parse tree

More information

Wednesday, August 31, Parsers

Wednesday, August 31, Parsers Parsers How do we combine tokens? Combine tokens ( words in a language) to form programs ( sentences in a language) Not all combinations of tokens are correct programs (not all sentences are grammatically

More information

CS2210: Compiler Construction Syntax Analysis Syntax Analysis

CS2210: Compiler Construction Syntax Analysis Syntax Analysis Comparison with Lexical Analysis The second phase of compilation Phase Input Output Lexer string of characters string of tokens Parser string of tokens Parse tree/ast What Parse Tree? CS2210: Compiler

More information

Lexical and Syntax Analysis. Top-Down Parsing

Lexical and Syntax Analysis. Top-Down Parsing Lexical and Syntax Analysis Top-Down Parsing Easy for humans to write and understand String of characters Lexemes identified String of tokens Easy for programs to transform Data structure Syntax A syntax

More information

Compilers. Yannis Smaragdakis, U. Athens (original slides by Sam

Compilers. Yannis Smaragdakis, U. Athens (original slides by Sam Compilers Parsing Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts) Next step text chars Lexical analyzer tokens Parser IR Errors Parsing: Organize tokens into sentences Do tokens conform

More information

Ambiguity, Precedence, Associativity & Top-Down Parsing. Lecture 9-10

Ambiguity, Precedence, Associativity & Top-Down Parsing. Lecture 9-10 Ambiguity, Precedence, Associativity & Top-Down Parsing Lecture 9-10 (From slides by G. Necula & R. Bodik) 9/18/06 Prof. Hilfinger CS164 Lecture 9 1 Administrivia Please let me know if there are continued

More information

CSCI312 Principles of Programming Languages

CSCI312 Principles of Programming Languages Copyright 2006 The McGraw-Hill Companies, Inc. CSCI312 Principles of Programming Languages! LL Parsing!! Xu Liu Derived from Keith Cooper s COMP 412 at Rice University Recap Copyright 2006 The McGraw-Hill

More information

Note that for recursive descent to work, if A ::= B1 B2 is a grammar rule we need First k (B1) disjoint from First k (B2).

Note that for recursive descent to work, if A ::= B1 B2 is a grammar rule we need First k (B1) disjoint from First k (B2). LL(k) Grammars We need a bunch of terminology. For any terminal string a we write First k (a) is the prefix of a of length k (or all of a if its length is less than k) For any string g of terminal and

More information

Lexical and Syntax Analysis

Lexical and Syntax Analysis Lexical and Syntax Analysis (of Programming Languages) Top-Down Parsing Lexical and Syntax Analysis (of Programming Languages) Top-Down Parsing Easy for humans to write and understand String of characters

More information

Parsing III. CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones

Parsing III. CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones Parsing III (Top-down parsing: recursive descent & LL(1) ) (Bottom-up parsing) CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones Copyright 2003, Keith D. Cooper,

More information

LL(1) predictive parsing

LL(1) predictive parsing LL(1) predictive parsing Informatics 2A: Lecture 11 Mary Cryan School of Informatics University of Edinburgh mcryan@staffmail.ed.ac.uk 10 October 2018 1 / 15 Recap of Lecture 10 A pushdown automaton (PDA)

More information

SYNTAX ANALYSIS 1. Define parser. Hierarchical analysis is one in which the tokens are grouped hierarchically into nested collections with collective meaning. Also termed as Parsing. 2. Mention the basic

More information

Syntax Analysis. Martin Sulzmann. Martin Sulzmann Syntax Analysis 1 / 38

Syntax Analysis. Martin Sulzmann. Martin Sulzmann Syntax Analysis 1 / 38 Syntax Analysis Martin Sulzmann Martin Sulzmann Syntax Analysis 1 / 38 Syntax Analysis Objective Recognize individual tokens as sentences of a language (beyond regular languages). Example 1 (OK) Program

More information

Syntactic Analysis. Top-Down Parsing

Syntactic Analysis. Top-Down Parsing Syntactic Analysis Top-Down Parsing Copyright 2017, Pedro C. Diniz, all rights reserved. Students enrolled in Compilers class at University of Southern California (USC) have explicit permission to make

More information

Compilerconstructie. najaar Rudy van Vliet kamer 140 Snellius, tel rvvliet(at)liacs(dot)nl. college 3, vrijdag 22 september 2017

Compilerconstructie. najaar Rudy van Vliet kamer 140 Snellius, tel rvvliet(at)liacs(dot)nl. college 3, vrijdag 22 september 2017 Compilerconstructie najaar 2017 http://www.liacs.leidenuniv.nl/~vlietrvan1/coco/ Rudy van Vliet kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl college 3, vrijdag 22 september 2017 + werkcollege

More information

Parsing Part II (Top-down parsing, left-recursion removal)

Parsing Part II (Top-down parsing, left-recursion removal) Parsing Part II (Top-down parsing, left-recursion removal) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit

More information

CS 2210 Sample Midterm. 1. Determine if each of the following claims is true (T) or false (F).

CS 2210 Sample Midterm. 1. Determine if each of the following claims is true (T) or false (F). CS 2210 Sample Midterm 1. Determine if each of the following claims is true (T) or false (F). F A language consists of a set of strings, its grammar structure, and a set of operations. (Note: a language

More information

Prelude COMP 181 Tufts University Computer Science Last time Grammar issues Key structure meaning Tufts University Computer Science

Prelude COMP 181 Tufts University Computer Science Last time Grammar issues Key structure meaning Tufts University Computer Science Prelude COMP Lecture Topdown Parsing September, 00 What is the Tufts mascot? Jumbo the elephant Why? P. T. Barnum was an original trustee of Tufts : donated $0,000 for a natural museum on campus Barnum

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages CS 314 Principles of Programming Languages Lecture 5: Syntax Analysis (Parsing) Zheng (Eddy) Zhang Rutgers University January 31, 2018 Class Information Homework 1 is being graded now. The sample solution

More information

8 Parsing. Parsing. Top Down Parsing Methods. Parsing complexity. Top down vs. bottom up parsing. Top down vs. bottom up parsing

8 Parsing. Parsing. Top Down Parsing Methods. Parsing complexity. Top down vs. bottom up parsing. Top down vs. bottom up parsing 8 Parsing Parsing A grammar describes syntactically legal strings in a language A recogniser simply accepts or rejects strings A generator produces strings A parser constructs a parse tree for a string

More information

Compiler Design 1. Top-Down Parsing. Goutam Biswas. Lect 5

Compiler Design 1. Top-Down Parsing. Goutam Biswas. Lect 5 Compiler Design 1 Top-Down Parsing Compiler Design 2 Non-terminal as a Function In a top-down parser a non-terminal may be viewed as a generator of a substring of the input. We may view a non-terminal

More information

3. Syntax Analysis. Andrea Polini. Formal Languages and Compilers Master in Computer Science University of Camerino

3. Syntax Analysis. Andrea Polini. Formal Languages and Compilers Master in Computer Science University of Camerino 3. Syntax Analysis Andrea Polini Formal Languages and Compilers Master in Computer Science University of Camerino (Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 1 / 54 Syntax Analysis: the

More information

Parser. Larissa von Witte. 11. Januar Institut für Softwaretechnik und Programmiersprachen. L. v. Witte 11. Januar /23

Parser. Larissa von Witte. 11. Januar Institut für Softwaretechnik und Programmiersprachen. L. v. Witte 11. Januar /23 Parser Larissa von Witte Institut für oftwaretechnik und Programmiersprachen 11. Januar 2016 L. v. Witte 11. Januar 2016 1/23 Contents Introduction Taxonomy Recursive Descent Parser hift Reduce Parser

More information

Syntax Analysis Part I

Syntax Analysis Part I Syntax Analysis Part I Chapter 4: Context-Free Grammars Slides adapted from : Robert van Engelen, Florida State University Position of a Parser in the Compiler Model Source Program Lexical Analyzer Token,

More information

More Bottom-Up Parsing

More Bottom-Up Parsing More Bottom-Up Parsing Lecture 7 Dr. Sean Peisert ECS 142 Spring 2009 1 Status Project 1 Back By Wednesday (ish) savior lexer in ~cs142/s09/bin Project 2 Due Friday, Apr. 24, 11:55pm My office hours 3pm

More information

Introduction to Parsing. Comp 412

Introduction to Parsing. Comp 412 COMP 412 FALL 2010 Introduction to Parsing Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make

More information

Ambiguity. Grammar E E + E E * E ( E ) int. The string int * int + int has two parse trees. * int

Ambiguity. Grammar E E + E E * E ( E ) int. The string int * int + int has two parse trees. * int Administrivia Ambiguity, Precedence, Associativity & op-down Parsing eam assignments this evening for all those not listed as having one. HW#3 is now available, due next uesday morning (Monday is a holiday).

More information

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1. Top-Down Parsing. Lect 5. Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1. Top-Down Parsing. Lect 5. Goutam Biswas Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1 Top-Down Parsing Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 2 Non-terminal as a Function In a top-down parser a non-terminal may be viewed

More information

Parsing. Lecture 11: Parsing. Recursive Descent Parser. Arithmetic grammar. - drops irrelevant details from parse tree

Parsing. Lecture 11: Parsing. Recursive Descent Parser. Arithmetic grammar. - drops irrelevant details from parse tree Parsing Lecture 11: Parsing CSC 131 Fall, 2014 Kim Bruce Build parse tree from an expression Interested in abstract syntax tree - drops irrelevant details from parse tree Arithmetic grammar ::=

More information

Parsing. Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice.

Parsing. Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice. Parsing Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice. Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students

More information

CSE P 501 Compilers. LR Parsing Hal Perkins Spring UW CSE P 501 Spring 2018 D-1

CSE P 501 Compilers. LR Parsing Hal Perkins Spring UW CSE P 501 Spring 2018 D-1 CSE P 501 Compilers LR Parsing Hal Perkins Spring 2018 UW CSE P 501 Spring 2018 D-1 Agenda LR Parsing Table-driven Parsers Parser States Shift-Reduce and Reduce-Reduce conflicts UW CSE P 501 Spring 2018

More information

CS 406/534 Compiler Construction Parsing Part I

CS 406/534 Compiler Construction Parsing Part I CS 406/534 Compiler Construction Parsing Part I Prof. Li Xu Dept. of Computer Science UMass Lowell Fall 2004 Part of the course lecture notes are based on Prof. Keith Cooper, Prof. Ken Kennedy and Dr.

More information

Topdown parsing with backtracking

Topdown parsing with backtracking Top down parsing Types of parsers: Top down: repeatedly rewrite the start symbol; find a left-most derivation of the input string; easy to implement; not all context-free grammars are suitable. Bottom

More information

Syntax Analysis, III Comp 412

Syntax Analysis, III Comp 412 Updated algorithm for removal of indirect left recursion to match EaC3e (3/2018) COMP 412 FALL 2018 Midterm Exam: Thursday October 18, 7PM Herzstein Amphitheater Syntax Analysis, III Comp 412 source code

More information

Parsing III. (Top-down parsing: recursive descent & LL(1) )

Parsing III. (Top-down parsing: recursive descent & LL(1) ) Parsing III (Top-down parsing: recursive descent & LL(1) ) Roadmap (Where are we?) Previously We set out to study parsing Specifying syntax Context-free grammars Ambiguity Top-down parsers Algorithm &

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING KATHMANDU UNIVERSITY SCHOOL OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING REPORT ON NON-RECURSIVE PREDICTIVE PARSER Fourth Year First Semester Compiler Design Project Final Report submitted

More information

EDA180: Compiler Construc6on. Top- down parsing. Görel Hedin Revised: a

EDA180: Compiler Construc6on. Top- down parsing. Görel Hedin Revised: a EDA180: Compiler Construc6on Top- down parsing Görel Hedin Revised: 2013-01- 30a Compiler phases and program representa6ons source code Lexical analysis (scanning) Intermediate code genera6on tokens intermediate

More information

Parsing II Top-down parsing. Comp 412

Parsing II Top-down parsing. Comp 412 COMP 412 FALL 2018 Parsing II Top-down parsing Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled

More information

Review of CFGs and Parsing II Bottom-up Parsers. Lecture 5. Review slides 1

Review of CFGs and Parsing II Bottom-up Parsers. Lecture 5. Review slides 1 Review of CFGs and Parsing II Bottom-up Parsers Lecture 5 1 Outline Parser Overview op-down Parsers (Covered largely through labs) Bottom-up Parsers 2 he Functionality of the Parser Input: sequence of

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Parsing CMSC 330 - Spring 2017 1 Recall: Front End Scanner and Parser Front End Token Source Scanner Parser Stream AST Scanner / lexer / tokenizer converts

More information

Fall Compiler Principles Context-free Grammars Refresher. Roman Manevich Ben-Gurion University of the Negev

Fall Compiler Principles Context-free Grammars Refresher. Roman Manevich Ben-Gurion University of the Negev Fall 2016-2017 Compiler Principles Context-free Grammars Refresher Roman Manevich Ben-Gurion University of the Negev 1 xample grammar S S ; S S id := S print (L) id num + L L L, shorthand for Statement

More information

Syntax Analysis, III Comp 412

Syntax Analysis, III Comp 412 COMP 412 FALL 2017 Syntax Analysis, III Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp

More information

Extra Credit Question

Extra Credit Question Top-Down Parsing #1 Extra Credit Question Given this grammar G: E E+T E T T T * int T int T (E) Is the string int * (int + int) in L(G)? Give a derivation or prove that it is not. #2 Revenge of Theory

More information

CMSC 330, Fall 2009, Practice Problem 3 Solutions

CMSC 330, Fall 2009, Practice Problem 3 Solutions CMC 330, Fall 2009, Practice Problem 3 olutions 1. Context Free Grammars a. List the 4 components of a context free grammar. Terminals, non-terminals, productions, start symbol b. Describe the relationship

More information

Defining syntax using CFGs

Defining syntax using CFGs Defining syntax using CFGs Roadmap Last time Defined context-free grammar This time CFGs for specifying a language s syntax Language membership List grammars Resolving ambiguity CFG Review G = (N,Σ,P,S)

More information

Introduction to parsers

Introduction to parsers Syntax Analysis Introduction to parsers Context-free grammars Push-down automata Top-down parsing LL grammars and parsers Bottom-up parsing LR grammars and parsers Bison/Yacc - parser generators Error

More information

Fall Compiler Principles Lecture 4: Parsing part 3. Roman Manevich Ben-Gurion University of the Negev

Fall Compiler Principles Lecture 4: Parsing part 3. Roman Manevich Ben-Gurion University of the Negev Fall 2016-2017 Compiler Principles Lecture 4: Parsing part 3 Roman Manevich Ben-Gurion University of the Negev Tentative syllabus Front End Intermediate Representation Optimizations Code Generation Scanning

More information

Chapter 3. Parsing #1

Chapter 3. Parsing #1 Chapter 3 Parsing #1 Parser source file get next character scanner get token parser AST token A parser recognizes sequences of tokens according to some grammar and generates Abstract Syntax Trees (ASTs)

More information

Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.

Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. Eliminating Ambiguity Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. Example: consider the following grammar stat if expr then stat if expr then stat else stat other One can

More information

Syntax Analysis: Context-free Grammars, Pushdown Automata and Parsing Part - 4. Y.N. Srikant

Syntax Analysis: Context-free Grammars, Pushdown Automata and Parsing Part - 4. Y.N. Srikant Syntax Analysis: Context-free Grammars, Pushdown Automata and Part - 4 Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler

More information

Syntax Analyzer --- Parser

Syntax Analyzer --- Parser Syntax Analyzer --- Parser ASU Textbook Chapter 4.2--4.9 (w/o error handling) Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 A program represented by a sequence of tokens

More information

Formal Languages and Compilers Lecture VII Part 3: Syntactic A

Formal Languages and Compilers Lecture VII Part 3: Syntactic A Formal Languages and Compilers Lecture VII Part 3: Syntactic Analysis Free University of Bozen-Bolzano Faculty of Computer Science POS Building, Room: 2.03 artale@inf.unibz.it http://www.inf.unibz.it/

More information

4. Lexical and Syntax Analysis

4. Lexical and Syntax Analysis 4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal

More information

PART 3 - SYNTAX ANALYSIS. F. Wotawa TU Graz) Compiler Construction Summer term / 309

PART 3 - SYNTAX ANALYSIS. F. Wotawa TU Graz) Compiler Construction Summer term / 309 PART 3 - SYNTAX ANALYSIS F. Wotawa (IST @ TU Graz) Compiler Construction Summer term 2016 64 / 309 Goals Definition of the syntax of a programming language using context free grammars Methods for parsing

More information

CSE 401 Midterm Exam Sample Solution 2/11/15

CSE 401 Midterm Exam Sample Solution 2/11/15 Question 1. (10 points) Regular expression warmup. For regular expression questions, you must restrict yourself to the basic regular expression operations covered in class and on homework assignments:

More information

Fall Compiler Principles Lecture 5: Parsing part 4. Roman Manevich Ben-Gurion University

Fall Compiler Principles Lecture 5: Parsing part 4. Roman Manevich Ben-Gurion University Fall 2014-2015 Compiler Principles Lecture 5: Parsing part 4 Roman Manevich Ben-Gurion University Tentative syllabus Front End Intermediate Representation Optimizations Code Generation Scanning Lowering

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall Phases of a compiler Syntactic structure Figure 1.6, page 5 of text Recap Lexical analysis: LEX/FLEX (regex -> lexer) Syntactic analysis:

More information

CS 321 Programming Languages and Compilers. VI. Parsing

CS 321 Programming Languages and Compilers. VI. Parsing CS 321 Programming Languages and Compilers VI. Parsing Parsing Calculate grammatical structure of program, like diagramming sentences, where: Tokens = words Programs = sentences For further information,

More information

4 (c) parsing. Parsing. Top down vs. bo5om up parsing

4 (c) parsing. Parsing. Top down vs. bo5om up parsing 4 (c) parsing Parsing A grammar describes syntac2cally legal strings in a language A recogniser simply accepts or rejects strings A generator produces strings A parser constructs a parse tree for a string

More information

Topic 3: Syntax Analysis I

Topic 3: Syntax Analysis I Topic 3: Syntax Analysis I Compiler Design Prof. Hanjun Kim CoreLab (Compiler Research Lab) POSTECH 1 Back-End Front-End The Front End Source Program Lexical Analysis Syntax Analysis Semantic Analysis

More information

CSE 130 Programming Language Principles & Paradigms Lecture # 5. Chapter 4 Lexical and Syntax Analysis

CSE 130 Programming Language Principles & Paradigms Lecture # 5. Chapter 4 Lexical and Syntax Analysis Chapter 4 Lexical and Syntax Analysis Introduction - Language implementation systems must analyze source code, regardless of the specific implementation approach - Nearly all syntax analysis is based on

More information

4. Lexical and Syntax Analysis

4. Lexical and Syntax Analysis 4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal

More information

MIT Parse Table Construction. Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

MIT Parse Table Construction. Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology MIT 6.035 Parse Table Construction Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology Parse Tables (Review) ACTION Goto State ( ) $ X s0 shift to s2 error error goto s1

More information

COP 3402 Systems Software Syntax Analysis (Parser)

COP 3402 Systems Software Syntax Analysis (Parser) COP 3402 Systems Software Syntax Analysis (Parser) Syntax Analysis 1 Outline 1. Definition of Parsing 2. Context Free Grammars 3. Ambiguous/Unambiguous Grammars Syntax Analysis 2 Lexical and Syntax Analysis

More information

Concepts Introduced in Chapter 4

Concepts Introduced in Chapter 4 Concepts Introduced in Chapter 4 Grammars Context-Free Grammars Derivations and Parse Trees Ambiguity, Precedence, and Associativity Top Down Parsing Recursive Descent, LL Bottom Up Parsing SLR, LR, LALR

More information

Syntax Analysis/Parsing. Context-free grammars (CFG s) Context-free grammars vs. Regular Expressions. BNF description of PL/0 syntax

Syntax Analysis/Parsing. Context-free grammars (CFG s) Context-free grammars vs. Regular Expressions. BNF description of PL/0 syntax Susan Eggers 1 CSE 401 Syntax Analysis/Parsing Context-free grammars (CFG s) Purpose: determine if tokens have the right form for the language (right syntactic structure) stream of tokens abstract syntax

More information

Parsing. source code. while (k<=n) {sum = sum+k; k=k+1;}

Parsing. source code. while (k<=n) {sum = sum+k; k=k+1;} Compiler Construction Grammars Parsing source code scanner tokens regular expressions lexical analysis Lennart Andersson parser context free grammar Revision 2012 01 23 2012 parse tree AST builder (implicit)

More information

Compiler Construction 2016/2017 Syntax Analysis

Compiler Construction 2016/2017 Syntax Analysis Compiler Construction 2016/2017 Syntax Analysis Peter Thiemann November 2, 2016 Outline 1 Syntax Analysis Recursive top-down parsing Nonrecursive top-down parsing Bottom-up parsing Syntax Analysis tokens

More information

Part III : Parsing. From Regular to Context-Free Grammars. Deriving a Parser from a Context-Free Grammar. Scanners and Parsers.

Part III : Parsing. From Regular to Context-Free Grammars. Deriving a Parser from a Context-Free Grammar. Scanners and Parsers. Part III : Parsing From Regular to Context-Free Grammars Deriving a Parser from a Context-Free Grammar Scanners and Parsers A Parser for EBNF Left-Parsable Grammars Martin Odersky, LAMP/DI 1 From Regular

More information

Parsing Wrapup. Roadmap (Where are we?) Last lecture Shift-reduce parser LR(1) parsing. This lecture LR(1) parsing

Parsing Wrapup. Roadmap (Where are we?) Last lecture Shift-reduce parser LR(1) parsing. This lecture LR(1) parsing Parsing Wrapup Roadmap (Where are we?) Last lecture Shift-reduce parser LR(1) parsing LR(1) items Computing closure Computing goto LR(1) canonical collection This lecture LR(1) parsing Building ACTION

More information

Parsing. Handle, viable prefix, items, closures, goto s LR(k): SLR(1), LR(1), LALR(1)

Parsing. Handle, viable prefix, items, closures, goto s LR(k): SLR(1), LR(1), LALR(1) TD parsing - LL(1) Parsing First and Follow sets Parse table construction BU Parsing Handle, viable prefix, items, closures, goto s LR(k): SLR(1), LR(1), LALR(1) Problems with SLR Aho, Sethi, Ullman, Compilers

More information