Figure 13.1 ASN.1: abstract and transfer/concrete syntax relationship.

Size: px
Start display at page:

Download "Figure 13.1 ASN.1: abstract and transfer/concrete syntax relationship."

Transcription

1 Figure 3. ASN.: abstract and transfer/concrete syntax relationship. Host AP Data in an agreed abstract syntax (e.g. type character, integer etc.) Data in an agreed transfer/concrete syntax (e.g. type, length, value) Host AP TCP/UDP IP IP network/internet TCP/UDP IP

2 Figure 3.2 ASN. compiler function. Application data type definitions in ASN. Data type definitions in language X Encoding and decoding procedures for each data type in language X

3 Figure 3.3 Some example ASN. type definitions: (a) simple types; (b) constructed type; (c) tagging; (d) implicit typing. (a) married yrswithcompany accessrights PDUContents name pi workday :: BOOLEAN -- true or false :: INTEGER :: BITSTRING{read(0), write()} :: OCTETSTRING :: IA5String :: REAL -- mantissa, base, exponent :: ENUMERATED{monday(0), tuesday()... friday(4)} (b) (c) (d) personnelrecord c.f. personnelrecord personnelrecord personnelrecord :: SEQUENCE{ empnumber INTEGER, name IA5String, yrswithcompany INTEGER married BOOLEAN} :: record empnumber integer; name array [..20] of char; yrswithcompany integer; married boolean :: end; :: SEQUENCE{ empnumber [APPLICATION] INTEGER, name [] IA5String, yrswithcompany [2] INTEGER, married [3] BOOLEAN} :: SEQUENCE{ empnumber [APPLICATION] INTEGER, name [] IMPLICIT IA5String, yrswithcompany [2] IMPLICIT INTEGER, married [3] IMPLICIT BOOLEAN}

4 Figure 3.4 ASN. PDU definition example. ISO857-FTAM DEFINITIONS :: BEGIN PDU :: CHOICE { PDU :: CHOICE {InitializePDU, PDU :: CHOICE {FilePDU, PDU :: CHOICE {BulkdataPDU PDU :: CHOICE } InitializePDU :: CHOICE { [APPLICATION ] [] [2] [3] [4] [5] InitializePDU :: CHOICE } IMPLICIT FINITIALIZErequest, IMPLICIT FINITIALIZEresponse, IMPLICIT FTERMINATErequest, IMPLICIT FTERMINATEresponse, IMPLICIT FUABORTrequest, IMPLICIT FPABORTresponse FINITIALIZErequest :: SEQUENCE { protocolid [0] INTEGER { isoftam (0) }, versionnumber [] IMPLICIT versionnumber [] SEQUENCE { major INTEGER, versionnumber [] SEQUENCE { minor INTEGER}, initially { major 0, minor 0} servicetype [2] INTEGER { reliable (0), servicetype [2] INTEGER {user correctable ()} serviceclass [3] INTEGER { transfer (0), serviceclass [3] INTEGER {access (), serviceclass [3] INTEGER {management (2)} functionalunits [4] BITSTRING { read (0), write (), fileaccess (2), limitedfilemanagement (3), enhancedfilemanagement (4), grouping (5), recovery (6), restartdatatransfer (7) } attributegroups [5] BITSTRING { storage (0), security () } rollbackavailability [6] BOOLEAN DEFAULT FALSE, presentationcontextname [7] IMPLICIT ISO646String { ISO8822 }, identifyoflnitiator [8] ISO646String OPTIONAL, currentaccount [9] ISO646String OPTIONAL, filestorepassword [0] OCTETSTRING OPTIONAL, checkpointwindow [] INTEGER OPTIONAL } FINITIALIZEresponse :: SEQUENCE { END

5 Figure 3.5 ASN. encoding: identifier bit definitions. Bit Tag: 0 30 Boolean type 2 Integer type 3 Bitstring type 4 Octetstring type 5 Null type 9 Real type 0 Enumerated type 6 Sequence and sequenceof types 7 Set and setof types 8 22, 25 Alternative character set string types (IA5/ISO 646, etc.) Time types >30 All five tag bits set to and a second octet used Type: 0 Primitive Constructed Class: 00 Universal 0 Application 0 Context specific Private Note: The null type is used to indicate the absence of an element in a sequence. The two time types are used to specify time in a standardized way as a string of IA5/ISO 646 characters. For example: YY MM DD hh mm ss current time

6 Figure 3.6 ASN. encoding examples: (a) primitive types; (b) constructed type; (c) use of implicit tag. (a) BOOLEAN UNIVERSAL e.g., Employed :: BOOLEAN assume true Identifier 0 (Hex) Length 0 Contents FF Universal i.e., 0 0 FF INTEGER UNIVERSAL 2 e.g., RetxCount :: INTEGER assume 29 (decimal) Identifier 02 Length 0 Contents D Universal 2 29 decimal i.e., 02 0 D BITSTRING UNIVERSAL 3 e.g., FunctionalUnits :: BITSTRING {read (0), write (), fileaccess (2)} assume read only is required Identifier Length 0 Contents 80 read only i.e., 0 80 UTCTime UNIVERSAL 23 e.g., UTCTime :: [UNIVERSAL 23] IMPLICIT ISO646String assume 2.58 p.m. on 5th November Identifier 7 (Hex) Length 0A Contents Universal 23 i.e., 7 0A

7 Figure 3.6 Continued (b) SEQUENCE/SEQUENCEOF UNIVERSAL 6 e.g., File :: SEQUENCE {username IA5String, contents OCTETSTRING} assume username FRED and contents 0F 27 E4 Hex Identifier 30 (Hex) Length 0B Contents Identifier 6 Contents Length 04 Contents Contents Contents Identifier 04 Contents Length Contents Contents 0F 27 E4 Constructed, Universal 6 Decimal Universal 22 Universal 4 i.e., 30 0B F 27 E4 (c) Tagging/IMPLICIT e.g., UserName :: SET {surname [0] IMPLICIT ISO646String, password [] ISO646String } assume surname BULL and password KING Identifier 3 Length 0E Contents Identifier 80 Contents Length 04 Contents Contents C 4C Contents Identifier A Contents Length 06 Contents Contents Identifier 6 Contents Contents Length 04 Contents Contents Contents 4B 49 4E 47 Constructed, Universal 7 Decimal 4 Context-specific 0 surname Context-specific password Universal 22 i.e., 3 0E C 4C A B 49 4E 47

8 Figure 3.7 Example PDU encoding: (a) PDU fields and their contents; (b) encoded form. (a) FINITIALIZErequest { protocolid 0, versionnumber {major 0, minor 0} servicetype, serviceclass, functionalunits {read 0, write, fileaccess 2, functionalunits {limitedfilemanagement 3 functionalunits {enhancedfilemanagement 4, functionalunits {grouping 5, recovery 6, functionalunits {restartdatatransfer 7 } attributegroups {storage 0, security } rollbackavailability T, PresentationContextName ISO8822 }

9 Figure 3.7 Continued (b) Identifier Length Contents 6 3 Identifier Length Contents Identifier Length Contents A0 Identifier Length Contents A 06 Identifier Length Contents Identifier Length Contents Identifier Length Contents Identifier Length Contents Identifier Length Contents Identifier Length Contents Identifier Length Contents Identifier Length Contents Universal major 02 Universal minor A2 Identifier 02 Length 0 Contents 0 A3 Identifier 02 Length 0 Contents 0 A4 Identifier Length 0 Contents E0 A5 Identifier Length 0 Contents 40 A6 Identifier 0 Length 0 Contents FF A F Application-specific FINITIALIZErequest decimal 49 Context-specific 0 protocolid Universal 2 INTEGER isoftam Context-specific versionnumber servicetype user correctable serviceclass access Context-specific 4 functionalunits Universal 3 BITSTRING read, write, fileaccess Context-specific 5 attributegroups security Context-specific 6 rollbackavailability Universal BOOLEAN true Context-specific 7 PresentationContextName ISO8822 Concrete syntax of the above PDU is thus: F 02 0 A A6 02 A A 0 FF 06 0 A7 02 A E A5 38 A2 32

10 Figure 3.8 Data encryption terminology. Plaintext, P Plaintext, P Encryption key, E K Decryption key, D K Listening/ eavesdropping Masquerading Ciphertext C E K (P)

11 Figure 3.9 Product cipher components: (a) P-box examples; (b) S-box example. P-box (a) (i) straight (key ) (ii) expanded (key ) (iii) compressed (choice) (key 57283) Key (b) S-box A 0 0 B 0 0 A B P-box A B A 0 0 B 0 0 key

12 Figure 3.0 Example of a product cipher.

13 Figure 3. DES algorithm principles: (a) overall schematic; (b) substitution schematic; (c) substitution operation. (a) 64-bit plaintext 56-bit key subkeys each of 48 bits 64-bit ciphertext (b) 64-bit output from previous stage Subkey for this stage 64-bit output to next stage

14 Figure 3. Continued. (c) 64-bit output from previous stage, x + K x 64-bit output to next stage, x

15 Figure 3.2 Triple DES schematic. Key K, K 2 K K 2 K 64-bit plaintext DES DES DES 64-bit ciphertext

16 Figure 3.3 DES operational modes: (a) electronic code book (ECB); (b) chain block cipher (CBC); (c) cipher feedback mode (CFM).

17 Figure 3.3 Continued.

18 Figure 3.4 IDEA: (a) encryption schematic; (b) single iteration detail. (a) 64-bit plaintext Iteration K K 6 Iteration 2 K 7 K 2 Key generator 28-bit key Iteration 8 K 43 K 48 Transformation K 49 K bit ciphertext (b) 64-bit input K + + K 4 K 2 K K 5 + K bit output multiplier 6 6 adder 6 6 exclusive OR

19 Figure 3.5 RSA schematic. Source, S Receiver, R R s public key R p R s secret key R s Plaintext, P Plaintext, P R s (R p (P)) Ciphertext R p (P)

20 Figure 3.6 Nonrepudiation using RSA: (a) on complete message; (b) on message digest. (a) Plaintext, P S s (P) Ciphertext R p (S s (P)) R s (R p (S s (P))) Plaintext S p (R s (R p (S s (P)))) S s secret key S s R s public key R p R s secret key R s S s public key S p Plaintext, P Plaintext, P Encryption level Nonrepudiation level (b) MD S s (MD) P, S s (MD) S s (MD) S p (S s (MD)) MD Plaintext, P P MD Plaintext, P Error

21 Figure 3.7 User authentication using a public key scheme. Client C p, C s Timer, T c S p (U, C p, t c ) () C p (U, t c, t s ) (2) S p (U, t s ) (3) Server S p, S s Timer, T s C p, C s client public/secret key U client user name S p, S s server public/secret key t c, t s client/server time-stamp

22 Figure 3.8 User authentication using Kerberos: (a) terminology and message exchange; (b) key and ticket definitions; (c) message contents. (a) Key distribution server Server computer Network (2) (3) (5) (6) (7) (8) () (4) Client workstation (b) K U K T K S K UT K US The private key of the user the user password The private key of the TGS The private key of the application server A session key to encrypt UA TGS dialog units A session key to encrypt UA S dialog units TGS ticket, T UT K T (U, T, t, t 2, K UT ) Application server ticket, T US K S (U, S, t, t 2, K US ) t, t 2 start, end of ticket lifetime (c) Direction Message () (2) (3) (4) (5) (6) (7) (8) U UA AS U UA TGS UA S UA AS UA UA TGS UA S UA User name, U (U, T, n ) K U (K UT, n ); T UT User password, K U K UT (U, t); T UT, S, n 2 K UT (K US, n 2 ); T US K US (U, t); T US, n 3 K US (n 3 ) K UT /K US (U, t) are both authenticators and t is a time-stamp

23 Figure 3.9 A possible threat when using a public key system. P, S s (MD) MD S s S p MD P P MD Impersonator prepares a plaintext message with a sender's name that of the person he/she is impersonating S p Impersonator sends public key, S p, in an and gives the name of the sender of the as that in the plaintext message Recipient uses the public key of the impersonator to decrypt the message and assumes it has been sent by the person whose name is in the plaintext message

24 Summary Figure 3.20 Summary of topics discussed in Chapter 3. Application support functions ASN. A standard abstract syntax A standard transfer syntax plus encoding and decoding procedures Network security Secrecy Integrity Authentication Nonrepudiation Data encryption Terminology Basic techniques Product ciphers Secret key Public key IDEA DES RSA Nonrepudiation Authentication Digital signature Message digest Public key Private key (Kerberos)

06/02/ Local & Metropolitan Area Networks. 0. Overview. Terminology ACOE322. Lecture 8 Network Security

06/02/ Local & Metropolitan Area Networks. 0. Overview. Terminology ACOE322. Lecture 8 Network Security 1 Local & Metropolitan Area Networks ACOE322 Lecture 8 Network Security Dr. L. Christofi 1 0. Overview As the knowledge of computer networking and protocols has become more widespread, so the threat of

More information

Kerberos5 1. Kerberos V5

Kerberos5 1. Kerberos V5 Kerberos5 1 Kerberos V5 Kerberos5 2 ASN.1 data representation language: data structure (ß definition C struct, union), but variable length-arrays, optional elements, labeling,... data representation on

More information

ryptograi "ГС for Tom St Denis, Elliptic Semiconductor Inc. Simon Johnson and Author of the LibTom Project

ryptograi ГС for Tom St Denis, Elliptic Semiconductor Inc. Simon Johnson and Author of the LibTom Project for ryptograi "ГС V6 е Tom St Denis, Elliptic Semiconductor Inc. and Author of the LibTom Project Simon Johnson Contents Preface Chapter 1 Introduction 1 Introduction 2 Threat Models 3 What Is Cryptography?

More information

KMIP 64-bit Binary Alignment Proposal

KMIP 64-bit Binary Alignment Proposal KMIP 64-bit Binary Alignment Proposal To: OASIS KMIP Technical Committee From: Matt Ball, Sun Microsystems, Inc. Date: May 6, 2009 Version: 2 Purpose: To propose a change to the binary encoding such that

More information

Cryptographic Concepts

Cryptographic Concepts Outline Identify the different types of cryptography Learn about current cryptographic methods Chapter #23: Cryptography Understand how cryptography is applied for security Given a scenario, utilize general

More information

CSC/ECE 774 Advanced Network Security

CSC/ECE 774 Advanced Network Security Computer Science CSC/ECE 774 Advanced Network Security Topic 2. Network Security Primitives CSC/ECE 774 Dr. Peng Ning 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange;

More information

Kerberos V5. Raj Jain. Washington University in St. Louis

Kerberos V5. Raj Jain. Washington University in St. Louis Kerberos V5 Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-07/ 11-1

More information

The question paper contains 40 multiple choice questions with four choices and students will have to pick the correct one (each carrying ½ marks.).

The question paper contains 40 multiple choice questions with four choices and students will have to pick the correct one (each carrying ½ marks.). Time: 3hrs BCA III Network security and Cryptography Examination-2016 Model Paper 2 M.M:50 The question paper contains 40 multiple choice questions with four choices and students will have to pick the

More information

Cryptography (DES+RSA) by Amit Konar Dept. of Math and CS, UMSL

Cryptography (DES+RSA) by Amit Konar Dept. of Math and CS, UMSL Cryptography (DES+RSA) by Amit Konar Dept. of Math and CS, UMSL Transpositional Ciphers-A Review Decryption 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Encryption 1 2 3 4 5 6 7 8 A G O O D F R I E N D I S A T R E

More information

1.264 Lecture 28. Cryptography: Asymmetric keys

1.264 Lecture 28. Cryptography: Asymmetric keys 1.264 Lecture 28 Cryptography: Asymmetric keys Next class: Anderson chapters 20. Exercise due before class (Reading doesn t cover same topics as lecture) 1 Asymmetric or public key encryption Receiver

More information

Encryption Algorithms Authentication Protocols Message Integrity Protocols Key Distribution Firewalls

Encryption Algorithms Authentication Protocols Message Integrity Protocols Key Distribution Firewalls Security Outline Encryption Algorithms Authentication Protocols Message Integrity Protocols Key Distribution Firewalls Overview Cryptography functions Secret key (e.g., DES) Public key (e.g., RSA) Message

More information

CSC 774 Network Security

CSC 774 Network Security CSC 774 Network Security Topic 2. Review of Cryptographic Techniques CSC 774 Dr. Peng Ning 1 Outline Encryption/Decryption Digital signatures Hash functions Pseudo random functions Key exchange/agreement/distribution

More information

CIS 4360 Introduction to Computer Security Fall WITH ANSWERS in bold. First Midterm

CIS 4360 Introduction to Computer Security Fall WITH ANSWERS in bold. First Midterm CIS 4360 Introduction to Computer Security Fall 2010 WITH ANSWERS in bold Name:.................................... Number:............ First Midterm Instructions This is a closed-book examination. Maximum

More information

From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design. Edition 4 Pearson Education 2005

From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design. Edition 4 Pearson Education 2005 Chapter 7: Security From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4 Introduction Security policies Provide for the sharing of resources within specified limits

More information

MTAT Applied Cryptography

MTAT Applied Cryptography MTAT.07.017 Applied Cryptography Abstract Syntax Notation One (ASN.1) University of Tartu Spring 2014 1 / 20 Abstract Syntax Notation One Notation to describe abstract types and values Describes information

More information

Introduction to Symmetric Cryptography

Introduction to Symmetric Cryptography Introduction to Symmetric Cryptography Tingting Chen Cal Poly Pomona 1 Some slides are from Dr. Cliff Zou. www.cs.ucf.edu/~czou/cis3360-12/ch08-cryptoconcepts.ppt Basic Cryptography Private Key Cryptography

More information

Block Cipher Operation. CS 6313 Fall ASU

Block Cipher Operation. CS 6313 Fall ASU Chapter 7 Block Cipher Operation 1 Outline q Multiple Encryption and Triple DES q Electronic Codebook q Cipher Block Chaining Mode q Cipher Feedback Mode q Output Feedback Mode q Counter Mode q XTS-AES

More information

CSC 474/574 Information Systems Security

CSC 474/574 Information Systems Security CSC 474/574 Information Systems Security Topic 2.1 Introduction to Cryptography CSC 474/574 By Dr. Peng Ning 1 Cryptography Cryptography Original meaning: The art of secret writing Becoming a science that

More information

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08r. Pre-exam 2 Last-minute Review Cryptography Paul Krzyzanowski Rutgers University Spring 2018 March 26, 2018 CS 419 2018 Paul Krzyzanowski 1 Cryptographic Systems March 26, 2018 CS

More information

Chapter 6 Contemporary Symmetric Ciphers

Chapter 6 Contemporary Symmetric Ciphers Chapter 6 Contemporary Symmetric Ciphers "I am fairly familiar with all the forms of secret writings, and am myself the author of a trifling monograph upon the subject, in which I analyze one hundred and

More information

Security. Communication security. System Security

Security. Communication security. System Security Security Communication security security of data channel typical assumption: adversary has access to the physical link over which data is transmitted cryptographic separation is necessary System Security

More information

Cryptography. Intercepting Information Scenario 1. Tuesday, December 9, December 9, Wireless broadcasts information using radio signals

Cryptography. Intercepting Information Scenario 1. Tuesday, December 9, December 9, Wireless broadcasts information using radio signals Cryptography December 9, 2008 1 Intercepting Information Scenario 1 Wireless broadcasts information using radio signals Any computer on a wireless network CAN listen to any network traffic http://www.geeksquad.com/

More information

Cryptography. Cryptography is much more than. What is Cryptography, exactly? Why Cryptography? (cont d) Straight encoding and decoding

Cryptography. Cryptography is much more than. What is Cryptography, exactly? Why Cryptography? (cont d) Straight encoding and decoding Copyright 2000-2001, University of Washington Cryptography is much more than Cryptography Cryptography systems allow 2 parties to communicate securely. The intent is to give privacy, integrity and security

More information

L13. Reviews. Rocky K. C. Chang, April 10, 2015

L13. Reviews. Rocky K. C. Chang, April 10, 2015 L13. Reviews Rocky K. C. Chang, April 10, 2015 1 Foci of this course Understand the 3 fundamental cryptographic functions and how they are used in network security. Understand the main elements in securing

More information

borzoi Manual Dragongate Technologies Ltd.

borzoi Manual Dragongate Technologies Ltd. borzoi Manual Dragongate Technologies Ltd. September 21, 2003 Contents 1 Introduction 1 2 Preliminaries 2 2.1 Header Files............................ 2 2.2 Type Definitions......................... 2

More information

SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY OSI networking and system aspects Abstract Syntax Notation One (ASN.

SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY OSI networking and system aspects Abstract Syntax Notation One (ASN. I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T X.696 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (08/2015) SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

More information

(2½ hours) Total Marks: 75

(2½ hours) Total Marks: 75 (2½ hours) Total Marks: 75 N. B.: (1) All questions are compulsory. (2) Makesuitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question must be written together.

More information

KALASALINGAM UNIVERSITY

KALASALINGAM UNIVERSITY KALASALINGAM UNIVERSITY (Kalasalingam Academy of Research and Education) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CLASS NOTES CRYPTOGRAPHY AND NETWOTK SECURITY (CSE 405) Prepared by M.RAJA AP/CSE

More information

1.264 Lecture 27. Security protocols Symmetric cryptography. Next class: Anderson chapter 10. Exercise due after class

1.264 Lecture 27. Security protocols Symmetric cryptography. Next class: Anderson chapter 10. Exercise due after class 1.264 Lecture 27 Security protocols Symmetric cryptography Next class: Anderson chapter 10. Exercise due after class 1 Exercise: hotel keys What is the protocol? What attacks are possible? Copy Cut and

More information

Outline. Data Encryption Standard. Symmetric-Key Algorithms. Lecture 4

Outline. Data Encryption Standard. Symmetric-Key Algorithms. Lecture 4 EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 4 Department of Electrical and Computer Engineering Cleveland State University wenbing@ieee.org Outline Review

More information

Security: Focus of Control. Authentication

Security: Focus of Control. Authentication Security: Focus of Control Three approaches for protection against security threats a) Protection against invalid operations b) Protection against unauthorized invocations c) Protection against unauthorized

More information

Data Security and Privacy. Topic 14: Authentication and Key Establishment

Data Security and Privacy. Topic 14: Authentication and Key Establishment Data Security and Privacy Topic 14: Authentication and Key Establishment 1 Announcements Mid-term Exam Tuesday March 6, during class 2 Need for Key Establishment Encrypt K (M) C = Encrypt K (M) M = Decrypt

More information

CSC 474/574 Information Systems Security

CSC 474/574 Information Systems Security CSC 474/574 Information Systems Security Topic 2.2 Secret Key Cryptography CSC 474/574 Dr. Peng Ning 1 Agenda Generic block cipher Feistel cipher DES Modes of block ciphers Multiple encryptions Message

More information

The Kerberos Authentication System Course Outline

The Kerberos Authentication System Course Outline The Kerberos Authentication System Course Outline Technical Underpinnings - authentication based on key sharing - Needham-Schroeder protocol - Denning and Sacco protocol Kerbeors V - Login and client-server

More information

Cryptography Basics. IT443 Network Security Administration Slides courtesy of Bo Sheng

Cryptography Basics. IT443 Network Security Administration Slides courtesy of Bo Sheng Cryptography Basics IT443 Network Security Administration Slides courtesy of Bo Sheng 1 Outline Basic concepts in cryptography systems Secret key cryptography Public key cryptography Hash functions 2 Encryption/Decryption

More information

9/30/2016. Cryptography Basics. Outline. Encryption/Decryption. Cryptanalysis. Caesar Cipher. Mono-Alphabetic Ciphers

9/30/2016. Cryptography Basics. Outline. Encryption/Decryption. Cryptanalysis. Caesar Cipher. Mono-Alphabetic Ciphers Cryptography Basics IT443 Network Security Administration Slides courtesy of Bo Sheng Basic concepts in cryptography systems Secret cryptography Public cryptography 1 2 Encryption/Decryption Cryptanalysis

More information

Kerberos and Public-Key Infrastructure. Key Points. Trust model. Goal of Kerberos

Kerberos and Public-Key Infrastructure. Key Points. Trust model. Goal of Kerberos Kerberos and Public-Key Infrastructure Key Points Kerberos is an authentication service designed for use in a distributed environment. Kerberos makes use of a thrusted third-part authentication service

More information

Workshop Challenges Startup code in PyCharm Projects

Workshop Challenges Startup code in PyCharm Projects INTRODUCTION TO CRYPTOGRAPHIC ATTACKS EXERCISE LOGISTICS Workshop Challenges Startup code in PyCharm Projects BLOCK CIPHERS Fixed sized input Random looking output for each message and key Block Cipher

More information

Modern Symmetric Block cipher

Modern Symmetric Block cipher Modern Symmetric Block cipher 81 Shannon's Guide to Good Ciphers Amount of secrecy should determine amount of labour appropriate for encryption and decryption The set of keys and enciphering algorithm

More information

IEEE Std and IEEE Std 1363a Ashley Butterworth Apple Inc.

IEEE Std and IEEE Std 1363a Ashley Butterworth Apple Inc. apple IEEE Std 1363-2000 and IEEE Std 1363a-2004 Ashley Butterworth Apple Inc. The Titles IEEE Std 1363-2000 - IEEE Standard Specifications for Public-Key Cryptography IEED Std 1363a-2004 - IEEE Standard

More information

How many DES keys, on the average, encrypt a particular plaintext block to a particular ciphertext block?

How many DES keys, on the average, encrypt a particular plaintext block to a particular ciphertext block? Homework 1. Come up with as efficient an encoding as you can to specify a completely general one-to-one mapping between 64-bit input values and 64-bit output values. 2. Token cards display a number that

More information

Core Security Services and Bootstrapping in the Cherubim Security System

Core Security Services and Bootstrapping in the Cherubim Security System Core Security Services and Bootstrapping in the Cherubim Security System Charles Willis cfwillis@uiuc.edu Technical Report 2 July 1998 University of Illinois at Urbana-Champaign Department of Computer

More information

ICT 6541 Applied Cryptography. Hossen Asiful Mustafa

ICT 6541 Applied Cryptography. Hossen Asiful Mustafa ICT 6541 Applied Cryptography Hossen Asiful Mustafa Basic Communication Alice talking to Bob Alice Bob 2 Eavesdropping Eve listening the conversation Alice Bob 3 Secure Communication Eve listening the

More information

Stream Ciphers An Overview

Stream Ciphers An Overview Stream Ciphers An Overview Palash Sarkar Indian Statistical Institute, Kolkata email: palash@isicalacin stream cipher overview, Palash Sarkar p1/51 Classical Encryption Adversary message ciphertext ciphertext

More information

Digital Signatures. Secure Digest Functions

Digital Signatures. Secure Digest Functions Digital Signatures Secure Digest Functions 8 requirements for one-way hash functions given M, H(M) is easy to compute given H(M), M is difficult to compute given M, it is difficult to find M such that

More information

PASSWORDS & ENCRYPTION

PASSWORDS & ENCRYPTION PASSWORDS & ENCRYPTION Villanova University Department of Computing Sciences D. Justin Price Fall 2014 CRYPTOGRAPHY Hiding the meaning of a message from unintended recipients. Open source algorithms are

More information

Chapter 8. Network Security. Need for Security. An Introduction to Cryptography. Transposition Ciphers One-Time Pads

Chapter 8. Network Security. Need for Security. An Introduction to Cryptography. Transposition Ciphers One-Time Pads Cryptography p y Chapter 8 Network Security Introduction to Cryptography Substitution Ciphers Transposition Ciphers One-Time Pads Two Fundamental Cryptographic Principles Need for Security An Introduction

More information

ROEVER ENGINEERING COLLEGE Elambalur,Perambalur DEPARTMENT OF CSE NP UNIT-I

ROEVER ENGINEERING COLLEGE Elambalur,Perambalur DEPARTMENT OF CSE NP UNIT-I 1.List out the features of x.25 ROEVER ENGINEERING COLLEGE Elambalur,Perambalur-621212 DEPARTMENT OF CSE NP UNIT-I * Call control packets, used for setting up and clearing virtual circuits, are carried

More information

Lecture 1 Applied Cryptography (Part 1)

Lecture 1 Applied Cryptography (Part 1) Lecture 1 Applied Cryptography (Part 1) Patrick P. C. Lee Tsinghua Summer Course 2010 1-1 Roadmap Introduction to Security Introduction to Cryptography Symmetric key cryptography Hash and message authentication

More information

Service and Protocol (I)

Service and Protocol (I) Modeling and Simulation of Service and Protocol (I) Service User 1 Service User 2 Service Provider 1 Service Provider 2 2 3. Finite State Machines 1 Service and Protocol (II) Peer entities on one layer

More information

Ref:

Ref: Cryptography & digital signature Dec. 2013 Ref: http://cis.poly.edu/~ross/ 2 Cryptography Overview Symmetric Key Cryptography Public Key Cryptography Message integrity and digital signatures References:

More information

Summary on Crypto Primitives and Protocols

Summary on Crypto Primitives and Protocols Summary on Crypto Primitives and Protocols Levente Buttyán CrySyS Lab, BME www.crysys.hu 2015 Levente Buttyán Basic model of cryptography sender key data ENCODING attacker e.g.: message spatial distance

More information

Lecture 1: Course Introduction

Lecture 1: Course Introduction Lecture 1: Course Introduction Thomas Johansson T. Johansson (Lund University) 1 / 37 Chapter 9: Symmetric Key Distribution To understand the problems associated with managing and distributing secret keys.

More information

Cryptographic Checksums

Cryptographic Checksums Cryptographic Checksums Mathematical function to generate a set of k bits from a set of n bits (where k n). k is smaller then n except in unusual circumstances Example: ASCII parity bit ASCII has 7 bits;

More information

Chapter 8. Network Security. Cryptography. Need for Security. An Introduction to Cryptography 10/7/2010

Chapter 8. Network Security. Cryptography. Need for Security. An Introduction to Cryptography 10/7/2010 Cryptography Chapter 8 Network Security Introduction to Cryptography Substitution Ciphers Transposition Ciphers One-Time Pads Two Fundamental Cryptographic Principles Need for Security An Introduction

More information

Data Communication Prof.A.Pal Dept of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 40 Secured Communication - II

Data Communication Prof.A.Pal Dept of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 40 Secured Communication - II Data Communication Prof.A.Pal Dept of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 40 Secured Communication - II Hello and welcome to today's lecture on secured communication.

More information

Pretty Good Privacy (PGP

Pretty Good Privacy (PGP PGP - S/MIME - Internet Firewalls for Trusted System: Roles of Firewalls Firewall related terminology- Types of Firewalls - Firewall designs - SET for E-Commerce Transactions. Pretty Good Privacy (PGP

More information

Security Requirements

Security Requirements Message Authentication and Hash Functions CSCI 454/554 Security Requirements disclosure traffic analysis masquerade content modification sequence modification timing modification source repudiation destination

More information

Lecture 19: cryptographic algorithms

Lecture 19: cryptographic algorithms Lecture 19: cryptographic algorithms Operating Systems and Networks Behzad Bordbar School of Computer Science, University of Birmingham, UK 179 Overview Cryptographic algorithms symmetric: TEA asymmetric:

More information

CIS 4360 Secure Computer Systems Symmetric Cryptography

CIS 4360 Secure Computer Systems Symmetric Cryptography CIS 4360 Secure Computer Systems Symmetric Cryptography Professor Qiang Zeng Spring 2017 Previous Class Classical Cryptography Frequency analysis Never use home-made cryptography Goals of Cryptography

More information

Security: Focus of Control

Security: Focus of Control Security: Focus of Control Three approaches for protection against security threats a) Protection against invalid operations b) Protection against unauthorized invocations c) Protection against unauthorized

More information

Cryptography MIS

Cryptography MIS Cryptography MIS-5903 http://community.mis.temple.edu/mis5903sec011s17/ Cryptography History Substitution Monoalphabetic Polyalphabetic (uses multiple alphabets) uses Vigenere Table Scytale cipher (message

More information

Distributed Systems. 26. Cryptographic Systems: An Introduction. Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. 26. Cryptographic Systems: An Introduction. Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems 26. Cryptographic Systems: An Introduction Paul Krzyzanowski Rutgers University Fall 2015 1 Cryptography Security Cryptography may be a component of a secure system Adding cryptography

More information

Security issues: Encryption algorithms. Threats Methods of attack. Secret-key Public-key Hybrid protocols. CS550: Distributed OS.

Security issues: Encryption algorithms. Threats Methods of attack. Secret-key Public-key Hybrid protocols. CS550: Distributed OS. Security issues: Threats Methods of attack Encryption algorithms Secret-key Public-key Hybrid protocols Lecture 15 Page 2 1965-75 1975-89 1990-99 Current Platforms Multi-user timesharing computers Distributed

More information

Principles of Information Security, Fourth Edition. Chapter 8 Cryptography

Principles of Information Security, Fourth Edition. Chapter 8 Cryptography Principles of Information Security, Fourth Edition Chapter 8 Cryptography Learning Objectives Upon completion of this material, you should be able to: Chronicle the most significant events and discoveries

More information

Authentication & Authorization

Authentication & Authorization Authentication & Authorization Anuj Gupta 1, 1 M.Tech Scholar, Department of C.F.I.S, G.I.T.A.M, Kablana, Jhajjar Ashish Kumar Sharma 2 2 Assistant Professor, Department of C.F.I.S & C.S.E, G.I.T.A.M,

More information

Lecture 4: Symmetric Key Encryption

Lecture 4: Symmetric Key Encryption Lecture 4: Symmetric ey Encryption CS6903: Modern Cryptography Spring 2009 Nitesh Saxena Let s use the board, please take notes 2/20/2009 Lecture 1 - Introduction 2 Data Encryption Standard Encrypts by

More information

CSC 474/574 Information Systems Security

CSC 474/574 Information Systems Security CSC 474/574 Information Systems Security Topic 2.5 Public Key Algorithms CSC 474/574 Dr. Peng Ning 1 Public Key Algorithms Public key algorithms covered in this class RSA: encryption and digital signature

More information

Lecture 3: Symmetric Key Encryption

Lecture 3: Symmetric Key Encryption Lecture 3: Symmetric Key Encryption CS996: Modern Cryptography Spring 2007 Nitesh Saxena Outline Symmetric Key Encryption Continued Discussion of Potential Project Topics Project proposal due 02/22/07

More information

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08. Cryptography Part II Paul Krzyzanowski Rutgers University Spring 2018 March 23, 2018 CS 419 2018 Paul Krzyzanowski 1 Block ciphers Block ciphers encrypt a block of plaintext at a

More information

Chapter 3 Block Ciphers and the Data Encryption Standard

Chapter 3 Block Ciphers and the Data Encryption Standard Chapter 3 Block Ciphers and the Data Encryption Standard Last Chapter have considered: terminology classical cipher techniques substitution ciphers cryptanalysis using letter frequencies transposition

More information

Package PKI. September 16, 2017

Package PKI. September 16, 2017 Version 0.1-5.1 Package PKI September 16, 2017 Title Public Key Infrastucture for R Based on the X.509 Standard Author Maintainer Depends R (>=

More information

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell Introduction CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell 1 Cryptography Merriam-Webster Online Dictionary: 1. secret writing 2. the enciphering and deciphering

More information

Verteilte Systeme (Distributed Systems)

Verteilte Systeme (Distributed Systems) Verteilte Systeme (Distributed Systems) Lorenz Froihofer l.froihofer@infosys.tuwien.ac.at http://www.infosys.tuwien.ac.at/teaching/courses/ VerteilteSysteme/ Security Threats, mechanisms, design issues

More information

Lecture 15: Cryptographic algorithms

Lecture 15: Cryptographic algorithms 06-06798 Distributed Systems Lecture 15: Cryptographic algorithms 22 March, 2002 1 Overview Cryptographic algorithms symmetric: TEA asymmetric: RSA Digital signatures digital signatures with public key

More information

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 11 Basic Cryptography

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 11 Basic Cryptography Security+ Guide to Network Security Fundamentals, Third Edition Chapter 11 Basic Cryptography Objectives Define cryptography Describe hashing List the basic symmetric cryptographic algorithms 2 Objectives

More information

Practical Aspects of Modern Cryptography

Practical Aspects of Modern Cryptography Practical Aspects of Modern Cryptography Lecture 3: Symmetric s and Hash Functions Josh Benaloh & Brian LaMacchia Meet Alice and Bob Alice Bob Message Modern Symmetric s Setup: Alice wants to send a private

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown Chapter 14 Authentication Applications We cannot enter into alliance with neighbouring princes until

More information

The KX.509 Protocol. William Doster Marcus Watts Dan Hyde University of Michigan ABSTRACT

The KX.509 Protocol. William Doster Marcus Watts Dan Hyde University of Michigan ABSTRACT The KX.509 Protocol William Doster Marcus Watts Dan Hyde University of Michigan ABSTRACT This document describes the KX.509 protocol. Using this protocol, a workstation can acquire a temporary (or junk

More information

Lecture III : Communication Security Mechanisms

Lecture III : Communication Security Mechanisms Lecture III : Communication Security Mechanisms Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Computer Science Department, National Chiao Tung University 2 X.800 : Security

More information

Other Uses of Cryptography. Cryptography Goals. Basic Problem and Terminology. Other Uses of Cryptography. What Can Go Wrong? Why Do We Need a Key?

Other Uses of Cryptography. Cryptography Goals. Basic Problem and Terminology. Other Uses of Cryptography. What Can Go Wrong? Why Do We Need a Key? ryptography Goals Protect private communication in the public world and are shouting messages over a crowded room no one can understand what they are saying 1 Other Uses of ryptography Authentication should

More information

Total points: 71. Total time: 75 minutes. 9 problems over 7 pages. No book, notes, or calculator

Total points: 71. Total time: 75 minutes. 9 problems over 7 pages. No book, notes, or calculator CMSC 414 F08 Exam 1 Page 1 of 10 Name: Total points: 71. Total time: 75 minutes. 9 problems over 7 pages. No book, notes, or calculator 1. [14 points] a. Are n=221 and e=3 valid numbers for RSA. Explain.

More information

Content of this part

Content of this part UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Introduction to Cryptography ECE 597XX/697XX Part 5 More About Block Ciphers Israel Koren ECE597/697 Koren Part.5.1 Content of this

More information

Cryptography and Network Security. Sixth Edition by William Stallings

Cryptography and Network Security. Sixth Edition by William Stallings Cryptography and Network Security Sixth Edition by William Stallings Chapter 9 Public Key Cryptography and RSA Misconceptions Concerning Public-Key Encryption Public-key encryption is more secure from

More information

Public Key Algorithms

Public Key Algorithms CSE597B: Special Topics in Network and Systems Security Public Key Cryptography Instructor: Sencun Zhu The Pennsylvania State University Public Key Algorithms Public key algorithms RSA: encryption and

More information

Request for Comments: 2420 Category: Standards Track September The PPP Triple-DES Encryption Protocol (3DESE)

Request for Comments: 2420 Category: Standards Track September The PPP Triple-DES Encryption Protocol (3DESE) Network Working Group H. Kummert Request for Comments: 2420 Nentec GmbH Category: Standards Track September 1998 Status of this Memo The PPP Triple-DES Encryption Protocol (3DESE) This document specifies

More information

Introduction to Medical Computing

Introduction to Medical Computing CS 2125 Introduction to Medical Computing Stephen M. Watt The University of Western Ontario Topic 3 Cryptography University of Western Ontario CS 2125. Stephen M. Watt Cryptography Some things should be

More information

Request for Comments: 5208 Category: Informational May 2008

Request for Comments: 5208 Category: Informational May 2008 Network Working Group B. Kaliski Request for Comments: 5208 EMC Category: Informational May 2008 Public-Key Cryptography Standards (PKCS) #8: Private-Key Information Syntax Specification Version 1.2 Status

More information

Category: Informational NIST August Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm

Category: Informational NIST August Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm Network Working Group Request for Comments: 5649 Category: Informational R. Housley Vigil Security M. Dworkin NIST August 2009 Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm Abstract

More information

Overview. Cryptographic key infrastructure Certificates. May 13, 2004 ECS 235 Slide #1. Notation

Overview. Cryptographic key infrastructure Certificates. May 13, 2004 ECS 235 Slide #1. Notation Overview Key exchange Session vs. interchange keys Classical, public key methods Key generation Cryptographic key infrastructure Certificates Key storage Key escrow Key revocation Digital signatures May

More information

Network Security Essentials Chapter 2

Network Security Essentials Chapter 2 Network Security Essentials Chapter 2 Fourth Edition by William Stallings Lecture slides by Lawrie Brown Encryption What is encryption? Why do we need it? No, seriously, let's discuss this. Why do we need

More information

Cryptographic hash functions and MACs

Cryptographic hash functions and MACs Cryptographic hash functions and MACs Myrto Arapinis School of Informatics University of Edinburgh October 05, 2017 1 / 21 Introduction Encryption confidentiality against eavesdropping 2 / 21 Introduction

More information

Authentication. Chapter 2

Authentication. Chapter 2 Authentication Chapter 2 Learning Objectives Create strong passwords and store them securely Understand the Kerberos authentication process Understand how CHAP works Understand what mutual authentication

More information

Secret Key Cryptography

Secret Key Cryptography Secret Key Cryptography General Block Encryption: The general way of encrypting a 64-bit block is to take each of the: 2 64 input values and map it to a unique one of the 2 64 output values. This would

More information

Waspmote Encryption Libraries. Programming guide

Waspmote Encryption Libraries. Programming guide Waspmote Encryption Libraries Programming guide Index Document version: v7.0-02/2017 Libelium Comunicaciones Distribuidas S.L. INDEX 1. Introduction... 3 2. Integrity... 6 2.1. Waspmote Libraries...6 2.1.1.

More information

MTAT Applied Cryptography

MTAT Applied Cryptography MTAT.07.017 Applied Cryptography Abstract Syntax Notation One (ASN.1) University of Tartu Spring 2017 1 / 19 Abstract Syntax Notation One Notation to describe abstract types and values Describes information

More information

Chapter 8 Security. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 8 Security. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 8 Security A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and can add,

More information

Internet Engineering Task Force (IETF) Request for Comments: 7518 Category: Standards Track May 2015 ISSN:

Internet Engineering Task Force (IETF) Request for Comments: 7518 Category: Standards Track May 2015 ISSN: Internet Engineering Task Force (IETF) M. Jones Request for Comments: 7518 Microsoft Category: Standards Track May 2015 ISSN: 2070-1721 Abstract JSON Web Algorithms (JWA) This specification registers cryptographic

More information

MTAT Applied Cryptography

MTAT Applied Cryptography MTAT.07.017 Applied Cryptography Transport Layer Security (TLS) Advanced Features University of Tartu Spring 2016 1 / 16 Client Server Authenticated TLS ClientHello ServerHello, Certificate, ServerHelloDone

More information

Glenda Whitbeck Global Computing Security Architect Spirit AeroSystems

Glenda Whitbeck Global Computing Security Architect Spirit AeroSystems Glenda Whitbeck Global Computing Security Architect Spirit AeroSystems History 2000 B.C. Egyptian Hieroglyphics Atbash - Hebrew Original alphabet mapped to different letter Type of Substitution Cipher

More information