Pointers and Memory Allocation p. 1. Brooklyn College. Michael Lampis. CISC 3130 Notes. Pointers and Memory Allocation

Size: px
Start display at page:

Download "Pointers and Memory Allocation p. 1. Brooklyn College. Michael Lampis. CISC 3130 Notes. Pointers and Memory Allocation"

Transcription

1 Pointers and Memory Allocation CISC 3130 Notes Michael Lamis Brooklyn College Pointers and Memory Allocation. 1

2 int x; Pointers x Pointers and Memory Allocation. 2

3 Pointers int x; int *, *q; Note:Not the same as int *,q; q x Pointers and Memory Allocation. 2

4 int x; int *, *q; = &x; Pointers q x Pointers and Memory Allocation. 2

5 int x; int *, *q; = &x; q = ; Pointers q x Pointers and Memory Allocation. 2

6 int x; int *, *q; = &x; q = ; x = 5; Pointers q x 5 Pointers and Memory Allocation. 2

7 Pointers int x; int *, *q; = &x; q = ; x = 5; Note:Now * == *q == 5 q x 5 Pointers and Memory Allocation. 2

8 int x; int *, *q; = &x; q = ; x = 5; * = 7; Pointers q x 7 Pointers and Memory Allocation. 2

9 Pointers int x; int *, *q; = &x; q = ; x = 5; * = 7; Note:Now x == *q == 7 q x 7 Pointers and Memory Allocation. 2

10 Pointers int x; int *, *q; = &x; q = ; x = 5; * = 7; q What is the difference between = q; and * = *q ;? x 7 Pointers and Memory Allocation. 2

11 Pointers int x; int *, *q; = &x; q = ; x = 5; * = 7; int **; Pointers to ointers are double-cool! q x 7 Pointers and Memory Allocation. 2

12 Pointers int x; int *, *q; = &x; q = ; x = 5; * = 7; int **; = &; Now ** == * == x == 7 q x 7 Pointers and Memory Allocation. 2

13 int *; The new oerator Pointers and Memory Allocation. 3

14 The new oerator int *; = new int; Pointers and Memory Allocation. 3

15 The new oerator int *; = new int[3]; Pointers and Memory Allocation. 3

16 The new oerator int *; = new int[3]; Notice that is ointing to the beginning of the new array Pointers and Memory Allocation. 3

17 The new oerator int *; = new int[3]; *( + 2) = 7; We can access the rest with ointer arithmetic 7 Pointers and Memory Allocation. 3

18 The new oerator int *; = new int[3]; *( + 2) = 7; *( + 3) = 8; But don t go out of bounds!! 7 8 Pointers and Memory Allocation. 3

19 The new oerator int *; = new int[3]; *( + 2) = 7; *( + 3) = 8; [1] = 6; Pointers can be treated like arrays. [i] == *(+i) Pointers and Memory Allocation. 3

20 Pointers as arrays Pointers and arrays are basically the same thing (syntactic sugar). int a[10]; int *b; b = a; //Comiler does not comlain b[2] = 5; //a[2] == 5 now as well *(a+2) = 6; // now both change to 6 Pointers and Memory Allocation. 4

21 Arrays and function calls Array-Pointer equivalence can be confusing when dealing with functions. void myfunc(int * a); is the same as void myfunc(int a[]); The function may change the contents of an array argument (unless const is used). An array argument is not coied The function does not know the array size Pointers and Memory Allocation. 5

22 Array sizes and functions void myfunc(int a[]) { cout << sizeof(a)/sizeof(a[0]) << endl; } int main() { int a[10]; cout << sizeof(a)/sizeof(a[0]) << endl; myfunc(a); } Guess the outut of this rogram... Pointers and Memory Allocation. 6

23 Call-by-Value Normally, when you call a function the argument are coied into new locations before being assed on to the function. Always kee this in mind when assing a comlex object as argument to a function! When giving an array as argument however, a ointer to the first element is coied and given to the function. When a function is given ointers as arguments it may change data values in the main rogram. This is the standard way to do call-by-reference in C. Pointers and Memory Allocation. 7

24 Swa function in C void swa(int *a, int *b) { int tm; tm = *a; *a = *b; *b = tm; } int main() { int x,y; x = 2; y = 3; swa(&x,&y); //Notice the & } Pointers and Memory Allocation. 8

25 Call by reference in C++ Though you can do the same in C++, a more convenient way is offered: define some function arguments as references. Pros The arguments are not coied (can save sace and time and save your from bugs) The function can change their values No need for annoying *s all over the lace Cons As when using ointers, ref arguments must be valid left-hand-side exressions. If f() is a function that takes an int reference, you cannot say f(x3)+. Generally, a left-hand-side exression is anything you are allowed to use to the left of a =. Pointers and Memory Allocation. 9

26 Swa function in C++ void swa(int &a, int &b) { int tm; tm = a; a = b; b = tm; } int main() { int x,y; x = 2; y = 3; swa(x,y); //Notice the absence of & } Pointers and Memory Allocation. 10

27 The delete oerator Dynamic memory allocation gives great ower. With great ower comes great resonsibility! Clean u after yourself! int *x; x = new int;... delete x; //Give memory back when you don t need it x = new int[10]; //Now x can be reused... delete [] x; //Give array back Pointers and Memory Allocation. 11

28 Memory management Memory leaks int *; = new int[10];... = new int[10]; //Now you cannot access the old array! //It is lost until your rogram exits! Pointers and Memory Allocation. 12

29 Memory management Dangling ointers int *,*q; = new int[10]; q = ;... delete [] ; q[2] = 7; //That s a No-No! //This memory is not yours any more delete [] q; //That s a No-No! //You have deleted this already! Pointers and Memory Allocation. 13

30 Guess the outut int *1, *2; 1 = new int; 2 = new int; *1 = 100; *2 = 200; cout << *1 << ", " << *2 << endl; delete 1; 1 = 2; cout << *1 << ", " << *2 << endl; *1 = 300; cout << *1 << ", " << *2 << endl; *2 = 400; cout << *1 << ", " << *2 << endl; delete 1; Pointers and Memory Allocation. 14

Storage Allocation CSE 143. Pointers, Arrays, and Dynamic Storage Allocation. Pointer Variables. Pointers: Review. Pointers and Types

Storage Allocation CSE 143. Pointers, Arrays, and Dynamic Storage Allocation. Pointer Variables. Pointers: Review. Pointers and Types CSE 143 Pointers, Arrays, and Dynamic Storage Allocation [Chater 4,. 148-157, 172-177] Storage Allocation Storage (memory) is a linear array of cells (bytes) Objects of different tyes often reuire differing

More information

Pointers (1A) Young Won Lim 10/23/17

Pointers (1A) Young Won Lim 10/23/17 Pointers (1A) Coyright (c) 2010-2013 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Definition. Pointers. Outline. Why pointers? Definition. Memory Organization Overview. by Ziad Kobti. Definition. Pointers enable programmers to:

Definition. Pointers. Outline. Why pointers? Definition. Memory Organization Overview. by Ziad Kobti. Definition. Pointers enable programmers to: Pointers by Ziad Kobti Deinition When you declare a variable o any tye, say: int = ; The system will automatically allocated the required memory sace in a seciic location (tained by the system) to store

More information

Applications of Pointers (1A) Young Won Lim 2/27/18

Applications of Pointers (1A) Young Won Lim 2/27/18 Alications of (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (1A) Young Won Lim 12/4/17

Pointers (1A) Young Won Lim 12/4/17 Pointers (1A) Coyright (c) 2010-2017 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Applications of Pointers (1A) Young Won Lim 3/14/18

Applications of Pointers (1A) Young Won Lim 3/14/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 3/21/18

Applications of Pointers (1A) Young Won Lim 3/21/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 3/31/18

Applications of Pointers (1A) Young Won Lim 3/31/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 1/5/18

Applications of Pointers (1A) Young Won Lim 1/5/18 Alications of (1A) Coyright (c) 2010-2017 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Lecture06: Pointers 4/1/2013

Lecture06: Pointers 4/1/2013 Lecture06: Pointers 4/1/2013 Slides modified from Yin Lou, Cornell CS2022: Introduction to C 1 Pointers A ointer is a variable that contains the (memory) address of another variable What is a memory address?

More information

Applications of Pointers (1A) Young Won Lim 4/11/18

Applications of Pointers (1A) Young Won Lim 4/11/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

C++ Programming. Pointers and Memory Management. M1 Math Michail Lampis

C++ Programming. Pointers and Memory Management. M1 Math Michail Lampis C++ Programming Pointers and Memory Management M1 Math Michail Lampis michail.lampis@dauphine.fr Dynamic Memory Allocation Data in your program lives (mostly) in two areas The stack The heap So far, we

More information

Applications of Pointers (1A) Young Won Lim 4/24/18

Applications of Pointers (1A) Young Won Lim 4/24/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

CS 1613 Lecture 24. Figure 1. Program p01.

CS 1613 Lecture 24. Figure 1. Program p01. Consider a rogram that is required to find all values larger than the average in a list of integers. The list is stored in a file. The rogram must read and store the list to fulfill its requirement. The

More information

Dynamic Allocation of Memory

Dynamic Allocation of Memory Dynamic Allocation of Memory Lecture 4 Sections 10.9-10.10 Robb T. Koether Hampden-Sydney College Fri, Jan 25, 2013 Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Fri, Jan 25, 2013

More information

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS Pages 792 to 800 Anna Rakitianskaia, University of Pretoria INITIALISING POINTER VARIABLES Pointer variables are declared by putting

More information

Pointers (1A) Young Won Lim 10/18/17

Pointers (1A) Young Won Lim 10/18/17 Pointers (1A) Coyright (c) 2010-2013 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Example: Runtime Memory Allocation: Example: Dynamical Memory Allocation: Some Comments: Allocate and free dynamic memory

Example: Runtime Memory Allocation: Example: Dynamical Memory Allocation: Some Comments: Allocate and free dynamic memory Runtime Memory Allocation: Examle: All external and static variables Global systemcontrol Suose we want to design a rogram for handling student information: tyedef struct { All dynamically allocated variables

More information

Dynamic Allocation of Memory

Dynamic Allocation of Memory Dynamic Allocation of Memory Lecture 5 Section 9.8 Robb T. Koether Hampden-Sydney College Wed, Jan 24, 2018 Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 1 / 34

More information

05-01 Discussion Notes

05-01 Discussion Notes 05-01 Discussion Notes PIC 10B Spring 2018 1 Exceptions 1.1 Introduction Exceptions are used to signify that a function is being used incorrectly. Once an exception is thrown, it is up to the programmer

More information

pointers + memory double x; string a; int x; main overhead int y; main overhead

pointers + memory double x; string a; int x; main overhead int y; main overhead pointers + memory computer have memory to store data. every program gets a piece of it to use as we create and use more variables, more space is allocated to a program memory int x; double x; string a;

More information

CSCI 262 Data Structures. Arrays and Pointers. Arrays. Arrays and Pointers 2/6/2018 POINTER ARITHMETIC

CSCI 262 Data Structures. Arrays and Pointers. Arrays. Arrays and Pointers 2/6/2018 POINTER ARITHMETIC CSCI 262 Data Structures 9 Dynamically Allocated Memory POINTERS AND ARRAYS 2 Arrays Arrays are just sequential chunks of memory: Arrays and Pointers Array variables are secretly pointers: x19 x18 x17

More information

C11: Garbage Collection and Constructors

C11: Garbage Collection and Constructors CISC 3120 C11: Garbage Collection and Constructors Hui Chen Department of Computer & Information Science CUNY Brooklyn College 10/5/2017 CUNY Brooklyn College 1 Outline Recap Project progress and lessons

More information

C10: Garbage Collection and Constructors

C10: Garbage Collection and Constructors CISC 3120 C10: Garbage Collection and Constructors Hui Chen Department of Computer & Information Science CUNY Brooklyn College 3/5/2018 CUNY Brooklyn College 1 Outline Recap OOP in Java: composition &

More information

Linear Data Structure Linked List

Linear Data Structure Linked List . Definition. Reresenting List in C. Imlementing the oerations a. Inserting a node b. Deleting a node c. List Traversal. Linked imlementation of Stack 5. Linked imlementation of Queue 6. Circular List

More information

CPSC 427: Object-Oriented Programming

CPSC 427: Object-Oriented Programming CPSC 427: Object-Oriented Programming Michael J. Fischer Lecture 7 September 21, 2016 CPSC 427, Lecture 7 1/21 Brackets Example (continued) Storage Management CPSC 427, Lecture 7 2/21 Brackets Example

More information

CPSC 427: Object-Oriented Programming

CPSC 427: Object-Oriented Programming CPSC 427: Object-Oriented Programming Michael J. Fischer Lecture 10 October 1, 2018 CPSC 427, Lecture 10, October 1, 2018 1/20 Brackets Example (continued from lecture 8) Stack class Brackets class Main

More information

Chapter 1: Object-Oriented Programming Using C++

Chapter 1: Object-Oriented Programming Using C++ Chapter 1: Object-Oriented Programming Using C++ Objectives Looking ahead in this chapter, we ll consider: Abstract Data Types Encapsulation Inheritance Pointers Polymorphism Data Structures and Algorithms

More information

14. Memory API. Operating System: Three Easy Pieces

14. Memory API. Operating System: Three Easy Pieces 14. Memory API Oerating System: Three Easy Pieces 1 Memory API: malloc() #include void* malloc(size_t size) Allocate a memory region on the hea. w Argument size_t size : size of the memory block(in

More information

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver CS 61C: Great Ideas in Computer Architecture C Pointers Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Agenda Pointers Arrays in C 2 Address vs. Value Consider

More information

Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst

Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst Department of Computer Science Why C? Low-level Direct access to memory WYSIWYG (more or less) Effectively

More information

Variables, Memory and Pointers

Variables, Memory and Pointers Variables, Memory and Pointers A variable is a named piece of memory The name stands in for the memory address int num; Variables, Memory and Pointers When a value is assigned to a variable, it is stored

More information

Pointers, Dynamic Data, and Reference Types

Pointers, Dynamic Data, and Reference Types Pointers, Dynamic Data, and Reference Types Review on Pointers Reference Variables Dynamic Memory Allocation The new operator The delete operator Dynamic Memory Allocation for Arrays 1 C++ Data Types simple

More information

Lecture 23: Pointer Arithmetic

Lecture 23: Pointer Arithmetic Lecture 23: Pointer Arithmetic Wai L. Khoo Department of Computer Science City College of New York November 29, 2011 Wai L. Khoo (CS@CCNY) Lecture 23 November 29, 2011 1 / 14 Pointer Arithmetic Pointer

More information

Consider the above code. This code compiles and runs, but has an error. Can you tell what the error is?

Consider the above code. This code compiles and runs, but has an error. Can you tell what the error is? Discussion 1H Notes (Week 8, May 20) TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs31 Dynamic Allocation of Memory Recall that when you create an array, you must know

More information

a data type is Types

a data type is Types Pointers Class 2 a data type is Types Types a data type is a set of values a set of operations defined on those values in C++ (and most languages) there are two flavors of types primitive or fundamental

More information

CPSC 427a: Object-Oriented Programming

CPSC 427a: Object-Oriented Programming CPSC 427a: Object-Oriented Programming Michael J. Fischer Lecture 5 September 15, 2011 CPSC 427a, Lecture 5 1/35 Functions and Methods Parameters Choosing Parameter Types The Implicit Argument Simple Variables

More information

In Java we have the keyword null, which is the value of an uninitialized reference type

In Java we have the keyword null, which is the value of an uninitialized reference type + More on Pointers + Null pointers In Java we have the keyword null, which is the value of an uninitialized reference type In C we sometimes use NULL, but its just a macro for the integer 0 Pointers are

More information

Array Elements as Function Parameters

Array Elements as Function Parameters Arrays Class 26 Array Elements as Function Parameters we have seen that array elements are simple variables they can be used anywhere a normal variable can unsigned values [] {10, 15, 20}; unsigned quotient;

More information

Chapter 9: Pointers. Copyright 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Chapter 9: Pointers. Copyright 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Chapter 9: Pointers 9.1 Getting the Address of a Variable Getting the Address of a Variable Each variable in program is stored at a unique address Use address operator & to get address of a variable: int

More information

Chapter 9: Getting the Address of a Variable. Something Like Pointers: Arrays. Pointer Variables 8/23/2014. Getting the Address of a Variable

Chapter 9: Getting the Address of a Variable. Something Like Pointers: Arrays. Pointer Variables 8/23/2014. Getting the Address of a Variable Chapter 9: Pointers 9.1 Getting the Address of a Variable Getting the Address of a Variable Each variable in program is stored at a unique address Use address operator & to get address of a variable: int

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

Memory and C++ Pointers

Memory and C++ Pointers Memory and C++ Pointers C++ objects and memory C++ primitive types and memory Note: primitive types = int, long, float, double, char, January 2010 Greg Mori 2 // Java code // in function, f int arr[];

More information

Polymorphism (1A) Young Won Lim 8/22/13

Polymorphism (1A) Young Won Lim 8/22/13 Polymorhism (1A) Coyright (c) 2011-2012 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Const Correctness. Ali Malik

Const Correctness. Ali Malik Const Correctness Ali Malik malikali@stanford.edu Game Plan Recap Const Everything Prep for Next Time Announcements Recap Recap: References Another name for an already existing object. int x = 15; int

More information

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018 Pointer Basics Lecture 13 COP 3014 Spring 2018 March 28, 2018 What is a Pointer? A pointer is a variable that stores a memory address. Pointers are used to store the addresses of other variables or memory

More information

Chapter 10 Pointers and Dynamic Arrays. GEDB030 Computer Programming for Engineers Fall 2017 Euiseong Seo

Chapter 10 Pointers and Dynamic Arrays. GEDB030 Computer Programming for Engineers Fall 2017 Euiseong Seo Chapter 10 Pointers and Dynamic Arrays 1 Learning Objectives Pointers Pointer variables Memory management Dynamic Arrays Creating and using Pointer arithmetic Classes, Pointers, Dynamic Arrays The this

More information

One Ring to rule them all, One Ring to bring them all,

One Ring to rule them all, One Ring to bring them all, Binding COMP360 One Ring to rule them all, One Ring to find them, One Ring to bring them all, And in the darkness bind them. inscription on the One Ring J. R. R. Tolkien Reading Read chapter 10 of the

More information

! A data structure representing a list. ! A series of nodes chained together in sequence. ! A separate pointer (the head) points to the first

! A data structure representing a list. ! A series of nodes chained together in sequence. ! A separate pointer (the head) points to the first Ch. 17: Linked Lists 17.1 Introduction to Linked Lists! A data structure reresenting a list! A series of nodes chained together in sequence CS 2308 Sring 2015 Jill Seaman - Each node oints to one other

More information

Polymorphism (1A) Young Won Lim 8/15/13

Polymorphism (1A) Young Won Lim 8/15/13 Polymorhism (1A) Coyright (c) 2011-2012 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

9.2 Pointer Variables. Pointer Variables CS Pointer Variables. Pointer Variables. 9.1 Getting the Address of a. Variable

9.2 Pointer Variables. Pointer Variables CS Pointer Variables. Pointer Variables. 9.1 Getting the Address of a. Variable CS 1400 Chapter 9 9.1 Getting the Address of a Variable A variable has: Name Value Location in a memory Type The location in memory is an address Use address operator & to get address of a variable: int

More information

Classes. Code Generation for Objects. Compiling Methods. Dynamic Dispatch. The Need for Dispatching CS412/CS413

Classes. Code Generation for Objects. Compiling Methods. Dynamic Dispatch. The Need for Dispatching CS412/CS413 Classes CS4/CS43 Introduction to Comilers Tim Teitelbaum Lecture : Imlementing Objects 8 March 5 Comonents ields/instance variables values ma dier rom object to object usuall mutable methods values shared

More information

Goals of this Lecture

Goals of this Lecture C Pointers Goals of this Lecture Help you learn about: Pointers and application Pointer variables Operators & relation to arrays 2 Pointer Variables The first step in understanding pointers is visualizing

More information

Object-Oriented Programming, Iouliia Skliarova

Object-Oriented Programming, Iouliia Skliarova Object-Oriented Programming, Iouliia Skliarova CBook a = CBook("C++", 2014); CBook b = CBook("Physics", 1960); a.display(); b.display(); void CBook::Display() cout

More information

Pointers and Dynamic Memory Allocation

Pointers and Dynamic Memory Allocation Pointers and Dynamic Memory Allocation ALGORITHMS & DATA STRUCTURES 9 TH SEPTEMBER 2014 Last week Introduction This is not a course about programming: It s is about puzzling. well.. Donald Knuth Science

More information

Pointers and Terminal Control

Pointers and Terminal Control Division of Mathematics and Computer Science Maryville College Outline 1 2 3 Outline 1 2 3 A Primer on Computer Memory Memory is a large list. Typically, each BYTE of memory has an address. Memory can

More information

C++ for Java Programmers

C++ for Java Programmers Basics all Finished! Everything we have covered so far: Lecture 5 Operators Variables Arrays Null Terminated Strings Structs Functions 1 2 45 mins of pure fun Introduction Today: Pointers Pointers Even

More information

1. Which of the following best describes the situation after Line 1 has been executed?

1. Which of the following best describes the situation after Line 1 has been executed? Instructions: Submit your answers to these questions to the Curator as OQ3 by the posted due date and time. No late submissions will be accepted. For the next three questions, consider the following short

More information

Optimizing Dynamic Memory Management!

Optimizing Dynamic Memory Management! Otimizing Dynamic Memory Management! 1 Goals of this Lecture! Hel you learn about:" Details of K&R hea mgr" Hea mgr otimizations related to Assignment #6" Faster free() via doubly-linked list, redundant

More information

Equality-Based Translation Validator for LLVM

Equality-Based Translation Validator for LLVM Equality-Based Translation Validator for LLVM Michael Ste, Ross Tate, and Sorin Lerner University of California, San Diego {mste,rtate,lerner@cs.ucsd.edu Abstract. We udated our Peggy tool, reviously resented

More information

Who. Winter Compiler Construction Generic compiler structure. Mailing list and forum. IC compiler. How

Who. Winter Compiler Construction Generic compiler structure. Mailing list and forum. IC compiler. How Winter 2007-2008 Comiler Construction 0368-3133 Mooly Sagiv and Roman Manevich School of Comuter Science Tel-Aviv University Who Roman Manevich Schreiber Oen-sace (basement) Tel: 640-5358 rumster@ost.tau.ac.il

More information

Pointer Arithmetic. Lecture 4 Chapter 10. Robb T. Koether. Hampden-Sydney College. Wed, Jan 25, 2017

Pointer Arithmetic. Lecture 4 Chapter 10. Robb T. Koether. Hampden-Sydney College. Wed, Jan 25, 2017 Pointer Arithmetic Lecture 4 Chapter 10 Robb T. Koether Hampden-Sydney College Wed, Jan 25, 2017 Robb T. Koether (Hampden-Sydney College) Pointer Arithmetic Wed, Jan 25, 2017 1 / 36 1 Pointer Arithmetic

More information

Homework #3 CS2255 Fall 2012

Homework #3 CS2255 Fall 2012 Homework #3 CS2255 Fall 2012 MULTIPLE CHOICE 1. The, also known as the address operator, returns the memory address of a variable. a. asterisk ( * ) b. ampersand ( & ) c. percent sign (%) d. exclamation

More information

Chapter 10. Pointers and Dynamic Arrays. Copyright 2016 Pearson, Inc. All rights reserved.

Chapter 10. Pointers and Dynamic Arrays. Copyright 2016 Pearson, Inc. All rights reserved. Chapter 10 Pointers and Dynamic Arrays Copyright 2016 Pearson, Inc. All rights reserved. Learning Objectives Pointers Pointer variables Memory management Dynamic Arrays Creating and using Pointer arithmetic

More information

UEE1302 (1102) F10 Introduction to Computers and Programming (I)

UEE1302 (1102) F10 Introduction to Computers and Programming (I) Computational Intelligence on Automation Lab @ NCTU UEE1302 (1102) F10 Introduction to Computers and Programming (I) Programming Lecture 10 Pointers & Dynamic Arrays (I) Learning Objectives Pointers Data

More information

primitive arrays v. vectors (1)

primitive arrays v. vectors (1) Arrays 1 primitive arrays v. vectors (1) 2 int a[10]; allocate new, 10 elements vector v(10); // or: vector v; v.resize(10); primitive arrays v. vectors (1) 2 int a[10]; allocate new, 10 elements

More information

CA31-1K DIS. Pointers. TA: You Lu

CA31-1K DIS. Pointers. TA: You Lu CA31-1K DIS Pointers TA: You Lu Pointers Recall that while we think of variables by their names like: int numbers; Computer likes to think of variables by their memory address: 0012FED4 A pointer is a

More information

QUIZ How do we implement run-time constants and. compile-time constants inside classes?

QUIZ How do we implement run-time constants and. compile-time constants inside classes? QUIZ How do we implement run-time constants and compile-time constants inside classes? Compile-time constants in classes The static keyword inside a class means there s only one instance, regardless of

More information

Exam 3 Chapters 7 & 9

Exam 3 Chapters 7 & 9 Exam 3 Chapters 7 & 9 CSC 2100-002/003 29 Mar 2017 Read through the entire test first BEFORE starting Put your name at the TOP of every page The test has 4 sections worth a total of 100 points o True/False

More information

Object Reference and Memory Allocation. Questions:

Object Reference and Memory Allocation. Questions: Object Reference and Memory Allocation Questions: 1 1. What is the difference between the following declarations? const T* p; T* const p = new T(..constructor args..); 2 2. Is the following C++ syntax

More information

2. Introduction to Operating Systems

2. Introduction to Operating Systems 2. Introduction to Oerating Systems Oerating System: Three Easy Pieces 1 What a haens when a rogram runs? A running rogram executes instructions. 1. The rocessor fetches an instruction from memory. 2.

More information

Chapter Overview. Pointers and Dynamic Arrays. Pointers. Pointers. Declaring Pointers. Pointers Tell Where To Find A Variable. 9.

Chapter Overview. Pointers and Dynamic Arrays. Pointers. Pointers. Declaring Pointers. Pointers Tell Where To Find A Variable. 9. Chapter 9 Pointers and Dynamic Arrays Overview 9.1 Pointers 9.2 Dynamic Arrays Copyright 2011 Pearson Addison-Wesley. All rights reserved. Slide Revised by Zuoliu Ding at Fullerton College, Fall 2011 Slide

More information

Pointers Ch 9, 11.3 & 13.1

Pointers Ch 9, 11.3 & 13.1 Pointers Ch 9, 11.3 & 13.1 Highlights - const & passing-by-referencence - pointers - new and delete object vs memory address An object is simply a box in memory and if you pass this into a function it

More information

Review: C++ Basic Concepts. Dr. Yingwu Zhu

Review: C++ Basic Concepts. Dr. Yingwu Zhu Review: C++ Basic Concepts Dr. Yingwu Zhu Outline C++ class declaration Constructor Overloading functions Overloading operators Destructor Redundant declaration A Real-World Example Question #1: How to

More information

Arrays in C++ Instructor: Andy Abreu

Arrays in C++ Instructor: Andy Abreu Arrays in C++ Instructor: Andy Abreu Reason behind the idea When we are programming, often we have to process a large amount of information. We can do so by creating a lot of variables to keep track of

More information

CS24 Week 3 Lecture 1

CS24 Week 3 Lecture 1 CS24 Week 3 Lecture 1 Kyle Dewey Overview Some minor C++ points ADT Review Object-oriented Programming C++ Classes Constructors Destructors More minor Points (if time) Key Minor Points const Motivation

More information

Operators. The Arrow Operator. The sizeof Operator

Operators. The Arrow Operator. The sizeof Operator Operators The Arrow Operator Most C++ operators are identical to the corresponding Java operators: Arithmetic: * / % + - Relational: < = >!= Logical:! && Bitwise: & bitwise and; ^ bitwise exclusive

More information

E&CE 454/750-5: Spring 2010 Programming Assignment 1 Due: 11:59 PM Friday 11 th June 2010

E&CE 454/750-5: Spring 2010 Programming Assignment 1 Due: 11:59 PM Friday 11 th June 2010 E&CE 454/750-5: Spring 2010 Programming Assignment 1 Due: 11:59 PM Friday 11 th June 2010 For this assignment you are required to implement a crude version of Remote Procedure Call (RPC). Normally this

More information

CS105 C++ Lecture 7. More on Classes, Inheritance

CS105 C++ Lecture 7. More on Classes, Inheritance CS105 C++ Lecture 7 More on Classes, Inheritance " Operator Overloading Global vs Member Functions Difference: member functions already have this as an argument implicitly, global has to take another parameter.

More information

Chapter 9. Pointers and Dynamic Arrays

Chapter 9. Pointers and Dynamic Arrays Chapter 9 Pointers and Dynamic Arrays Overview 9.1 Pointers 9.2 Dynamic Arrays Slide 9-2 9.1 Pointers Pointers n A pointer is the memory address of a variable n Memory addresses can be used as names for

More information

FORM 2 (Please put your name and form # on the scantron!!!!) CS 161 Exam II:

FORM 2 (Please put your name and form # on the scantron!!!!) CS 161 Exam II: FORM 2 (Please put your name and form # on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each): 1. The declaration below declares three pointer variables of type pointer to double that is

More information

(5-1) Object-Oriented Programming (OOP) and C++ Instructor - Andrew S. O Fallon CptS 122 (February 4, 2019) Washington State University

(5-1) Object-Oriented Programming (OOP) and C++ Instructor - Andrew S. O Fallon CptS 122 (February 4, 2019) Washington State University (5-1) Object-Oriented Programming (OOP) and C++ Instructor - Andrew S. O Fallon CptS 122 (February 4, 2019) Washington State University Key Concepts 2 Object-Oriented Design Object-Oriented Programming

More information

Global & Local Identifiers

Global & Local Identifiers Global & Local Identifiers the portions of a program where an identifier is defined (may be used). a variable declared inside a Block. from the Declaration statement to the end of the Block void fun()

More information

Advanced Programming & C++ Language

Advanced Programming & C++ Language Advanced Programming & C++ Language ~6~ Introduction to Memory Management Ariel University 2018 Dr. Miri (Kopel) Ben-Nissan Stack & Heap 2 The memory a program uses is typically divided into four different

More information

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 19 Introduction to C++

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 19 Introduction to C++ CSE 374 Programming Concepts & Tools Hal Perkins Fall 2015 Lecture 19 Introduction to C++ C++ C++ is an enormous language: All of C Classes and objects (kind of like Java, some crucial differences) Many

More information

Programming Abstractions

Programming Abstractions Programming Abstractions C S 1 0 6 X Cynthia Lee Topics: Last week, with Marty Stepp: Making your own class Arrays in C++ This week: Memory and Pointers Revisit some topics from last week Deeper look at

More information

CMSC 341 Lecture 7 Lists

CMSC 341 Lecture 7 Lists CMSC 341 Lecture 7 Lists Today s Topics Linked Lists vs Arrays Nodes Using Linked Lists Supporting Actors (member variables) Overview Creation Traversal Deletion UMBC CMSC 341 Lists 2 Linked Lists vs Arrays

More information

University of Toronto

University of Toronto University of Toronto Faculty of Applied Science and Engineering Midterm November, 2010 ECE244 --- Programming Fundamentals Examiners: Tarek Abdelrahman, Michael Gentili, and Michael Stumm Instructions:

More information

Operations on Singly (Simply) Linked Lists

Operations on Singly (Simply) Linked Lists LEC. 4 College of Information Technology / Software Deartment.. Data Structures / Second Class / 2016-2017 InsertFirst Oerations on Singly (Simly) Linked Lists The insertfirst() method of LinkList inserts

More information

Type Inference auto for Note: Note:

Type Inference auto for Note: Note: Type Inference C++11 provides mechanisms for type inference which make the compiler deduce the types of expressions. I m starting the book with type inference because it can make your code more concise

More information

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions?

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Lecture 14 No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Friday, February 11 CS 215 Fundamentals of Programming II - Lecture 14 1 Outline Static

More information

CSC209H Lecture 3. Dan Zingaro. January 21, 2015

CSC209H Lecture 3. Dan Zingaro. January 21, 2015 CSC209H Lecture 3 Dan Zingaro January 21, 2015 Streams (King 22.1) Stream: source of input or destination for output We access a stream through a file pointer (FILE *) Three streams are available without

More information

C/C++ Programming Lecture 7 Name:

C/C++ Programming Lecture 7 Name: 1. The increment (++) and decrement (--) operators increase or decrease a variable s value by one, respectively. They are great if all you want to do is increment (or decrement) a variable: i++;. HOWEVER,

More information

calling a function - function-name(argument list); y = square ( z ); include parentheses even if parameter list is empty!

calling a function - function-name(argument list); y = square ( z ); include parentheses even if parameter list is empty! Chapter 6 - Functions return type void or a valid data type ( int, double, char, etc) name parameter list void or a list of parameters separated by commas body return keyword required if function returns

More information

Programming Languages. Streams Wrapup, Memoization, Type Systems, and Some Monty Python

Programming Languages. Streams Wrapup, Memoization, Type Systems, and Some Monty Python Programming Languages Streams Wrapup, Memoization, Type Systems, and Some Monty Python Quick Review of Constructing Streams Usually two ways to construct a stream. Method 1: Use a function that takes a(n)

More information

C++ Programming Lecture 7 Software Engineering Group

C++ Programming Lecture 7 Software Engineering Group C++ Programming Lecture 7 Software Engineering Group Philipp D. Schubert Contents 1. Template metaprogramming 2. Variadic template arguments 3. Smart pointer Template metaprogramming Template metaprogramming

More information

Lesson 13 - Vectors Dynamic Data Storage

Lesson 13 - Vectors Dynamic Data Storage Lesson 13 - Vectors Dynamic Data Storage Summary In this lesson we introduce the Standard Template Library by demonstrating the use of Vectors to provide dynamic storage of data elements. New Concepts

More information

04-17 Discussion Notes

04-17 Discussion Notes 04-17 Discussion Notes PIC 10B Spring 2018 1 RAII RAII is an acronym for the idiom Resource Acquisition is Initialization. What is meant by resource acquisition is initialization is that a resource should

More information

Lecture 2, September 4

Lecture 2, September 4 Lecture 2, September 4 Intro to C/C++ Instructor: Prashant Shenoy, TA: Shashi Singh 1 Introduction C++ is an object-oriented language and is one of the most frequently used languages for development due

More information

I m sure you have been annoyed at least once by having to type out types like this:

I m sure you have been annoyed at least once by having to type out types like this: Type Inference The first thing I m going to talk about is type inference. C++11 provides mechanisms which make the compiler deduce the types of expressions. These features allow you to make your code more

More information