Functional Characteristics of Lenses

Size: px
Start display at page:

Download "Functional Characteristics of Lenses"

Transcription

1 Functional Characteristics of Lenses Kellye Knueppel, OD, FCOVD Great Lakes Congress 2018 Goals of lecture: Understand optical characteristics in order to expand the uses of lenses in prescribing glasses (and in optometric vision therapy.) Understand the optical reasons that very small power lenses can be very powerful. 1 2 Light Transformers Lenses and prisms are light transformers. While you can calculate how they transform light, you can not predict human awareness or behavioral changes because of the transformation. What do lenses and prisms do? It is more appropriate to ask, What do patients do in response to lenses? John Streff, OD, DOS, FCOVD, FAAO 3 4 Lens transformations in two directions Towards the person Away from the person Traditional Thinking re: Optics of the Eye We know that the image formed must be real, because it is projected onto the retina (which is like a screen). Any time an image is projected, it must be real. Karen Wu, The Optics 5 6 1

2 Convention: Optics of the Eye Light rays drawn from left to right Light reflects off of a surface and goes toward the eye where refraction occurs so that the image is projected onto the retina. Traditional Ophthalmic Optics Refractive conditions are viewed as a misfocusing of the optical system that is the eye due to problems with any of the optical parts including the eyeball being too long or short for the system. Light must then be refracted by a corrective lens in such a way as to move the focal point back in myopia and forward in hyperopia. 7 8 Optics of the Eye Myopia 9 10 Hyperopia Consider Inverting the Optics What happens to our thinking about the optics if we consider the person actively looking through the lens? (Rather than just considering the light coming from the object through the lens to the eye.) Classic model becomes confusing: In hyperopia, the remote point will be negative (behind the eye, as it were), which is rather abstract, but that is the way it is. 11 Look at the ray tracings from the opposite direction! 12 2

3 Looking Through the Lens Thin Lens Equation 1/d i + 1/d o = 1/f d i = distance from lens to image d o = distance from lens to object f = focal distance of lens Concave Lens Concave Lens Optics: Real Object anywhere in space always creates a Virtual Image closer to the lens and smaller. (Small In) We can calculate the location of the virtual image if we know the lens power and the distance the object is from the lens Concave Lens Perception: Person looks through the lens at the virtual image and must put it back out in space to the distance they think the object actually physically is from them. This perceptual problem is compounded by optics in the periphery of the lens. Prescribe Symmetrically When Possible Brain must look through the lens in front of each eye and deal with the transformation of light through the lens. Much easier to do with same lens on both eyes Much easier to do with simpler prescriptions Eliminate cylinder or reduce as much as possible

4 Convex Lenses: Two Situations Optics: Real Object between the focal point and the lens creates a Virtual Image farther away and larger. (Large Out) We can calculate the location of the virtual image if we know the lens power and the distance the object is from the lens. Perception: Again, the person looks through the lens at the virtual image. Don t forget optics in the periphery of the lens. (Periphery = anywhere in lens not at the optical center.) We need to consider projection and perception to understand where in space the person perceives the object to be Low power plus lenses are important to think about in this category. With low plus lenses, most near objects will fall closer to the lens than the focal distance, so a virtual image farther away in space and larger is created by the optics of the lens. (Remember, we are looking through the lens.) Useful Working Distance (distance from lens to focal distance) is greater for smaller power Focal distance of is 50 cm Focal distance of is 100 cm (1m) Focal distance of is 2 meters Focal distance of is 2.7 meters Focal distance of is 4 meters Focal distance of is 25 cm Focal distance of is 16 cm

5 Convex Lens (Object between Focal Convex Lens (Object Beyond Focal Distance of Lens) Leverage of a small dioptric change is greater for low powers than for large powers The focal points for and are 4.33 M apart The focal points for and are M apart Convex Lens (Object Beyond Focal Distance of Lens) Optics: Real Object beyond the focal distance of the lens creates a Real Image on the opposite side of the lens. In this case the calculated location in space of the real image ends up in the person s eye/head or often quite a distance behind the person. Of course, now the optics of the eye would also have an effect on the final calculated distance of the image. Perception: hmmm the person looking through this lens has some interesting perceptual transformations to make! Web Sites with Interactive Lens Models This is fun to play with if you like optics and maybe can help you with understanding optics if you don t: Interactives/Refraction-and-Lenses/Optics- Bench/Optics-Bench-Refraction-Interactive Optical Characteristics of Lenses and Prisms See handout in appendix for comprehensive list of optical characteristics of different types of lenses and prisms. These are the optical transformations of the lens and can be determined mathematically. Be careful in prescribing as the individual s perceptual response may be quite different (often opposite.) The individual viewing through the lens interprets the transform within the context of her or his frame world. 29 Thin lens vs. Thick lens optics All of ray tracings so far have been thin lens optics. Ophthalmic lenses are more complicated. Power of the lens away from the optical center (OC) is not the same as at the OC. Prism effects must also be considered. 30 5

6 Important Visual Spatial Perception Concepts SOLI vs. SILO Form Constancy Figure-Ground Monocular Cues to Depth [Note: These are reviewed briefly in another lecture hour.] 31 Small vs Large Powers Small lens powers Greatest effect related to the projected response How the person views the change looking through the lens Large lens powers Greatest effects on the viewed response How the person views light after passing through the lens toward his eyes 32 Quick Review of Thin Lens Optics Concave Lenses (Minus) Image always CLOSER and SMALLER Convex Lenses (Plus) Object between eye and Focal Distance Image always FURTHER and LARGER Object beyond Focal Distance Image BEHIND patient Things to remember on Tuesday: Prescribe symmetrically between eyes when possible When prescribing cylinder match at least one meridian if possible Be cautious when prescribing above Small power lenses can have large effects

Perceptual Optics for Prisms and Lenses (for vision therapists)

Perceptual Optics for Prisms and Lenses (for vision therapists) Perceptual Optics for Prisms and Lenses (for vision therapists) Goal of lecture: Understand optical characteristics in order to improve the uses of lenses and prisms in optometric vision therapy. Kellye

More information

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will Ray Diagrams Convex Mirror A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will. Quick Activity obtain a ray box and a curved

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Physics I: x Mirrors and lenses Lecture 13: 6-11-2018 Last lecture: Reflection & Refraction Reflection: Light ray hits surface Ray moves

More information

Light and Lenses Notes

Light and Lenses Notes Light and Lenses Notes Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection)

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

Chapter 34: Geometrical Optics

Chapter 34: Geometrical Optics Chapter 34: Geometrical Optics Mirrors Plane Spherical (convex or concave) Lenses The lens equation Lensmaker s equation Combination of lenses E! Phys Phys 2435: 22: Chap. 34, 3, Pg Mirrors New Topic Phys

More information

Light, Photons, and MRI

Light, Photons, and MRI Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

More information

34.2: Two Types of Image

34.2: Two Types of Image Chapter 34 Images 34.2: Two Types of Image For you to see an object, your eye intercepts some of the light rays spreading from the object and then redirect them onto the retina at the rear of the eye.

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

Essential Physics I. Lecture 13:

Essential Physics I. Lecture 13: Essential Physics I E I Lecture 13: 11-07-16 Reminders No lecture: Monday 18th July (holiday) Essay due: Monday 25th July, 4:30 pm 2 weeks!! Exam: Monday 1st August, 4:30 pm Announcements 250 word essay

More information

Physics 1C. Lecture 23A. "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?

Physics 1C. Lecture 23A. If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed? Physics 1C Lecture 23A "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?" --Steven Wright Mirror Equation You can mathematically relate the object distance,

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1 LIGHT & OPTICS Fundamentals of Physics 22 Chapter 34 Chapter 34 Images. Two Types of Images 2. Plane Mirrors 3. Spherical Mirrors 4. Images from Spherical Mirrors 5. Spherical Refracting Surfaces 6. Thin

More information

LECTURE 25 Spherical Refracting Surfaces. Geometric Optics

LECTURE 25 Spherical Refracting Surfaces. Geometric Optics LECTURE 25 Spherical Refracting Surfaces Geometric ptics When length scales are >> than the light s wavelength, light propagates as rays incident ray reflected ray θ θ r θ 2 refracted ray Reflection: Refraction:

More information

Chapter 3: Mirrors and Lenses

Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Lenses Refraction Converging rays Diverging rays Converging Lens Ray tracing rules Image formation Diverging Lens Ray tracing Image formation

More information

Refraction Section 1. Preview. Section 1 Refraction. Section 2 Thin Lenses. Section 3 Optical Phenomena. Houghton Mifflin Harcourt Publishing Company

Refraction Section 1. Preview. Section 1 Refraction. Section 2 Thin Lenses. Section 3 Optical Phenomena. Houghton Mifflin Harcourt Publishing Company Refraction Section 1 Preview Section 1 Refraction Section 2 Thin Lenses Section 3 Optical Phenomena Refraction Section 1 TEKS The student is expected to: 7D investigate behaviors of waves, including reflection,

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information

PH 222-2A Spring 2015

PH 222-2A Spring 2015 PH 222-2A Spring 2015 Images Lectures 24-25 Chapter 34 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 3 Chapter 34 Images One of the most important uses of the basic laws governing light

More information

Thin Lenses 4/16/2018 1

Thin Lenses 4/16/2018 1 Thin Lenses f 4/16/2018 1 Thin Lenses: Converging Lens C 2 F 1 F 2 C 1 r 2 f r 1 Parallel rays refract twice Converge at F 2 a distance f from center of lens F 2 is a real focal pt because rays pass through

More information

Math of Optics Quiz. 6. A lens has power x090 and will use minus cylinder form. What curves will beground if the base curve is +5.00?

Math of Optics Quiz. 6. A lens has power x090 and will use minus cylinder form. What curves will beground if the base curve is +5.00? Math of Optics Quiz 1. A lens has focal length 20 cm behind the lens. What is its power? 2. A lens has power -2.50 diopters. What is its focal length? 3. A lens has front power +6.00 and back powers of

More information

Chapter 34. Thin Lenses

Chapter 34. Thin Lenses Chapter 34 Thin Lenses Thin Lenses Mirrors Lenses Optical Instruments MFMcGraw-PHY 2426 Chap34a-Lenses-Revised: 7/13/2013 2 Inversion A right-handed coordinate system becomes a left-handed coordinate system

More information

Thin Lenses. Lecture 23. Chapter 34. Ray Optics. Physics II. Course website:

Thin Lenses. Lecture 23. Chapter 34. Ray Optics. Physics II. Course website: Lecture 23 Chapter 34 Physics II Ray Optics Thin Lenses Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 34: Section 34.5-6 Thin Lenses There

More information

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced.

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced. Chapter 34 Images One of the most important uses of the basic laws governing light is the production of images. Images are critical to a variety of fields and industries ranging from entertainment, security,

More information

LECTURE 17 MIRRORS AND THIN LENS EQUATION. Instructor: Kazumi Tolich

LECTURE 17 MIRRORS AND THIN LENS EQUATION. Instructor: Kazumi Tolich LECTURE 17 MIRRORS AND THIN LENS EQUATION Instructor: Kazumi Tolich Lecture 17 2 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

PHY 171 Lecture 6 (January 18, 2012)

PHY 171 Lecture 6 (January 18, 2012) PHY 171 Lecture 6 (January 18, 2012) Light Throughout most of the next 2 weeks, we will be concerned with the wave properties of light, and phenomena based on them (interference & diffraction). Light also

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. The refracting power of a thin lens. 2. Thin lens combinations.

More information

Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

More information

Lenses. Learning Objectives: Explain how light travels through convex and concave lenses Explain why light is refracted

Lenses. Learning Objectives: Explain how light travels through convex and concave lenses Explain why light is refracted Learning Objectives: Lenses Explain how light travels through convex and concave lenses Explain why light is refracted Starter Complete your refraction sheet. Use these words to fill in the gaps: towards

More information

Figure 1 - Refraction

Figure 1 - Refraction Geometrical optics Introduction Refraction When light crosses the interface between two media having different refractive indices (e.g. between water and air) a light ray will appear to change its direction

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test Light Equations Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which colour of light has the shortest wavelength? a. red c. green b. blue

More information

Physics 1230: Light and Color. Guest Lecture 18 Jack Houlton Lenses, Rays, and Math!

Physics 1230: Light and Color. Guest Lecture 18 Jack Houlton Lenses, Rays, and Math! Physics 230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys230 Guest Lecture 8 Jack Houlton Lenses, Rays, and

More information

P06 ray diagrams with concave mirrors and intro to problem solving.notebook

P06 ray diagrams with concave mirrors and intro to problem solving.notebook Ray Diagrams Concave Mirror A concave mirror is a converging mirror because parallel rays will. For any object, millions and millions of rays are reflected in all directions. Some of these rays hit the

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

P H Y L A B 1 : G E O M E T R I C O P T I C S

P H Y L A B 1 : G E O M E T R I C O P T I C S P H Y 1 4 3 L A B 1 : G E O M E T R I C O P T I C S Introduction Optics is the study of the way light interacts with other objects. This behavior can be extremely complicated. However, if the objects in

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Geometrical Optics. 1 st year physics laboratories. University of Ottawa

Geometrical Optics. 1 st year physics laboratories. University of Ottawa Geometrical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Geometrical optics deals with light as a ray that can be bounced (reflected)

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics Regular and Diffuse Reflection Sections 23-1 to 23-2. How We See Weseebecauselightreachesoureyes. There are two ways, therefore, in which we see: (1) light from a luminous object

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

a) Is the image real or virtual? Explain b) Is the image inverted or upright (non-inverted)?

a) Is the image real or virtual? Explain b) Is the image inverted or upright (non-inverted)? 1. An object that is 5.0 cm high is placed 35.0 cm from a converging lens that has a focal length of 25.0 cm. a) Is the image real or virtual? Explain b) Is the image inverted or upright (non-inverted)?

More information

PHYSICS 106. Assignment #10 Due by 10 pm Tuesday April 13, DISCUSSION SECTION: [ ] D1 W 9 am [ ] D2 W 10 am [ ] HS W 10 am

PHYSICS 106. Assignment #10 Due by 10 pm Tuesday April 13, DISCUSSION SECTION: [ ] D1 W 9 am [ ] D2 W 10 am [ ] HS W 10 am PHYSICS 106 Assignment #10 Due by 10 pm Tuesday April 13, 010 NAME: DISCUSSION SECTION: [ ] D1 W 9 am [ ] D W 10 am [ ] HS W 10 am [ ] D3 W 11 am [ ] D4 W 1 pm [ ] D5 W 1 pm (Sophie) [ ] D6 W 1 pm (Nima)

More information

Quest Chapter 30. Same hint as in #1. Consider the shapes of lenses that make them converge or diverge.

Quest Chapter 30. Same hint as in #1. Consider the shapes of lenses that make them converge or diverge. 1 Consider the light rays depicted in the figure. 1. diverging mirror 2. plane mirror 3. converging mirror 4. converging lens 5. diverging lens 6. Unable to determine. 2 Consider the light rays depicted

More information

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law

IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law Objective In this experiment, you are required to determine the refractive index of an acrylic trapezoid (or any block with

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle. 1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

9. RAY OPTICS AND OPTICAL INSTRUMENTS

9. RAY OPTICS AND OPTICAL INSTRUMENTS 9. RAY OPTICS AND OPTICAL INSTRUMENTS 1. Define the terms (a) ray of light & (b) beam of light A ray is defined as the straight line path joining the two points by which light is travelling. A beam is

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Refraction and Lenses. Honors Physics

Refraction and Lenses. Honors Physics Refraction and Lenses Honors Physics Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses.

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses. 3/23/ LIGO mirror Announcements LIGO mirror Two exams down, one to go! No HW this week. Credit: LIGO Laboratory, Caltech Office hours: My office hours today from 2-3 pm (or make an appointment) Chapter

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Physics 1230 Light and Color Fall 2012 M. Goldman. Practice Exam #1 Tuesday, Sept 25, Your full name: Last First and middle.

Physics 1230 Light and Color Fall 2012 M. Goldman. Practice Exam #1 Tuesday, Sept 25, Your full name: Last First and middle. Physics 1230 Light and Color Fall 2012 M. Goldman Practice Exam #1 Tuesday, Sept 25, 2012 This exam will be worth 100 points. There are 10 multiple choice questions worth 4 points each and 3 problems worth

More information

- the bending. no refraction. with. (Refraction of Light)

- the bending. no refraction. with. (Refraction of Light) Lecture Notes (Refraction of Light) Intro: - the bending of light that occurs at a boundary of a transparent object is called refraction - the angle of incidence and the angle of refraction is measured

More information

Reflection and Refraction. Geometrical Optics

Reflection and Refraction. Geometrical Optics Reflection and Refraction Geometrical Optics Reflection Angle of incidence = Angle of reflection The angle of incidence,i, is always equal to the angle of reflection, r. The incident ray, reflected ray

More information

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Physics 123 Optics Review

Physics 123 Optics Review Physics 123 Optics Review I. Definitions & Facts concave converging convex diverging real image virtual image real object virtual object upright inverted dispersion nearsighted, farsighted near point,

More information

Person s Optics Test SSSS

Person s Optics Test SSSS Person s Optics Test SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

M = h' h = #i. n = c v

M = h' h = #i. n = c v Name: Physics Chapter 14 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: c = 3 "10 8 m s 1 i + 1 o = 1 f M = h' h =

More information

Chapter 5 Mirror and Lenses

Chapter 5 Mirror and Lenses Chapter 5 Mirror and Lenses Name: 5.1 Ray Model of Light Another model for light is that it is made up of tiny particles called. Photons travel in perfect, lines from a light source This model helps us

More information

Refraction of Light. light ray. rectangular plastic slab. normal rectangular slab

Refraction of Light. light ray. rectangular plastic slab. normal rectangular slab Refraction of Light light ray light box single slit rectangular plastic slab What is the light path for a ray aligned with the normal? What is the light path for rays not aligned with the normal? light

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

PSC20 - Properties of Waves 3

PSC20 - Properties of Waves 3 PSC20 - Properties of Waves 3 The speed of light is in a vacuum. it travels 299 972 458 m/s. (rounded to m/s). Speed of light is given the symbol comes from the word meaning. How far do you think light

More information

Behavior of Light: Shadows One Light Bulb. Draw the kissing rays. The rays that just clear the barrier. Lig ght. Ba arrier.

Behavior of Light: Shadows One Light Bulb. Draw the kissing rays. The rays that just clear the barrier. Lig ght. Ba arrier. Science Olympiad Optics Color and Shadows The Electromagnetic Spectrum. Behavior of Light: Shadows One Light Bulb Use rays to predict what one would observe if there was one light source. Draw the kissing

More information

PHYS 219 Spring semester Lecture 19: Mirrors. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 219 Spring semester Lecture 19: Mirrors. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 219 Spring semester 2016 Lecture 19: Mirrors Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 219 Test II Wednesday; March 30, 2016 6:30 PM PHYS 203 Lecture 19 1 a) Interaction

More information

3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection

3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection Light Key Concepts How does light reflect from smooth surfaces and rough surfaces? What happens to light when it strikes a concave mirror? Which types of mirrors can produce a virtual image? Reflection

More information

Chapter 11 Mirrors and Lenses KEY

Chapter 11 Mirrors and Lenses KEY Science 8 Physics Unit http://moodle.sd23.bc.ca/drk Question Completion Asking for Help Working in Class G I have completed all of the assigned questions, completed all diagrams, and corrected all wrong

More information

Physics 345 Pre-Lab 5 Lenses Part II

Physics 345 Pre-Lab 5 Lenses Part II Physics 345 Pre-Lab 5 Lenses Part II 1) Does a lens in eye-glasses form a real image, a virtual image, or no image at all (as far as the eye-glass wearer is concerned)? How do you know? Does it make a

More information

Name: Jonathan Smartt Title: Thin Lenses Investigation Date of Lesson: Week 2, Day 2 Technology Lesson: Yes Length: 75 minutes Course: Physics Grade

Name: Jonathan Smartt Title: Thin Lenses Investigation Date of Lesson: Week 2, Day 2 Technology Lesson: Yes Length: 75 minutes Course: Physics Grade Name: Jonathan Smartt Title: Thin Lenses Investigation Date of Lesson: Week 2, Day 2 Technology Lesson: Yes Length: 75 minutes Course: Physics Grade Level: 11 th or 12 th Source: Some information taken

More information

On Fig. 7.1, draw a ray diagram to show the formation of this image.

On Fig. 7.1, draw a ray diagram to show the formation of this image. 1- A small object is placed 30 cm from the centre of a convex lens of focal length 60 cm An enlarged image is observed from the other side of the lens (a) On Fig 71, draw a ray diagram to show the formation

More information

Textbook Reference: Glencoe Physics: Chapters 16-18

Textbook Reference: Glencoe Physics: Chapters 16-18 Honors Physics-121B Geometric Optics Introduction: A great deal of evidence suggests that light travels in straight lines. A source of light like the sun casts distinct shadows. We can hear sound from

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Today Last Time Recall from last time. Reflection: q i = q r Flat Mirror: image equidistant behind Spherical

More information

Practical Applications for Spectacle Lens Formulas

Practical Applications for Spectacle Lens Formulas Practical Applications for Spectacle Lens Formulas ED DE GENNARO RICHMOND, VIRGINIA Ed De Gennaro Director, Professional Content First Vision Media Group 1 Boring? Formulas don t have to be boring Too

More information

Instruction document. Fitting recommendations

Instruction document. Fitting recommendations Instruction document Fitting recommendations Table of Contents Terminology 4 Frame Parameters: 4 Fitting parameters 4 Wearing parameters 6 Fitting recommendation Hoya Single Vision range 8 Hoya Single

More information

Light and Optics Learning Goals Review

Light and Optics Learning Goals Review SNC2D Light and Optics Learning Goals Review Different types of light be familiar with the different types of light i.e. direct and indirect, natural and artificial and be able to describe the different

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Physics 222 Spring 2009 Exam 3 Version A (851680)

Physics 222 Spring 2009 Exam 3 Version A (851680) Physics 222 Spring 2009 Exam 3 Version A (851680) Question 1 2 3 4 5 6 7 8 9 10 Instructions Be sure to answer every question. Follow the rules shown on the first page for filling in the Scantron form.

More information

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Lecture Notes (Geometric Optics)

Lecture Notes (Geometric Optics) Lecture Notes (Geometric Optics) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

Physics 102: Lecture 16 Introduction to Mirrors

Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16, Slide 1 Exam II Tuesday April 1st! What will exam cover? Lectures 8 15 (Magnetic fields Polarization) What do you need to bring?

More information

The Lens. Refraction and The Lens. Figure 1a:

The Lens. Refraction and The Lens. Figure 1a: Lenses are used in many different optical devices. They are found in telescopes, binoculars, cameras, camcorders and eyeglasses. Even your eye contains a lens that helps you see objects at different distances.

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics Inaugural University of Michigan Science Olympiad Invitational Tournament Test length: 50 Minutes Optics Team number: Team name: Student names: Instructions: Do not open this test until told to do so.

More information

Assignment 10 Solutions Due May 1, start of class. Physics 122, sections and 8101 Laura Lising

Assignment 10 Solutions Due May 1, start of class. Physics 122, sections and 8101 Laura Lising Physics 122, sections 502-4 and 8101 Laura Lising Assignment 10 Solutions Due May 1, start of class 1) Revisiting the last question from the problem set before. Suppose you have a flashlight or a laser

More information

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception Binocular cues to depth PSY 310 Greg Francis Lecture 21 How to find the hidden word. Depth perception You can see depth in static images with just one eye (monocular) Pictorial cues However, motion and

More information