An Experimental Study of Network Performance Impact of Increased Latency in SDR

Size: px
Start display at page:

Download "An Experimental Study of Network Performance Impact of Increased Latency in SDR"

Transcription

1 An Experimental Study of Network Performance Impact of Increased Latency in SDR Thomas Schmid Oussama Sekkat Mani B. Srivastava - Wintech workshop was started with the Keynote from Eric Blossom on GNU Radio - And this last talk is on research using GNU Radio 1

2 Outline Short Introduction Delay Measurements of the USRP Receive Latency Transmit Latency Round Trip Time measurements with modulation, demodulation Implication on the MAC Layer and Possible Solutions Conclusion 2

3 Throughput vs. Latency SDR pushes PHY into Software Software is flexible Processing often done on general purpose computers and OS Block signal processing of samples to sustain throughput Throughput Latency Many modern MAC protocols rely on deadlines Example s DIFS Even QoS is done with different deadlines in e SIFS PIFS DIFS DIFS Backoff Window Busy - SDR pushes some or all PHY into Software - block signal processing of samples to sustain throughput => doesn t help latency - DIFS: Distributed Inter Frame Space - SIFS: 28 us PIFS: 78 us DIFS: 128 us 3

4 - You might ask: Why is the latency of that hardware important NESL UCLA GNU Radio GNU Radio is Open Source and easy accessible Universal Software Radio Peripheral (USRP) developed and sold by Ettus Research LLC (~$500 + ~$300 for RF frontends) Currently, no time stamping of incoming or outgoing samples possible, though in development We investigated the latency of GNU Radio s USRP We implemented two modulation schemes plus MAC layer framing for two commercial radios (CC1000 and CC2420) and measured the resulting latencies Open Source Software Defined Radio solution - GR was introduced this morning by Eric Blossom 4 - GR is perfect for researchers. that s why we took it to investigate the latency issue - We use these radio chips sensor network research in our lab

5 Delay Measurements Non-real time OS and USB bus system introduce delays Ideal case: preload the radio frontend with all samples, and trigger send when necessary still a blind spot Conventional Radio Blind Spot SDR System Air Packet TX Packet Air RF Frontend Packet TX Packet TX Packet Radio Chip TX Packet Channel Sensing Negligible Latency Bus System CPU Negligible Latency Bus Latency Channel Sensing - explain the two figures 5

6 Delay Measurements (2) Precomputation is not always possible, e.g., RTS/CTS exchange in Conventional Radio Blind Spot SDR System Air Radio Chip Packet Packet Packet2 Packet2 Short IFS Negligible Latency Packet Air Packet RF Frontend Packet Bus System Packet CPU Bus & Demod Latency IFS Packet2 Packet2 Packet2 Packet2 RTS: source, destination, duration (NAV: Network Allocation Vector) for following transmission CTS: contains same duration 6

7 Delay Measurements (3) Delay depends on buffering between ADC and processing blocks GNU Radio is temporally decoupled from the USRP and processes samples as fast as possible. Buffers are either full, or empty. Because of buffers, the sampling rate influences the latency (how long it takes for a sample to travel through a buffer if it is full) 7

8 USRP Receive Latency Receive latency: = USRP Hardware + USB + GNU Radio USB = f(512, fusb nblocks fusb block size) sample size f s sample size = 4 byte 8

9 USRP Receive Latency (2) USRP RX Latency Theoretic max USB latency Theoretic min USB latency Median measured latency Minimum measured latency Maximum measured latency Latency [s] e-04 1e e+06 1e+07 Sample Rate [Hz] - fusb_nblock=8, fusb_block_size= square wave fed into USRP and Oscope. GR toggles parallel pin -> Oscope - 1ms for 8MS/s, 30ms for 250kS/s 9

10 USRP Transmit Latency USRP TX Latency Median measured latency Minimum measured latency Maximum measured latency Latency [s] e+06 1e+07 Sample Rate [Hz] - 32k buffer between GR and USRP - explain bursts and thus prevent 32k buffer traversal which you need to do in continuous transmit mode - in continuous: avg 32.9ms at 320 ks/s - burst: max: 8MS/s, 250kS/s - no preprocessing, modulation, etc! 10

11 and FSK for CC1000 Implemented the physical layer and MAC framing for and an FSK scheme for the CC1000 radio chip Both standards are widely used in sensor network research Fairly easy modulation / demodulation implementation 11

12 and FSK for CC1000 (2) RTT in IEEE SDR implementation 0.35 RTT in Conventional IEEE % of measurements % of measurements Delay [s] Delay [s] RTT in FSK SDR implementation 0.06 RTT in Conventional FSK % of measurements % of measurements Delay [s] Delay [s] - from rx/tx latency measurements, would need about 3ms - our implementation takes 26.5ms on average - even though latency of USRP is not enough to handle DIFS, it is still much faster then the processing itself 12

13 Possible Solutions An increase in latency means less throughput in packed based protocols Increasing deadlines is not enough Solutions are Hardware / Software architecture changes Smart protocols changes 13

14 Hardware / Software Changes Optimizing via precomputation Store precomputed messages in the radio frontend Extension: store partial precomputed messages RSSI gating and m-block Annotate samples with meta information Let the radio frontend trigger the packet sending when RSSI measurements have certain characteristics SIFS PIFS DIFS Air DIFS Busy Send Frontend Preload 14

15 Hardware / Software Changes (2) Different bus system PCI / PCI Express (National Instruments PCI-5640R) Gigabit Ethernet (USRP2) Offload often used code into hardware Do filtering, modulation, and demodulation on FPGA s National Instruments LabView s FPGA tools for PCI-5640R 15

16 Protocol Changes Use TDMA TDMA solves most of the latency problems since predictive Introduces new problems, like synchronization Universal Header Coding Universal encoding across protocols for ACKs and headers Implementation in hardware would guarantee latencies uses something similar. Only after the header, modulations switches to appropriate speed. 16

17 Protocol Changes (2) Delayed ACKs Allow ACKs to be sent later than one DIFS, even after other intermittent messages Air Message 1 Message 2 ACK 1 ACK 2 Node A Conventional Radio send msg 1 recv msg 2 send Node B SDR System recv msg 1 prep ack send Node C SDR System send msg 2 17

18 Conclusion Minimum Receive Latency: 600 μs Minimum Transmit Latency: 200 μs Both too long for IFS requirements of modern MAC protocols SRD implementation: 25 ms avg RTT, 50 ms max GNU Radio is good and easy to use. Fortunately for us researchers, it doesn t do everything yet, and there is still something to do for us. Source Code: Thank you very much for listening 18

An Experimental Study of Network Performance Impact of Increased Latency in Software Defined Radios Thomas Schmid Oussama Sekkat Mani B.

An Experimental Study of Network Performance Impact of Increased Latency in Software Defined Radios Thomas Schmid Oussama Sekkat Mani B. An Experimental Study of Network Performance Impact of Increased Latency in Software Defined Radios Thomas Schmid Oussama Sekkat Mani B. Srivastava Networked and Embedded Systems Laboratory Electrical

More information

Enabling MAC Protocol Implementations on Software-Defined Radios

Enabling MAC Protocol Implementations on Software-Defined Radios Enabling MAC Protocol Implementations on Software-Defined Radios George Nychis, Thibaud Hottelier, Zhuocheng Yang, Srinivasan Seshan, Peter Steenkiste Carnegie Mellon University Abstract Over the past

More information

Simplifying FPGA Design with A Novel Network-on-Chip Architecture

Simplifying FPGA Design with A Novel Network-on-Chip Architecture Simplifying FPGA Design with A Novel Network-on-Chip Architecture ABSTRACT John Malsbury Ettus Research 1043 N Shoreline Blvd Suite 100 +1 (650) 967-2870 john.malsbury@ettus.com As wireless communications

More information

Multi-hop MAC Implementations for Affordable SDR Hardware

Multi-hop MAC Implementations for Affordable SDR Hardware Multi-hop MAC Implementations for Affordable SDR Hardware J. Colman O Sullivan, Paolo di Francesco, Uchenna K. Anyanwu, Luiz A. DaSilva and Allen B. MacKenzie CTVR / The Telecommunications Research Centre,

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

Latency Analysis in GNU Radio/USRP-based Software Radio Platforms

Latency Analysis in GNU Radio/USRP-based Software Radio Platforms 2013 IEEE Military Communications Conference Latency Analysis in GNU Radio/USRP-based Software Radio Platforms Nguyen B.Truong DASAN NETWORKS Corp. Seoul, Gyeonggi-do, 463-400 South Korea nguyentb@postech.ac.kr

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall IEEE 802.11, Token Rings 10/11/06 CS/ECE 438 - UIUC, Fall 2006 1 Medium Access Control Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 10/11/06

More information

Computer Networks (Fall 2011) Homework 2

Computer Networks (Fall 2011) Homework 2 5-744 Computer Networks (Fall 20) Homework 2 Name: Due: Oct. 2th, 20, 3:00PM (in class) Andrew ID: October 2, 20 A Short Questions. Which of the following is true about modern high-speed routers? A. A

More information

IEEE Medium Access Control. Medium Access Control

IEEE Medium Access Control. Medium Access Control IEEE 802.11 Medium Access Control EECS3214 3 April 2018 Medium Access Control reliable data delivery access control MAC layer covers three functional areas: security 2 1 MAC Requirements To avoid interference

More information

6.9. Communicating to the Outside World: Cluster Networking

6.9. Communicating to the Outside World: Cluster Networking 6.9 Communicating to the Outside World: Cluster Networking This online section describes the networking hardware and software used to connect the nodes of cluster together. As there are whole books and

More information

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Local Area Networks (WLANs) Part I Almost all wireless LANs now are IEEE 802.11

More information

3.1. Introduction to WLAN IEEE

3.1. Introduction to WLAN IEEE 3.1. Introduction to WLAN IEEE 802.11 WCOM, WLAN, 1 References [1] J. Schiller, Mobile Communications, 2nd Ed., Pearson, 2003. [2] Martin Sauter, "From GSM to LTE", chapter 6, Wiley, 2011. [3] wiki to

More information

Logical Link Control (LLC) Medium Access Control (MAC)

Logical Link Control (LLC) Medium Access Control (MAC) Overview of IEEE 802.11 Data Link layer Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

Wireless Communications

Wireless Communications 4. Medium Access Control Sublayer DIN/CTC/UEM 2018 Why do we need MAC for? Medium Access Control (MAC) Shared medium instead of point-to-point link MAC sublayer controls access to shared medium Examples:

More information

Lesson 2-3: The IEEE x MAC Layer

Lesson 2-3: The IEEE x MAC Layer Module 2: Establishing Wireless Connectivity Lesson 2-3: The IEEE 802.11x MAC Layer Lesson Overview This lesson describes basic IEEE 802.11x MAC operation, beginning with an explanation of contention schemes

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Rahman 1. Application

Rahman 1. Application Data Link layer Overview of IEEE 802.11 Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

Power-efficient Communication Protocol for Social Networking Tags for Visually Impaired

Power-efficient Communication Protocol for Social Networking Tags for Visually Impaired Power-efficient Communication Protocol for Social Networking Tags for Visually Impaired Problem Social Networking Tags System for Visually Impaired is an project aims to utilize electronic id technology

More information

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem Medium Access Control IEEE 802.11, Token Rings Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 9/15/06 CS/ECE 438 - UIUC, Fall 2006 1 9/15/06 CS/ECE

More information

A GNU Radio Testbed for Distributed Polling Service-based Medium Access Control

A GNU Radio Testbed for Distributed Polling Service-based Medium Access Control The 2 Military Communications Conference - Track - Waveforms and Signal Processing A GNU Radio Testbed for Distributed Polling Service-based Medium Access Control YingsongHuang,PhillipWalsh,YihanLi andshiwenmao

More information

An energy-efficient MAC protocol for infrastructure WLAN based on modified PCF/ DCF access schemes using a bidirectional data packet exchange

An energy-efficient MAC protocol for infrastructure WLAN based on modified PCF/ DCF access schemes using a bidirectional data packet exchange An energy-efficient MAC protocol for infrastructure WLAN based on modified PCF/ DCF access schemes using a bidirectional data packet exchange Raúl Palacios, Fabrizio Granelli University of Trento Trento,

More information

Evaluating the GNU Software Radio platform for wireless testbeds

Evaluating the GNU Software Radio platform for wireless testbeds University of Paderborn Computer Networks Group Evaluating the GNU Software Radio platform for wireless testbeds Stefan Valentin, Holger von Malm, Holger Karl {stefanv holgervm holger.karl}@upb.de February

More information

MAC Protocol Implementation on Atmel AVR for Underwater Communication

MAC Protocol Implementation on Atmel AVR for Underwater Communication MAC Protocol Implementation on Atmel AVR for Underwater Communication - Report 3- Protocol Implementation Based on the survey, for small packet size in a small network, Aloha can bring more throughput.

More information

15-441: Computer Networking. Wireless Networking

15-441: Computer Networking. Wireless Networking 15-441: Computer Networking Wireless Networking Outline Wireless Challenges 802.11 Overview Link Layer Ad-hoc Networks 2 Assumptions made in Internet Host are (mostly) stationary Address assignment, routing

More information

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Five Problems Encoding/decoding Framing Error Detection Error Correction Media Access Five Problems Encoding/decoding Framing

More information

RFNoC : RF Network on Chip Martin Braun, Jonathon Pendlum GNU Radio Conference 2015

RFNoC : RF Network on Chip Martin Braun, Jonathon Pendlum GNU Radio Conference 2015 RFNoC : RF Network on Chip Martin Braun, Jonathon Pendlum GNU Radio Conference 2015 Outline Motivation Current situation Goal RFNoC Basic concepts Architecture overview Summary No Demo! See our booth,

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

Support for Smart NICs. Ian Pratt

Support for Smart NICs. Ian Pratt Support for Smart NICs Ian Pratt Outline Xen I/O Overview Why network I/O is harder than block Smart NIC taxonomy How Xen can exploit them Enhancing Network device channel NetChannel2 proposal I/O Architecture

More information

CSE 6811 Ashikur Rahman

CSE 6811 Ashikur Rahman Data Link layer Application Overview of IEEE 802.11 LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform address recognition and CRC validation.

More information

Medium Access Control Sublayer

Medium Access Control Sublayer Wireless (WLAN) Medium Access Control Sublayer Mahalingam Mississippi State University, MS October 20, 2014 Outline Medium Access Protocols Wireless (WLAN) 1 Medium Access Protocols ALOHA Slotted ALOHA

More information

Embedded Internet and the Internet of Things WS 12/13

Embedded Internet and the Internet of Things WS 12/13 Embedded Internet and the Internet of Things WS 12/13 4. MAC Protocols Prof. Dr. Mesut Güneş Distributed, embedded Systems (DES) Institute of Computer Science Freie Universität Berlin Prof. Dr. Mesut Güneş

More information

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

standard. Acknowledgement: Slides borrowed from Richard Y. Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data rate applications Ability to

More information

Data Communications. Data Link Layer Protocols Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

6th Slide Set Computer Networks

6th Slide Set Computer Networks Prof. Dr. Christian Baun 6th Slide Set Computer Networks Frankfurt University of Applied Sciences WS1718 1/36 6th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

More information

Department of Electrical and Computer Systems Engineering

Department of Electrical and Computer Systems Engineering Department of Electrical and Computer Systems Engineering Technical Report MECSE-6-2006 Medium Access Control (MAC) Schemes for Quality of Service (QoS) provision of Voice over Internet Protocol (VoIP)

More information

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4.

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4. Topics for Today More on Ethernet Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet Wireless LANs Readings 4.3 to 4.4 1 Original Ethernet Wiring Heavy coaxial cable, called thicknet,

More information

Strengthening Unlicensed Band Wireless Backhaul

Strengthening Unlicensed Band Wireless Backhaul be in charge Strengthening Unlicensed Band Wireless Backhaul Use TDD/TDMA Based Channel Access Mechanism WHITE PAPER Strengthening Unlicensed Band Wireless Backhaul: Use TDD/TDMA Based Channel Access Mechanism

More information

GUARANTEED END-TO-END LATENCY THROUGH ETHERNET

GUARANTEED END-TO-END LATENCY THROUGH ETHERNET GUARANTEED END-TO-END LATENCY THROUGH ETHERNET Øyvind Holmeide, OnTime Networks AS, Oslo, Norway oeyvind@ontimenet.com Markus Schmitz, OnTime Networks LLC, Texas, USA markus@ontimenet.com Abstract: Latency

More information

Ettus Research Update

Ettus Research Update Ettus Research Update Matt Ettus Ettus Research GRCon13 Outline 1 Introduction 2 Recent New Products 3 Third Generation Introduction Who am I? Core GNU Radio contributor since 2001 Designed

More information

GETTING STARTED GUIDE

GETTING STARTED GUIDE GETTING STARTED GUIDE LabVIEW Communications 802.11 Application Framework 2.5 This document provides basic information about how to get started with 802.11 Application Framework. Table of Contents System

More information

Computer Networks. Wireless LANs

Computer Networks. Wireless LANs Computer Networks Wireless LANs Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 Personal wireless nw WPAN 802.15 WiFi 802.11a 802.11b 802.11h 802.11i/e/

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

Wireless Local Area Networks (WLANs) Part I

Wireless Local Area Networks (WLANs) Part I Wireless Local Area Networks (WLANs) Part I Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

The WINLAB Cognitive Radio Platform

The WINLAB Cognitive Radio Platform The WINLAB Cognitive Radio Platform IAB Meeting, Fall 2007 Rutgers, The State University of New Jersey Ivan Seskar Software Defined Radio/ Cognitive Radio Terminology Software Defined Radio (SDR) is any

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Winter'11 1 Announcements Accessing secure part of the class Web page: User id: cmpe257.

More information

Canova Tech. IEEE Plenary Meeting, San Diego (CA) cg draft 2.0 PLCA (Clause 148) Overview July 9 th, 2018

Canova Tech. IEEE Plenary Meeting, San Diego (CA) cg draft 2.0 PLCA (Clause 148) Overview July 9 th, 2018 Canova Tech The Art of Silicon Sculpting PIERGIORGIO BERUTO ANTONIO ORZELLI IEEE 802.3 Plenary Meeting, San Diego (CA) 2018 802.3cg draft 2.0 PLCA (Clause 148) Overview July 9 th, 2018 Introduction PHY-Level

More information

Lecture 6. Data Link Layer (cont d) Data Link Layer 1-1

Lecture 6. Data Link Layer (cont d) Data Link Layer 1-1 Lecture 6 Data Link Layer (cont d) Data Link Layer 1-1 Agenda Continue the Data Link Layer Multiple Access Links and Protocols Addressing Data Link Layer 1-2 Multiple Access Links and Protocols Two types

More information

Practical Lazy Scheduling in Wireless Sensor Networks. Ramana Rao Kompella and Alex C. Snoeren

Practical Lazy Scheduling in Wireless Sensor Networks. Ramana Rao Kompella and Alex C. Snoeren Practical Lazy Scheduling in Wireless Sensor Networks Ramana Rao Kompella and Alex C. Snoeren Distributed Rate Adaptation Problem: In wireless networks (e.g., sensor nets, 802.11) radios consume significant

More information

MSIT 413: Wireless Technologies Week 8

MSIT 413: Wireless Technologies Week 8 MSIT 413: Wireless Technologies Week 8 Michael L. Honig Department of EECS Northwestern University November 2017 The Multiple Access Problem How can multiple mobiles access (communicate with) the same

More information

Unit 7 Media Access Control (MAC)

Unit 7 Media Access Control (MAC) Unit 7 Media Access Control (MAC) 1 Internet Model 2 Sublayers of Data Link Layer Logical link control (LLC) Flow control Error control Media access control (MAC) access control 3 Categorization of MAC

More information

IEEE MAC Sublayer (Based on IEEE )

IEEE MAC Sublayer (Based on IEEE ) IEEE 802.11 MAC Sublayer (Based on IEEE 802.11-1999) Wireless Networking Sunghyun Choi, Associate Professor Multimedia & Wireless Networking Lab. (MWNL) School of Electrical Engineering Seoul National

More information

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - WiFi (contd.); 16 th Aug 2012 Instructor: Sridhar Iyer IIT Bombay Clicker-1: Wireless v/s wired Which of the following differences between Wireless and Wired affect a CSMA-based

More information

19: Networking. Networking Hardware. Mark Handley

19: Networking. Networking Hardware. Mark Handley 19: Networking Mark Handley Networking Hardware Lots of different hardware: Modem byte at a time, FDDI, SONET packet at a time ATM (including some DSL) 53-byte cell at a time Reality is that most networking

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Spring'15 1 Next week Announcements April 14: ICN (Spencer Sevilla) April 16: DTN

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) Medium Access Control Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Simplified Reference Model Application layer Transport layer Network layer Data link

More information

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012 CSE 473 Introduction to Computer Networks Jon Turner Final Exam Your name here: 12/17/2012 1. (8 points). The figure below shows a network path connecting a server to a client. 200 km 2000 km 2 km X Y

More information

MAC. Fall Data Communications II 1

MAC. Fall Data Communications II 1 802.11 MAC Fall 2005 91.564 Data Communications II 1 RF Quality (ACK) Fall 2005 91.564 Data Communications II 2 Hidden Terminal (RTS/CTS) Fall 2005 91.564 Data Communications II 3 MAC Coordination Functions

More information

Wireless Networks (MAC)

Wireless Networks (MAC) 802.11 Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 2016.03.18 CSIE, NTU Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online: http://www.sss-mag.com/pdf/802_11tut.pdf

More information

LabVIEW Communications Application Framework 2.1

LabVIEW Communications Application Framework 2.1 GETTING STARTED GUIDE LabVIEW Communications 802.11 Application Framework 2.1 This document provides basic information about how to get started with the 802.11 Application Framework 2.1. Contents System

More information

A Case Study of A MIMO SDR Implementation

A Case Study of A MIMO SDR Implementation A Case Study of A MIMO SDR Implementation Xiaolong Li Weihong Hu Homayoun Yousefi zadeh Department of EECS University of California, Irvine [xiaolonl,weihongh,hyousefi]@uci.edu Akber Qureshi Network and

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering Student Name: Section #: King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering COE 344 Computer Networks (T072) Final Exam Date

More information

Presented by: Murad Kaplan

Presented by: Murad Kaplan Presented by: Murad Kaplan Introduction. Design of SCP-MAC. Lower Bound of Energy Performance with Periodic Traffic. Protocol Implementation. Experimental Evaluation. Related Work. 2 Energy is a critical

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 7.1 Comparison: infrastructure vs.

More information

SOFTWARE DEFI ED RADIO EXECUTIO LATE CY

SOFTWARE DEFI ED RADIO EXECUTIO LATE CY SOFTWARE DEFI ED RADIO EXECUTIO LATE CY Feng Ge, Alex Young, Terry Brisebois, Qinqin Chen, and Charles W. Bostian Virginia Polytechnic Institute and State University, Wireless @ Virginia Tech, Center for

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

The Tick Programmable Low-Latency SDR System

The Tick Programmable Low-Latency SDR System The Tick Programmable Low-Latency SDR System Haoyang Wu 1, Tao Wang 1, Zengwen Yuan 2, Chunyi Peng 3, Zhiwei Li 1, Zhaowei Tan 2, Boyan Ding 1, Xiaoguang Li 1, Yuanjie Li 2, Jun Liu 1, Songwu Lu 2 New

More information

WLAN Performance Aspects

WLAN Performance Aspects Mobile Networks Module C- Part 1 WLAN Performance Aspects Mohammad Hossein Manshaei Jean-Pierre Hubaux http://mobnet.epfl.ch 1 Performance Evaluation of IEEE 802.11(DCF) Real Experimentations HoE on IEEE

More information

Chapter 12 Multiple Access 12.1

Chapter 12 Multiple Access 12.1 Chapter 12 Multiple Access 12.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.2 Figure 12.1 Data link layer divided into two functionality-oriented sublayers

More information

Towards an Open Source IEEE p Stack

Towards an Open Source IEEE p Stack Towards an Open Source IEEE 802.11p Stack Bastian Bloessl Computer and Communication Systems Group, University of Innsbruck, Austria February 2014 FOSDEM SDR Dev Room Brussels, Belgium

More information

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi Overview 15-441 15-441: Computer Networking 15-641 Lecture 21: Wireless Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15-441-f17 Link layer challenges and WiFi WiFi Basic WiFi design Some

More information

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang Intelligent Transportation Systems Medium Access Control Prof. Dr. Thomas Strang Recap: Wireless Interconnections Networking types + Scalability + Range Delay Individuality Broadcast o Scalability o Range

More information

SIGFOX ultra-narrowband network optimization

SIGFOX ultra-narrowband network optimization SIGFOX ultra-narrowband network optimization Tomaž Šolc, Timotej Gale, Carolina Fortuna tomaz.solc@ijs.si Department of Communication Systems Jožef Stefan Institute Introduction ewine project Elastic Wireless

More information

Strategies and Guidelines for Improving Wireless Local Area Network Performance

Strategies and Guidelines for Improving Wireless Local Area Network Performance Strategies and Guidelines for Improving Wireless Local Area Network Performance Dr Nurul Sarkar Associate Professor School of Computing and Mathematical Sciences nurul.sarkar@aut.ac.nz 2 Outline of Talk

More information

Optional Point Coordination Function (PCF)

Optional Point Coordination Function (PCF) Optional Point Coordination Function (PCF) Time Bounded / Async Contention Free Service PCF Optional DCF (CSMA/CA ) Async Contention Service MAC PHY Contention Free Service uses Point Coordination Function

More information

Wireless Network Security Spring 2013

Wireless Network Security Spring 2013 Wireless Network Security 14-814 Spring 2013 Patrick Tague Class #10 MAC Layer Misbehavior MAC Misbehavior Agenda Analysis of the 802.11 MAC protocol Selfish / greedy 802.11 MAC misbehavior Malicious 802.11

More information

Computer Communication III

Computer Communication III Computer Communication III Wireless Media Access IEEE 802.11 Wireless LAN Advantages of Wireless LANs Using the license free ISM band at 2.4 GHz no complicated or expensive licenses necessary very cost

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT September 23, 2016 Aloha Advantages: Different size packets No need for synchronization Simple operation If low upstream traffic, the solution

More information

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices

More information

LXRS and LXRS+ Wireless Sensor Protocol

LXRS and LXRS+ Wireless Sensor Protocol LORD TECHNICAL NOTE LXRS and LXRS+ Wireless Sensor Protocol Using LXRS and LXRS+ For Long-Term Monitoring and High Bandwidth Test and Measurement Introduction LORD Sensing has developed and deployed two

More information

Telematics. 5rd Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments

Telematics. 5rd Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments 19540 - Telematics 5rd Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments Matthias Wa hlisch Department of Mathematics and Computer Science Institute of Computer Science 19. November, 2009 Institute

More information

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview Wireless LANs CSE 3213 Fall 2011 4 November 2011 Overview 2 1 Infrastructure Wireless LAN 3 Applications of Wireless LANs Key application areas: LAN extension cross-building interconnect nomadic access

More information

Performance evaluation of Linux CAN-related system calls

Performance evaluation of Linux CAN-related system calls Performance evaluation of Linux CAN-related system calls Michal Sojka, Pavel Píša, Zdeněk Hanzálek Czech Technical University in Prague, Faculty of Electrical Engineering Email: {sojkam1,pisa,hanzalek}@fel.cvut.cz

More information

A comparison of CSMA versus TDMA. This work was sponsored by a research grant from the Boeing Company. TDMA CSMA Hybrid

A comparison of CSMA versus TDMA. This work was sponsored by a research grant from the Boeing Company. TDMA CSMA Hybrid 1 LA-MAC: A Load Adaptive MAC Protocol for MANETs Weihong Hu Xiaolong Li Homayoun Yousefi zadeh Department of EECS University of California, Irvine [weihongh,xiaolonl,hyousefi]@uci.edu Abstract The performance

More information

Wireless Local Area Networks. Networks: Wireless LANs 1

Wireless Local Area Networks. Networks: Wireless LANs 1 Wireless Local Area Networks Networks: Wireless LANs 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application

More information

Hands-On Exercises: IEEE Standard

Hands-On Exercises: IEEE Standard Hands-On Exercises: IEEE 802.11 Standard Mohammad Hossein Manshaei and Jean-Pierre Hubaux {hossein.manshaei,jean-pierre.hubaux}@epfl.ch Laboratory for Computer Communications and Applications (LCA) March

More information

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University Wireless and WiFi Daniel Zappala CS 460 Computer Networking Brigham Young University Wireless Networks 2/28 mobile phone subscribers now outnumber wired phone subscribers similar trend likely with Internet

More information

Sensor Network Protocols

Sensor Network Protocols EE360: Lecture 15 Outline Sensor Network Protocols Announcements 2nd paper summary due March 7 Reschedule Wed lecture: 11-12:15? 12-1:15? 5-6:15? Project poster session March 15 5:30pm? Next HW posted

More information

Data Link Layer Technologies

Data Link Layer Technologies Chapter 2.2 La 2 Data Link La Technologies 1 Content Introduction La 2: Frames Error Handling 2 Media Access Control General approaches and terms Aloha Principles CSMA, CSMA/CD, CSMA / CA Master-Slave

More information

FRACTEL Design, Implementation And

FRACTEL Design, Implementation And FRACTEL Design, Implementation And Evaluationof of a Multi hop Wireless TDMA System Nirav Uchat Faculty Mentors Prof. Bhaskaran Raman and Prof. Kameswari Chebrolu SYNERG MTP Defense Workshop June 24 25,

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a time/space problem Who transmits when?

More information

Redes de Computadores. Medium Access Control

Redes de Computadores. Medium Access Control Redes de Computadores Medium Access Control Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 » How to control the access of computers to a communication medium?» What is the ideal Medium

More information

MAC Protocols for VANETs

MAC Protocols for VANETs MAC Protocols for VANETs Alexandru Oprea Department of Computer Science University of Freiburg Click to edit Master subtitle style Ad Hoc Networks Seminar Based on: Hamid Menouar and Fethi Filali, EURECOM

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.5: Ethernet Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer Networks

More information

Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica

Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 802.11 Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online: http://www.sss-mag.com/pdf/802_11tut.pdf

More information