Problems in Reputation based Methods in P2P Networks

Size: px
Start display at page:

Download "Problems in Reputation based Methods in P2P Networks"

Transcription

1 WDS'08 Proceedings of Contributed Papers, Part I, , ISBN MATFYZPRESS Problems in Reputation based Methods in P2P Networks M. Novotný Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic. Abstract. The P2P network's open and anonymous nature offers an almost ideal environment for malicious activities. One of the most effective methods, which should prevent malicious peers from subverting the system, is based on reputation. The reputation management offers possibility to detect malicious peers and avoid cooperation with them. The reputation management is mostly used only on the application layer. We focus on two open issues in the current methods which are connected with P2P layer: identity creation and routing table maintenance. We propose the new solutions of this issues which integrate a reputation on the overlay layer. Introduction The P2P network's open and anonymous nature offers an almost ideal environment for malicious activities. Anyone can participate on the P2P network and share resources without restriction. Malicious peers can exploit such environment to spread spurious content, override regular content or subvert communication between peers. The P2P networks must have a method to deal with this activities. Methods which are based on reputation have been investigated in recent years. The fundamental of this method is a reputation value which expresses an expected peer's behaviour based on observation of past behaviour and information from other peers. Although this methods have proven to be the most effective, there are still some important deficiencies which deserve our attention. This paper describes problems which are common to all current reputation techniques and drafts the possible solutions. We focus on two problems: identification creation and routing table maintenance. Both of those problems are weakness of current solutions and are connected with the P2P layer. The reputation management is mostly used only on the application layer. Our solution integrates reputation management on application layer into overlay layer. Overlay network is a virtual network created on top of another network and creates a basic communication environment for P2P network. Identification creation Every peer connected to the P2P network needs an unique identification which is created before the peer joins to the network. This identification determines the peer's position in the overlay network and designates the keys which are placed in its repository. The prevailing method of identification creation is based on asymmetric cryptography, where the identification is securely derived from the peer's public key. Every peer generates a key pair and its identification before it connects for the first time. This process is vulnerable in two ways: At first, the node can influence its position in the overlay network. The malicious node can generate key pairs so long until it finds the one, which has desired identification. If the node wanted to an exactly specific identification the cost would be too high. But the malicious node manages with identification which is sufficiently close to the desired one. For instance, the overlay network based on the distributed hash tables (DHT) Kademlia [1] uses a XOR metric. If the node wants to achieve placing the key K into its repository it must have an identification I, which is the closest to K in the XOR metric. The needed proximity depends on the filling of the identification space. There is no defence against such behaviour in a completely decentralized environment. In a partially decentralized environment, the trusted node can control assignment of identifications and avoid choosing the identification, which the node wishes. The second vulnerability consists in the fact that one physical node is able to create more virtual identifications. If a single malicious entity presents multiple identities, it can control a significant part of the 235

2 NOVOTNÝ : PROBLEM IN REPUTATION BASED METHODS IN P2P NETWORKS system. This attack is called Sybil Attack [2]. Similar problem is the possibility to create a new identity after the original identity gains a bad reputation (called whitewashing). The usual defence against artificial identities consists in costly identifiers. The node must consume a significant amount of resources or have human assistance before gains a new identification. This methods are easy to use in a system with a centralized login server, but it is difficult to apply it in a completely decentralized environment. Moreover, the use of costly identifiers isn't faultless solution because malicious peers with infinite resources can still create false identities. Other methods rely on mapping virtual identities into a physical one. For example, method called IP based safeguard (used in [3], [4]) divides address space into subsets and then independent calculation proceeds in each subset. This assumes known mapping between IP address and node's identification and it is unusable in the network, where we require anonymity. Distributed identification generation We suppose a fully decentralized and anonymized P2P network. Every peer has an asymmetric key pair and an identification securely derived from its public key. Other peers don't know mapping between IP address and the node's identification, but have a reliable way of delivering a message to the peer according to its identification. Moreover, every peer can be malicious and we can not expect its correct behaviour. The network use reputation management to reduce the probability of cooperating with malicious peers. If a new node wants to join the network, it needs an identification and an initial reputation. We propose algorithm based on reputation management which produces the identification for a new peer, see Figure 1. Figure 1: Distributed identification generation. The protocol has this steps : 1. The node contacts n random chosen peers (verifiers) and asks them for an identification creation. 2. The verifiers use CAPTCHA to check whether the node represent a human identity. 3. After the successful human check the verifiers send their restriction on the public key of node. For example, the SHA 1 hash of public key with a specific initialization vector must have at least z bits zero. 236

3 Discussion NOVOTNÝ : PROBLEM IN REPUTATION BASED METHODS IN P2P NETWORKS 4. The node generates key pairs so long until it find a pair which fulfil all restrictions. 5. The node sends the public key to the verifiers. 6. The verifiers check the own restriction and create a certificate which proves node's authenticity. This certificate is spread through the reputation management. The certificate is valid only a limited time, its purpose is to give the node a chance to prove its trustworthiness. The protection against artificial identities has two steps. The node needs human assistance to fill up CAPTCHA in the step 2 and consume resources to key generation in the step 4. The step 4 avoids generation arbitrary identifiers as well. The node have a chance to chose the strength of restrictions according to its performance. The strength of the restriction is expressed by the probability P, that a randomly generated key fulfils the restriction. This probability is included in the certificate and is used to determine node trustworthiness. The more difficult key generation means higher reputation. The certificate includes information only about one satisfied restriction, but the node has to fulfil all restrictions. Hence, the nodes have to prove their identity by all certificates. On the basis of all these certificates, every peer is able to compute amount of work, which the original node consumed on identifier's generation. It is possible that one or more verifiers is malicious and helps other malicious peers to gain a new identifiers. The integration into reputation management should avoid this. The peers ignore certificates signed by low trustworthy verifiers. Further, it is possible that malicious node with a lot of resources fulfils all restrictions and generates several artificial identities. This identities have a high initial reputation but only for limited time. If the node does not prove its trustworthiness in next transactions, it will lose the reputation. Open problems and Future Work The malicious requirement on the node identifier can be considered as an additional restriction in the step 4. Let's suppose that the additional restriction (called malicious restriction) requires that a derived key is equal with a specific key at least in p bits. The high efficient node is able to fulfil the malicious restriction together with restrictions from the verifiers. The type of malicious restriction depends on the metric which is used in the overlay network. Our goal is to propose the set of restrictions which is difficult to fulfil together with restrictions from the verifiers. Routing table maintenance In an overlay network, a message goes through the several peers (hops) before reaching its final destination. Every peer makes a decision on the next hop according to its routing table. The routing table is built as a result of the cooperation of a number of peers. Each hop can forward a message to an incorrect successor or not forward it at all. This behaviour can be caused by a malicious character of the peer or by a wrong record in the routing table. Adversaries can send a message with an incorrect routing update and invalidate the routing tables of other peers. One solution is to define strong constraints on the set of peers which can fill slot in the routing table [5]. But these constraints reduce the possibilities of the algorithm that uses network proximity to improve routing efficiency by selecting a proper peer on each slot in a routing table. A better solution uses two routing tables, one for efficient routing, and one that constraints routing entries [6]. The first routing table is used for normal operation and the second one only when the first attempt fails. Using reputation management in routing table maintenance We integrate reputation management into routing table maintenance. The peer can reject a routing update from the peer which is not trustworthy. However, trustful peers can spread incorrect routing updates as well, moreover the rejection of many updates can result into lack of routing information. We propose the system, where every peer holds probability for each routing entry, which represents the probability of successful delivery of messages sent through this route. The probability cannot be replaced by peer's trustworthiness because this value does not refer to one peer only but describes a behaviour of all peers on the path. In addition, the real probability can change any time, because the hops on the path were changed. This value is distributed within the routing updates or through reputation management. 237

4 NOVOTNÝ : PROBLEM IN REPUTATION BASED METHODS IN P2P NETWORKS There are two aspects which the node must take into account before accepts a new routing on the basis of information from other peers (referees): the referee's trustworthiness and where the routing was in the routing table on the referee. The position in the routing table designates how many peers were reachable through this routing entry and determine the usability of information about the delivery probability. Implementation in Pastry Each Pastry [7] node has a unique 128 bit nodeid, which is considered as a sequence of digits with base 2 b. A routing table is organized into log 2b (N) rows with 2 b 1 entries each. The 2 b 1 entries in row n of the routing table refer to a node whose nodeid match the current node's in the first n digits and n+1th digit has one of 2 b 1 possible values. Each entry in the routing table refers to one of potentially many nodes whose nodeid has the appropriate prefix. The original Pastry chooses the closest to the current node according to network proximity. Our approach allows to take into account network proximity and path reliability together. Let us consider the situation where a peer makes a decision about insertion a new routing entry. The peer has information from n referees. Each referee i provides this information: P i the probability that messages sent through this route reache final destination (from the referee's point of view). R i row number in the routing table on the referee. The reputation management adds value T i, which represents the referee's trustworthiness. The probability P is calculated as weighted average of P i, where weights reflect referee's trustworthiness and position in its routing table, as shown in Figure 2. R represents the row number where a new entry will be inserted. P= n i =1 n i =1 P i = T i 2 b R i R Figure 2: Derivation of the probability of the message delivery according to information from the referees. If the R = R i the weight is equal to referee trustworthiness. Otherwise, the weight is proportional to the ratio of amount of nodes which were reachable through this route on the referee, to amount of nodes which will be reachable through this route on this node. Discussion Every peer is able to calculate estimate probability of the message delivery for each node. This probability along with information about network proximity is used for the decision if the node is reliable for a given entry in the routing table. The routing table growths by one real value for each routing entry. This value should be updated after each successful or failed message sending. It is preferable to keep two values which represent numbers of delivered and failed messages. The desired probability can be calculated from these values any time. When the node creates a new routing entry it initializes numbers of delivered and failed messages according to the obtained probability and a number of nodes which are reachable through this route. Open problems and Future work There is one fundamental problem which we have not mentioned yet. The path between nodes can be changed any time, hence the value connected with this path is changed too. Moreover, behaviour of some nodes on the path can change too. The node can not sufficiently react to rapid changes because it gathers information only from its experience. The further solutions should invoke recalculation after some changes or time. Nevertheless, this method is unusable in the network, where we expect frequent changes. The future work should verify this method in the simulation. 238

5 Conclusion NOVOTNÝ : PROBLEM IN REPUTATION BASED METHODS IN P2P NETWORKS In this paper, we presented the two problems which are connected with peer to peer networks. Both related to the overlay which P2P networks are built on. In the first proposal the peers cooperate to create a new identification for a newcomer, the goal is to forbid creating a new identification whenever the malicious peer likes. The second proposal use information from other peers to choose the next hop with the maximal probability to deliver message to receiver. The fundamental of both proposals is an integration of reputation management, which is used on the application layer. The advantage of this integration is possibility to share information between the application layer and overlay layer. References [1]: P. Maymounkov, D. Maziéres. Kademlia: A Peer to peer Information System Based on the XOR Metric, In 1st International Workshop on Peer to peer Systems, pp , 2002 [2]: J. R. Douceur. The Sybil Attack, Microsoft Research, pp , 2002 [3]: L. Yu, W. Susilo, R. Safavi Naini. X2BT Trusted Reputation System: A Robust Mechanism for P2P Networks. The 5th International Conference on Cryptology and Network Security (CANS 2006), Lecture Notes in Computer Science 4301, pp , Springer Verlag, 2006 [4]: P. Dewan, P. Dasgupta, PRIDE: Peer to Peer Reputation Infrastructure for Decentralized Environments, In: WWW Alt. 2004, pp ACM Press, New York, 2004 [5]: E. Sit, R. Morris. Security Considerations for Peer to Peer Distributed Hash Tables, Proceedings of the 1st International Workshop on Peer to Peer Systems, pp , 2002 [6]: M. Castro, P. Druschel, A. Ganesh, A. Rowstron, D. S. Wallach. Secure routing for structured peer to peer overlay networks, OSDI '02: Proceedings of the 5th symposium on Operating systems design and implementation, pp , 2002 [7]: A. Rowstron, P. Druschel. Pastry: Scalable, decentralized object location and routing for large scale peerto peer systems". IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany, pp

NodeId Verification Method against Routing Table Poisoning Attack in Chord DHT

NodeId Verification Method against Routing Table Poisoning Attack in Chord DHT NodeId Verification Method against Routing Table Poisoning Attack in Chord DHT 1 Avinash Chaudhari, 2 Pradeep Gamit 1 L.D. College of Engineering, Information Technology, Ahmedabad India 1 Chaudhari.avi4u@gmail.com,

More information

Evaluation of the p2p Structured Systems Resistance against the Starvation Attack

Evaluation of the p2p Structured Systems Resistance against the Starvation Attack Evaluation of the p2p Structured Systems Resistance against the Starvation Attack Rubén Cuevas, Ángel Cuevas, Manuel Urueña, Albert Banchs and Carmen Guerrero Departament of Telematic Engineering, Universidad

More information

Reputation Management in P2P Systems

Reputation Management in P2P Systems Reputation Management in P2P Systems Pradipta Mitra Nov 18, 2003 1 We will look at... Overview of P2P Systems Problems in P2P Systems Reputation Management Limited Reputation Sharing Simulation Results

More information

DHT Routing Using Social Links

DHT Routing Using Social Links DHT Routing Using Social Links Sergio Marti, Prasanna Ganesan and Hector Garcia-Molina Stanford University {smarti, prasanna, hector}@cs.stanford.edu Abstract The equality and anonymity of peer-to-peer

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [P2P SYSTEMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Byzantine failures vs malicious nodes

More information

Secure Routing in Peer-to-Peer Distributed Hash Tables

Secure Routing in Peer-to-Peer Distributed Hash Tables Secure Routing in Peer-to-Peer Distributed Hash Tables Keith Needels Department of Computer Science Rochester Institute of Technology Rochester, NY 14623 keithn@csh.rit.edu Minseok Kwon Department of Computer

More information

Chapter 10: Peer-to-Peer Systems

Chapter 10: Peer-to-Peer Systems Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, Addison-Wesley 2005 Introduction To enable the sharing of data and resources

More information

Detecting and Recovering from Overlay Routing. Distributed Hash Tables. MS Thesis Defense Keith Needels March 20, 2009

Detecting and Recovering from Overlay Routing. Distributed Hash Tables. MS Thesis Defense Keith Needels March 20, 2009 Detecting and Recovering from Overlay Routing Attacks in Peer-to-Peer Distributed Hash Tables MS Thesis Defense Keith Needels March 20, 2009 Thesis Information Committee: Chair: Professor Minseok Kwon

More information

Sybil defenses via social networks

Sybil defenses via social networks Sybil defenses via social networks Abhishek University of Oslo, Norway 19/04/2012 1 / 24 Sybil identities Single user pretends many fake/sybil identities i.e., creating multiple accounts observed in real-world

More information

arxiv: v1 [cs.cr] 30 May 2014

arxiv: v1 [cs.cr] 30 May 2014 ROMEO: ReputatiOn Model Enhancing OpenID Simulator Ginés Dólera Tormo 1, Félix Gómez Mármol 1, and Gregorio Martínez Pérez 2 arxiv:1405.7831v1 [cs.cr] 30 May 2014 1 NEC Europe Ltd., Kurfürsten-Anlage 36,

More information

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 Lecture 6: Overlay Networks CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 1 Overlay networks: Motivations Protocol changes in the network happen very slowly Why? Internet is shared

More information

Motivation for peer-to-peer

Motivation for peer-to-peer Peer-to-peer systems INF 5040 autumn 2015 lecturer: Roman Vitenberg INF5040, Frank Eliassen & Roman Vitenberg 1 Motivation for peer-to-peer Ø Inherent restrictions of the standard client/ server model

More information

DISTRIBUTED HASH TABLE PROTOCOL DETECTION IN WIRELESS SENSOR NETWORKS

DISTRIBUTED HASH TABLE PROTOCOL DETECTION IN WIRELESS SENSOR NETWORKS DISTRIBUTED HASH TABLE PROTOCOL DETECTION IN WIRELESS SENSOR NETWORKS Mr. M. Raghu (Asst.professor) Dr.Pauls Engineering College Ms. M. Ananthi (PG Scholar) Dr. Pauls Engineering College Abstract- Wireless

More information

Security Considerations for Peer-to-Peer Distributed Hash Tables

Security Considerations for Peer-to-Peer Distributed Hash Tables Security Considerations for Peer-to-Peer Distributed Hash Tables Emil Sit and Robert Morris Laboratory for Computer Science, MIT 200 Technology Square, Cambridge, MA 02139, USA {sit,rtm}@lcs.mit.edu Abstract.

More information

Purpose and security analysis of RASTER

Purpose and security analysis of RASTER Purpose and security analysis of RASTER Oliver Gasser Advisor: Christian Grothoff Seminar Future Internet SS2010 Lehrstuhl Netzarchitekturen und Netzdienste Fakultät für Informatik, Technische Universität

More information

Detecting and Recovering from Overlay Routing Attacks in Peer-to-Peer Distributed Hash Tables

Detecting and Recovering from Overlay Routing Attacks in Peer-to-Peer Distributed Hash Tables Detecting and Recovering from Overlay Routing Attacks in Peer-to-Peer Distributed Hash Tables A thesis for the degree of Master of Science in Computer Science Keith Needels keithn@csh.rit.edu Department

More information

Peer-to-peer systems and overlay networks

Peer-to-peer systems and overlay networks Complex Adaptive Systems C.d.L. Informatica Università di Bologna Peer-to-peer systems and overlay networks Fabio Picconi Dipartimento di Scienze dell Informazione 1 Outline Introduction to P2P systems

More information

A reputation system for BitTorrent peer-to-peer filesharing

A reputation system for BitTorrent peer-to-peer filesharing University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2006 A reputation system for BitTorrent peer-to-peer filesharing

More information

Scalability In Peer-to-Peer Systems. Presented by Stavros Nikolaou

Scalability In Peer-to-Peer Systems. Presented by Stavros Nikolaou Scalability In Peer-to-Peer Systems Presented by Stavros Nikolaou Background on Peer-to-Peer Systems Definition: Distributed systems/applications featuring: No centralized control, no hierarchical organization

More information

A Brief Comparison of Security Patterns for Peer to Peer Systems

A Brief Comparison of Security Patterns for Peer to Peer Systems A Brief Comparison of Security Patterns for Peer to Peer Systems Rahul J. Vaghela 1, Kalpesh Patel 2 1 PG Student, Department of Computer Engineering, L.D. College Of Engineering, Gujarat Technological

More information

Peer-to-Peer Systems and Security

Peer-to-Peer Systems and Security Peer-to-Peer Systems and Security Attacks! Christian Grothoff Technische Universität München April 13, 2013 Salsa & AP3 Goal: eliminate trusted blender server Idea: Use DHT (AP3: Pastry, Salsa: custom

More information

A Structured Overlay for Non-uniform Node Identifier Distribution Based on Flexible Routing Tables

A Structured Overlay for Non-uniform Node Identifier Distribution Based on Flexible Routing Tables A Structured Overlay for Non-uniform Node Identifier Distribution Based on Flexible Routing Tables Takehiro Miyao, Hiroya Nagao, Kazuyuki Shudo Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku,

More information

Building a low-latency, proximity-aware DHT-based P2P network

Building a low-latency, proximity-aware DHT-based P2P network Building a low-latency, proximity-aware DHT-based P2P network Ngoc Ben DANG, Son Tung VU, Hoai Son NGUYEN Department of Computer network College of Technology, Vietnam National University, Hanoi 144 Xuan

More information

Introduction to Peer-to-Peer Systems

Introduction to Peer-to-Peer Systems Introduction Introduction to Peer-to-Peer Systems Peer-to-peer (PP) systems have become extremely popular and contribute to vast amounts of Internet traffic PP basic definition: A PP system is a distributed

More information

Survey of DHT Evaluation Methods

Survey of DHT Evaluation Methods Survey of DHT Evaluation Methods Markus Meriläinen Helsinki University of Technology Markus.Merilainen@tkk.fi Abstract In this paper, we present an overview of factors affecting the performance of the

More information

08 Distributed Hash Tables

08 Distributed Hash Tables 08 Distributed Hash Tables 2/59 Chord Lookup Algorithm Properties Interface: lookup(key) IP address Efficient: O(log N) messages per lookup N is the total number of servers Scalable: O(log N) state per

More information

Athens University of Economics and Business. Dept. of Informatics

Athens University of Economics and Business. Dept. of Informatics Athens University of Economics and Business Athens University of Economics and Business Dept. of Informatics B.Sc. Thesis Project report: Implementation of the PASTRY Distributed Hash Table lookup service

More information

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today Network Science: Peer-to-Peer Systems Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Introduction Peer-to-peer (PP) systems have become

More information

CS514: Intermediate Course in Computer Systems

CS514: Intermediate Course in Computer Systems Distributed Hash Tables (DHT) Overview and Issues Paul Francis CS514: Intermediate Course in Computer Systems Lecture 26: Nov 19, 2003 Distributed Hash Tables (DHT): Overview and Issues What is a Distributed

More information

Defending against Eclipse attacks on overlay networks

Defending against Eclipse attacks on overlay networks Defending against Eclipse attacks on overlay networks Atul Singh 1 Miguel Castro 2 Peter Druschel 1 Antony Rowstron 2 1 Rice University, Houston, TX, USA. 2 Microsoft Research, Cambridge, UK. Abstract

More information

Effects of Churn on Structured P2P Overlay Networks

Effects of Churn on Structured P2P Overlay Networks International Conference on Automation, Control, Engineering and Computer Science (ACECS'14) Proceedings - Copyright IPCO-214, pp.164-17 ISSN 2356-568 Effects of Churn on Structured P2P Overlay Networks

More information

S/Kademlia: A Practicable Approach Towards Secure Key Based Routing

S/Kademlia: A Practicable Approach Towards Secure Key Based Routing S/Kademlia: A Practicable Approach Towards Secure Key Based Routing Ingmar Baumgart, Sebastian Mies P2P NVE 2007, Hsinchu, Taiwan, Institute of Telematics Prof. Dr. M. Zitterbart Motivation Kademlia is

More information

A WebRTC DHT. Andres Ledesma (UCY) in cooperation with Mikael (Peerialism).

A WebRTC DHT. Andres Ledesma (UCY) in cooperation with Mikael (Peerialism). A WebRTC DHT Andres Ledesma (UCY) in cooperation with Mikael (Peerialism). Preface I Existing DHT overlays have been optimized using one criteria (network proximity, social links, content caching or others).

More information

HyCube: A distributed hash table based on a hierarchical hypercube geometry

HyCube: A distributed hash table based on a hierarchical hypercube geometry HyCube: A distributed hash table based on a hierarchical hypercube geometry Artur Olszak Institute of Computer Science, Warsaw University of Technology A.Olszak@ii.pw.edu.pl Abstract. This paper presents

More information

Peer-to-Peer Semantic Search Engine

Peer-to-Peer Semantic Search Engine Peer-to-Peer Semantic Search Engine Tomáš Havryluk, Ivan Jelínek Abstract: Peer-to-Peer is a relatively old but still an evolving branch of web technologies. This article gives a survey of Peer-to-Peer

More information

Should we build Gnutella on a structured overlay? We believe

Should we build Gnutella on a structured overlay? We believe Should we build on a structured overlay? Miguel Castro, Manuel Costa and Antony Rowstron Microsoft Research, Cambridge, CB3 FB, UK Abstract There has been much interest in both unstructured and structured

More information

AP3: Cooperative, decentralized anonymous communication

AP3: Cooperative, decentralized anonymous communication AP3: Cooperative, decentralized anonymous communication Alan Mislove Gaurav Oberoi Ansley Post Charles Reis Peter Druschel Dan S. Wallach Rice University, Houston, TX, USA University of Washington, Seattle,

More information

Security for Structured Peer-to-peer Overlay Networks. Acknowledgement. Outline. By Miguel Castro et al. OSDI 02 Presented by Shiping Chen in IT818

Security for Structured Peer-to-peer Overlay Networks. Acknowledgement. Outline. By Miguel Castro et al. OSDI 02 Presented by Shiping Chen in IT818 Security for Structured Peer-to-peer Overlay Networks By Miguel Castro et al. OSDI 02 Presented by Shiping Chen in IT818 1 Acknowledgement Some of the following slides are borrowed from talks by Yun Mao

More information

Avoiding Eclipse attacks on Kad/Kademlia: an identity based approach

Avoiding Eclipse attacks on Kad/Kademlia: an identity based approach Avoiding Eclipse attacks on Kad/Kademlia: an identity based approach Leonardo Maccari, Matteo Rosi, Romano Fantacci, Luigi Chisci Luca Maria Aiello, Marco Milanesio Department of Electronics and Telecommunications

More information

Slides for Chapter 10: Peer-to-Peer Systems

Slides for Chapter 10: Peer-to-Peer Systems Slides for Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Napster

More information

Peer-to-Peer Systems. Chapter General Characteristics

Peer-to-Peer Systems. Chapter General Characteristics Chapter 2 Peer-to-Peer Systems Abstract In this chapter, a basic overview is given of P2P systems, architectures, and search strategies in P2P systems. More specific concepts that are outlined include

More information

Eclipse Attacks on Overlay Networks: Threats and Defenses

Eclipse Attacks on Overlay Networks: Threats and Defenses Eclipse Attacks on Overlay Networks: Threats and Defenses Atul Singh, Tsuen-Wan Johnny Ngan, Peter Druschel, and Dan S. Wallach Department of Computer Science, Rice University Max Planck Institute for

More information

Architectures for Distributed Systems

Architectures for Distributed Systems Distributed Systems and Middleware 2013 2: Architectures Architectures for Distributed Systems Components A distributed system consists of components Each component has well-defined interface, can be replaced

More information

Sybil Attack Detection with Reduced Bandwidth overhead in Urban Vehicular Networks

Sybil Attack Detection with Reduced Bandwidth overhead in Urban Vehicular Networks Sybil Attack Detection with Reduced Bandwidth overhead in Urban Vehicular Networks D.Balamahalakshmi Department of Computer Science and Engineering, V.S.B Engineering College, Karur, Tamilnadu, India 1

More information

Lecture 13: P2P Distributed Systems

Lecture 13: P2P Distributed Systems Lecture 13: P2P Distributed Systems Behzad Bordbar School of Computer Science, University of Birmingham, UK Lecture 13 1 Outline Characteristics of P2P How Napster works? Limitation of Napster and P2P

More information

Detecting and Excluding Misbehaving Nodes in a P2P Network

Detecting and Excluding Misbehaving Nodes in a P2P Network Detecting and Excluding Misbehaving Nodes in a P2P Network François Lesueur Ludovic Mé Valérie Viet Triem Tong SUPELEC, SSIR Group (EA 4039) Avenue de la Boulaie - CS 47601-35576 Cesson-Sévigné cedex -

More information

Peer Assisted Content Distribution over Router Assisted Overlay Multicast

Peer Assisted Content Distribution over Router Assisted Overlay Multicast Peer Assisted Content Distribution over Router Assisted Overlay Multicast George Xylomenos, Konstantinos Katsaros and Vasileios P. Kemerlis Mobile Multimedia Laboratory & Department of Informatics Athens

More information

Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays

Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays Alan Mislove Peter Druschel Rice University, Houston, TX, USA Abstract Structured peer-to-peer (p2p) overlay networks provide

More information

Peer to Peer Networks

Peer to Peer Networks Sungkyunkwan University Peer to Peer Networks Prepared by T. Le-Duc and H. Choo Copyright 2000-2017 Networking Laboratory Presentation Outline 2.1 Introduction 2.2 Client-Server Paradigm 2.3 Peer-To-Peer

More information

Secure Distributed Storage in Peer-to-peer networks

Secure Distributed Storage in Peer-to-peer networks Secure Distributed Storage in Peer-to-peer networks Øyvind Hanssen 07.02.2007 Motivation Mobile and ubiquitous computing Persistent information in untrusted networks Sharing of storage and information

More information

Exploiting the Synergy between Peer-to-Peer and Mobile Ad Hoc Networks

Exploiting the Synergy between Peer-to-Peer and Mobile Ad Hoc Networks Exploiting the Synergy between Peer-to-Peer and Mobile Ad Hoc Networks Y. Charlie Hu, Saumitra M. Das, and Himabindu Pucha Purdue University West Lafayette, IN 47907 {ychu, smdas, hpucha}@purdue.edu Abstract

More information

Routing Table Construction Method Solely Based on Query Flows for Structured Overlays

Routing Table Construction Method Solely Based on Query Flows for Structured Overlays Routing Table Construction Method Solely Based on Query Flows for Structured Overlays Yasuhiro Ando, Hiroya Nagao, Takehiro Miyao and Kazuyuki Shudo Tokyo Institute of Technology Abstract In structured

More information

Trust Management in Wireless Networks

Trust Management in Wireless Networks 1 Trust Management in Wireless Networks Eduardo Cardoce and Muthu Pitchaimani Department of Electric Engineering and Computer Science University of Kansas 1520 West 15 th Street Lawrence, KS, 66045-7621

More information

R/Kademlia: Recursive and Topology-aware Overlay Routing

R/Kademlia: Recursive and Topology-aware Overlay Routing R/Kademlia: Recursive and Topology-aware Overlay Routing Bernhard Heep ATNAC 2010, Auckland, New Zealand, 11/02/2010, KIT University of the State of Baden-Wuerttemberg and National Research Center of the

More information

An Efficient and Secure Peer-to-Peer Overlay Network

An Efficient and Secure Peer-to-Peer Overlay Network An Efficient and Secure Peer-to-Peer Overlay Network Honghao Wang, Yingwu Zhu and Yiming Hu Department of Electrical & Computer Engineering and Computer Science University of Cincinnati {wanghong, zhuy,

More information

Comparing Chord, CAN, and Pastry Overlay Networks for Resistance to DoS Attacks

Comparing Chord, CAN, and Pastry Overlay Networks for Resistance to DoS Attacks Comparing Chord, CAN, and Pastry Overlay Networks for Resistance to DoS Attacks Hakem Beitollahi Hakem.Beitollahi@esat.kuleuven.be Geert Deconinck Geert.Deconinck@esat.kuleuven.be Katholieke Universiteit

More information

Winter CS454/ Assignment 2 Instructor: Bernard Wong Due date: March 12 15, 2012 Group size: 2

Winter CS454/ Assignment 2 Instructor: Bernard Wong Due date: March 12 15, 2012 Group size: 2 Winter CS454/654 2012 Assignment 2 Instructor: Bernard Wong Due date: March 12 15, 2012 Group size: 2 Distributed systems is a rapidly evolving field. Most of the systems we have studied (or will study)

More information

Content Overlays. Nick Feamster CS 7260 March 12, 2007

Content Overlays. Nick Feamster CS 7260 March 12, 2007 Content Overlays Nick Feamster CS 7260 March 12, 2007 Content Overlays Distributed content storage and retrieval Two primary approaches: Structured overlay Unstructured overlay Today s paper: Chord Not

More information

GNUnet Distributed Data Storage

GNUnet Distributed Data Storage GNUnet Distributed Data Storage DHT and Distance Vector Transport Nathan S. Evans 1 1 Technische Universität München Department of Computer Science Network Architectures and Services July, 24 2010 Overview

More information

Distributed Systems Peer-to-Peer Systems

Distributed Systems Peer-to-Peer Systems Distributed Systems Peer-to-Peer Systems [2] P2P Systems - Goals and Definition Goal: to enable sharing of data and resources on a very large scale by eliminating any requirement for separately-managed

More information

Distributed Hash Table

Distributed Hash Table Distributed Hash Table P2P Routing and Searching Algorithms Ruixuan Li College of Computer Science, HUST rxli@public.wh.hb.cn http://idc.hust.edu.cn/~rxli/ In Courtesy of Xiaodong Zhang, Ohio State Univ

More information

Towards Scalable and Robust Overlay Networks

Towards Scalable and Robust Overlay Networks Towards Scalable and Robust Overlay Networks Baruch Awerbuch Department of Computer Science Johns Hopkins University Baltimore, MD 21218, USA baruch@cs.jhu.edu Christian Scheideler Institute for Computer

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing Department of Computer Science Institute for System Architecture, Chair for Computer Networks File Sharing What is file sharing? File sharing is the practice of making files available for other users to

More information

A Survey on Peer-to-Peer File Systems

A Survey on Peer-to-Peer File Systems Christopher Chang May 10, 2007 CSE 598D: Storage Systems Department of Computer Science and Engineering The Pennsylvania State University A Survey on Peer-to-Peer File Systems Introduction Demand for information

More information

PAST: Persistent and Anonymous Storage in a Peer-to-Peer Networking Environment

PAST: Persistent and Anonymous Storage in a Peer-to-Peer Networking Environment PAST: Persistent and Anonymous Storage in a Peer-to-Peer Networking Environment Peter Druschel and Antony Rowstron Rice University, 6100 Main Street, MS 132, Houston, TX 77005-1892, USA Microsoft Research

More information

A Chord-Based Novel Mobile Peer-to-Peer File Sharing Protocol

A Chord-Based Novel Mobile Peer-to-Peer File Sharing Protocol A Chord-Based Novel Mobile Peer-to-Peer File Sharing Protocol Min Li 1, Enhong Chen 1, and Phillip C-y Sheu 2 1 Department of Computer Science and Technology, University of Science and Technology of China,

More information

Efficient Compilers for Authenticated Group Key Exchange

Efficient Compilers for Authenticated Group Key Exchange Efficient Compilers for Authenticated Group Key Exchange Qiang Tang and Chris J. Mitchell Information Security Group, Royal Holloway, University of London Egham, Surrey TW20 0EX, UK {qiang.tang, c.mitchell}@rhul.ac.uk

More information

A Directed-multicast Routing Approach with Path Replication in Content Addressable Network

A Directed-multicast Routing Approach with Path Replication in Content Addressable Network 2010 Second International Conference on Communication Software and Networks A Directed-multicast Routing Approach with Path Replication in Content Addressable Network Wenbo Shen, Weizhe Zhang, Hongli Zhang,

More information

DYNAMIC TREE-LIKE STRUCTURES IN P2P-NETWORKS

DYNAMIC TREE-LIKE STRUCTURES IN P2P-NETWORKS DYNAMIC TREE-LIKE STRUCTURES IN P2P-NETWORKS Herwig Unger Markus Wulff Department of Computer Science University of Rostock D-1851 Rostock, Germany {hunger,mwulff}@informatik.uni-rostock.de KEYWORDS P2P,

More information

Slides for Chapter 10: Peer-to-Peer Systems. From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design

Slides for Chapter 10: Peer-to-Peer Systems. From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Slides for Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Edited and supplemented by Jonne Itkonen,!

More information

SPROUT: P2P Routing with Social Networks

SPROUT: P2P Routing with Social Networks SPROUT: P2P Routing with Social Networks Sergio Marti, Prasanna Ganesan and Hector Garcia-Molina Stanford University {smarti, prasannag, hector}@cs.stanford.edu March 1, 24 Abstract In this paper, we investigate

More information

Evaluation of Sybil Attacks Protection Schemes in KAD

Evaluation of Sybil Attacks Protection Schemes in KAD Evaluation of Sybil Attacks Protection Schemes in KAD Thibault Cholez, Isabelle Chrisment, and Olivier Festor MADYNES - INRIA Nancy-Grand Est, France {thibault.cholez,isabelle.chrisment,olivier.festor}@loria.fr

More information

Towards a Common API for Structured Peer-to-Peer Overlays

Towards a Common API for Structured Peer-to-Peer Overlays Towards a Common API for Structured Peer-to-Peer Overlays Frank Dabek Ben Zhao Peter Druschel John Kubiatowicz Ion Stoica MIT Laboratory for Computer Science, Cambridge, MA. University of California, Berkeley,

More information

A Traceback Attack on Freenet

A Traceback Attack on Freenet A Traceback Attack on Freenet Guanyu Tian, Zhenhai Duan Florida State University {tian, duan}@cs.fsu.edu Todd Baumeister, Yingfei Dong University of Hawaii {baumeist, yingfei}@hawaii.edu Abstract Freenet

More information

An Agenda for Robust Peer-to-Peer Storage

An Agenda for Robust Peer-to-Peer Storage An Agenda for Robust Peer-to-Peer Storage Rodrigo Rodrigues Massachusetts Institute of Technology rodrigo@lcs.mit.edu Abstract Robust, large-scale storage is one of the main applications of DHTs and a

More information

Towards a Common API for Structured Peer-to-Peer Overlays Λ

Towards a Common API for Structured Peer-to-Peer Overlays Λ Appears in Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS 03). Towards a Common API for Structured Peer-to-Peer Overlays Λ Frank Dabek 1 Ben Zhao 2 Peter Druschel 3 John Kubiatowicz

More information

Evaluation of VO Intersection Trust model for Ad hoc Grids

Evaluation of VO Intersection Trust model for Ad hoc Grids Evaluation of VO Intersection Trust model for Ad hoc Grids Ladislav Huraj and Vladimir Siládi Abstract Trust is an integral part of grid computing systems. Traditional grid environment uses various, mostly

More information

PERFORMANCE ANALYSIS OF R/KADEMLIA, PASTRY AND BAMBOO USING RECURSIVE ROUTING IN MOBILE NETWORKS

PERFORMANCE ANALYSIS OF R/KADEMLIA, PASTRY AND BAMBOO USING RECURSIVE ROUTING IN MOBILE NETWORKS International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.5, September 27 PERFORMANCE ANALYSIS OF R/KADEMLIA, PASTRY AND BAMBOO USING RECURSIVE ROUTING IN MOBILE NETWORKS Farida Chowdhury

More information

OPAX - An Open Peer-to-Peer Architecture for XML Message Exchange

OPAX - An Open Peer-to-Peer Architecture for XML Message Exchange OPAX - An Open Peer-to-Peer Architecture for XML Message Exchange Bernhard Schandl, University of Vienna bernhard.schandl@univie.ac.at Users wishing to find multimedia material about interesting events

More information

Trust4All: a Trustworthy Middleware Platform for Component Software

Trust4All: a Trustworthy Middleware Platform for Component Software Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 124 Trust4All: a Trustworthy Middleware Platform for Component Software

More information

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE for for March 10, 2006 Agenda for Peer-to-Peer Sytems Initial approaches to Their Limitations CAN - Applications of CAN Design Details Benefits for Distributed and a decentralized architecture No centralized

More information

A Composite Trust based Public Key Management in MANETs

A Composite Trust based Public Key Management in MANETs USMA 6 th Network Science Workshop April 23, 2012 West Point, NY U.S. Army Research, Development and Engineering Command A Composite Trust based Public Key Management in MANETs Jin-Hee Cho and Kevin Chan

More information

Design of a New Hierarchical Structured Peer-to-Peer Network Based On Chinese Remainder Theorem

Design of a New Hierarchical Structured Peer-to-Peer Network Based On Chinese Remainder Theorem Design of a New Hierarchical Structured Peer-to-Peer Network Based On Chinese Remainder Theorem Bidyut Gupta, Nick Rahimi, Henry Hexmoor, and Koushik Maddali Department of Computer Science Southern Illinois

More information

Peer to Peer Networks

Peer to Peer Networks Sungkyunkwan University Peer to Peer Networks Prepared by T. Le-Duc and H. Choo Copyright 2000-2018 Networking Laboratory P2P Applications Traditional P2P applications: for file sharing BitTorrent, Emule

More information

: Scalable Lookup

: Scalable Lookup 6.824 2006: Scalable Lookup Prior focus has been on traditional distributed systems e.g. NFS, DSM/Hypervisor, Harp Machine room: well maintained, centrally located. Relatively stable population: can be

More information

Kademlia: A peer-to peer information system based on XOR. based on XOR Metric,by P. Maymounkov and D. Mazieres

Kademlia: A peer-to peer information system based on XOR. based on XOR Metric,by P. Maymounkov and D. Mazieres : A peer-to peer information system based on XOR Metric,by P. Maymounkov and D. Mazieres March 10, 2009 : A peer-to peer information system based on XOR Features From past p2p experiences, it has been

More information

DR. ADNAN SHAHID KHAN GSF6011 RESEARCH METHODOLOGY

DR. ADNAN SHAHID KHAN GSF6011 RESEARCH METHODOLOGY DR. ADNAN SHAHID KHAN THE PURPOSE OF ANY DATA ANALYSIS IS TO PROVE THAT THE PROPOSED WORK AS COMPARED TO BASELINE BENCHMARKS FROM DIFFERENT PERSPECTIVES USING DIFFERENT ANALYSIS METHODS AND TOOLS BY GENERATING

More information

Dynamic Load Sharing in Peer-to-Peer Systems: When some Peers are more Equal than Others

Dynamic Load Sharing in Peer-to-Peer Systems: When some Peers are more Equal than Others Dynamic Load Sharing in Peer-to-Peer Systems: When some Peers are more Equal than Others Sabina Serbu, Silvia Bianchi, Peter Kropf and Pascal Felber Computer Science Department, University of Neuchâtel

More information

Telematics Chapter 9: Peer-to-Peer Networks

Telematics Chapter 9: Peer-to-Peer Networks Telematics Chapter 9: Peer-to-Peer Networks Beispielbild User watching video clip Server with video clips Application Layer Presentation Layer Application Layer Presentation Layer Session Layer Session

More information

Leveraging Identity-based Cryptography for Node ID Assignment in Structured P2P Systems

Leveraging Identity-based Cryptography for Node ID Assignment in Structured P2P Systems Leveraging Identity-based Cryptography for Node ID Assignment in Structured P2P Systems Sunam Ryu, Kevin Butler, Patrick Traynor, and Patrick McDaniel Systems and Internet Infrastructure Security Laboratory

More information

Peer-to-peer computing research a fad?

Peer-to-peer computing research a fad? Peer-to-peer computing research a fad? Frans Kaashoek kaashoek@lcs.mit.edu NSF Project IRIS http://www.project-iris.net Berkeley, ICSI, MIT, NYU, Rice What is a P2P system? Node Node Node Internet Node

More information

DRing: A Layered Scheme for Range Queries over DHTs

DRing: A Layered Scheme for Range Queries over DHTs DRing: A Layered Scheme for Range Queries over DHTs Nicolas Hidalgo, Erika Rosas, Luciana Arantes, Olivier Marin, Pierre Sens and Xavier Bonnaire Université Pierre et Marie Curie, CNRS INRIA - REGAL, Paris,

More information

CSE 5852, Modern Cryptography: Foundations Fall Lecture 26. pk = (p,g,g x ) y. (p,g,g x ) xr + y Check g xr +y =(g x ) r.

CSE 5852, Modern Cryptography: Foundations Fall Lecture 26. pk = (p,g,g x ) y. (p,g,g x ) xr + y Check g xr +y =(g x ) r. CSE 5852, Modern Cryptography: Foundations Fall 2016 Lecture 26 Prof. enjamin Fuller Scribe: Tham Hoang 1 Last Class Last class we introduce the Schnorr identification scheme [Sch91]. The scheme is to

More information

PRIVATE GROUPS IN PEER-TO-PEER NETWORKS. Oleh Hordiichuk, Oleksiy Bychkov

PRIVATE GROUPS IN PEER-TO-PEER NETWORKS. Oleh Hordiichuk, Oleksiy Bychkov 346 International Journal "Information Models and Analyses" Volume 4, Number 4, 2015 PRIVATE GROUPS IN PEER-TO-PEER NETWORKS Oleh Hordiichuk, Oleksiy Bychkov Abstract: Peer-to-peer architectures are designed

More information

Distributed Information Processing

Distributed Information Processing Distributed Information Processing 14 th Lecture Eom, Hyeonsang ( 엄현상 ) Department of Computer Science & Engineering Seoul National University Copyrights 2016 Eom, Hyeonsang All Rights Reserved Outline

More information

P2PNS: A Secure Distributed Name Service for P2PSIP

P2PNS: A Secure Distributed Name Service for P2PSIP P2PNS: A Secure Distributed Name Service for P2PSIP Mobile P2P 2008, Hong Kong, China Outline Decentralized VoIP (P2PSIP) Peer-to-Peer name service (P2PNS) Architecture Two-stage name resolution P2PNS

More information

Application Layer Multicast For Efficient Peer-to-Peer Applications

Application Layer Multicast For Efficient Peer-to-Peer Applications Application Layer Multicast For Efficient Peer-to-Peer Applications Adam Wierzbicki 1 e-mail: adamw@icm.edu.pl Robert Szczepaniak 1 Marcin Buszka 1 1 Polish-Japanese Institute of Information Technology

More information

Overlay Networks for Multimedia Contents Distribution

Overlay Networks for Multimedia Contents Distribution Overlay Networks for Multimedia Contents Distribution Vittorio Palmisano vpalmisano@gmail.com 26 gennaio 2007 Outline 1 Mesh-based Multicast Networks 2 Tree-based Multicast Networks Overcast (Cisco, 2000)

More information

Enforcing Fair Sharing of Peer-to-Peer Resources

Enforcing Fair Sharing of Peer-to-Peer Resources Enforcing Fair Sharing of Peer-to-Peer Resources Tsuen-Wan Johnny Ngan, Dan S. Wallach, and Peter Druschel Department of Computer Science, Rice University twngan,dwallach,druschel @cs.rice.edu Abstract

More information

Identifiers, Privacy and Trust in the Internet of Services

Identifiers, Privacy and Trust in the Internet of Services Identifiers, Privacy and Trust in the Internet of Services Leonardo A. Martucci, Sebastian Ries, and Max Mühlhäuser Technische Universität Darmstadt, CASED Mornewegstr. 32, DE-64293, Darmstadt, Germany

More information