Plan of the lecture I. INTRODUCTION II. DYNAMICAL PROCESSES. I. Networks: definitions, statistical characterization, examples II. Modeling frameworks

Size: px
Start display at page:

Download "Plan of the lecture I. INTRODUCTION II. DYNAMICAL PROCESSES. I. Networks: definitions, statistical characterization, examples II. Modeling frameworks"

Transcription

1 Plan of the lecture I. INTRODUCTION I. Networks: definitions, statistical characterization, examples II. Modeling frameworks II. DYNAMICAL PROCESSES I. Resilience, vulnerability II. Random walks III. Epidemic processes IV. Social pheomena V. Some perspectives

2 Robustness Complex systems maintain their basic functions even under errors and failures (cell mutations; Internet router breakdowns) 1 S: fraction of giant component S 0 1 Fraction of removed nodes, f f c node failure

3 Case of Scale-free Networks s Random failure f c =1 (2 < γ 3) Attack =progressive failure of the most connected nodes f c <1 f c 1 Internet maps R. Albert, H. Jeong, A.L. Barabasi, Nature (2000)

4 Failures vs. attacks Failures Topological error tolerance 1 S γ 3 : f c =1 (R. Cohen et al PRL, 2000) 0 f f 1 c Attacks

5 Failures = percolation f=fraction of nodes removed because of failure p=1-f p=probability of a node to be present in a percolation problem Question: existence or not of a giant/percolating cluster, i.e. of a connected cluster of nodes of size O(N)

6 Percolation Question: existence or not of a giant/percolating cluster, i.e. of a connected cluster of nodes of size O(N)

7 Percolation Question: existence or not of a giant/percolating cluster, i.e. of a connected cluster of nodes of size O(N)

8 Percolation in complex networks q=probability that a randomly chosen link does not lead to a giant percolating cluster Average over degrees Proba that the link leads to a node of degree k Proba that none of the outgoing k-1 links leads to a giant cluster NB: uncorrelated random networks

9 Percolation in complex networks q=probability that a randomly chosen link does not lead to a giant percolating cluster No other solution if F (1) < 1

10 Percolation in complex networks q=probability that a randomly chosen link does not lead to a giant percolating cluster Other solution iff F (1)>1

11 Percolation in complex networks q=probability that a randomly chosen link does not lead to a giant percolating cluster Molloy-Reed criterion for the existence of a giant cluster in a random uncorrelated network

12 Back to random failures Initial network: P 0 (k), <k> 0, <k 2 > 0 After removal of fraction f of nodes: P f (k), <k> f, <k 2 > f Node of degree k 0 becomes of degree k with proba

13 Back to random failures Initial network: P 0 (k), <k> 0, <k 2 > 0 After removal of fraction f of nodes: P f (k), < k> f, <k 2 > f Molloy-Reed criterion: existence of a giant cluster iff Robustness!!!

14 Finite number of nodes N Finite cut-off for P(k) Finite Finite-size effects Example: scale-free network, min. degree m, Cut-off defined by

15 Finite-size effects Example: scale-free network, min. degree m, N k c γ > 3: finite => f c finite 2 < γ < 3: Ex: N=1000, m=1, γ=2.5 => k c = 100, f c ~ 0.9

16 Finite-size effects Finite number of nodes N Finite cut-off for P(k) Finite f c strictly smaller than 1 Ex: power-law P(k) k - γ For k < k c

17 Attacks: various strategies Most connected nodes Nodes with largest betweenness Removal of links linked to nodes with large k Removal of links with largest betweenness Cascades...

18 Attacks: most connected nodes Removal of a fraction f of nodes, such that these nodes are the most connected ones: Implicit equation defining the largest degree after removal:: => Modification of the degree distribution of the remaining nodes

19 Attacks: most connected nodes Removal of a fraction f of nodes, such that these nodes are the most connected ones Modification of the degree distribution of the remaining nodes: Probability that a neighbor of a given node has been removed= probability that the neighbor has degree > k c (f) = (in a random uncorrelated network)

20 Attacks: most connected nodes Removal of a fraction f of nodes, such that these nodes are the most connected ones Remaining network= Cut-off k c (f) Random removal with proba r(f) Molloy-Reed criterion => threshold f c at which the giant component disappears

21 Attacks: most connected nodes Example: scale-free network, min. degree m

22 Attacks: most connected nodes Example: scale-free network, min. degree m

23 Attacks: other strategies Nodes with largest betweenness Removal of links linked to nodes with large k Removal of links with largest betweenness Cascades... Problem of reinforcement? P. Holme et al (2002); A. Motter et al. (2002); D. Watts, PNAS (2002); Dall Asta et al. (2006)

24 Attacks in weighted networks Weighted quantities: For attack strategies For evaluating damage

25 Attacks in weighted networks Example: transportation network Centrality measures: Strength s i = w ij Weighted betweenness centrality Distance strength D i = j d ij Outreach O i = j w ij d ij

26 Attacks in weighted networks Example: transportation network Damage measures: Topological integrity N g /N 0 Weighted integrity measures: Total strength S g /S 0 Total distance strength, outreach

27 Attacks in weighted networks Example: world airport network

28 Note: recomputed quantities

Failure in Complex Social Networks

Failure in Complex Social Networks Journal of Mathematical Sociology, 33:64 68, 2009 Copyright # Taylor & Francis Group, LLC ISSN: 0022-250X print/1545-5874 online DOI: 10.1080/00222500802536988 Failure in Complex Social Networks Damon

More information

SNA 8: network resilience. Lada Adamic

SNA 8: network resilience. Lada Adamic SNA 8: network resilience Lada Adamic Outline Node vs. edge percolation Resilience of randomly vs. preferentially grown networks Resilience in real-world networks network resilience Q: If a given fraction

More information

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno Wednesday, March 8, 2006 Complex Networks Presenter: Jirakhom Ruttanavakul CS 790R, University of Nevada, Reno Presented Papers Emergence of scaling in random networks, Barabási & Bonabeau (2003) Scale-free

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

Social and Technological Network Analysis. Lecture 6: Network Robustness and Applica=ons. Dr. Cecilia Mascolo

Social and Technological Network Analysis. Lecture 6: Network Robustness and Applica=ons. Dr. Cecilia Mascolo Social and Technological Network Analysis Lecture 6: Network Robustness and Applica=ons Dr. Cecilia Mascolo In This Lecture We revisit power- law networks and define the concept of robustness We show the

More information

Complex Networks: Ubiquity, Importance and Implications. Alessandro Vespignani

Complex Networks: Ubiquity, Importance and Implications. Alessandro Vespignani Contribution : 2005 NAE Frontiers of Engineering Complex Networks: Ubiquity, Importance and Implications Alessandro Vespignani School of Informatics and Department of Physics, Indiana University, USA 1

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 3 Aug 2000

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 3 Aug 2000 Error and attack tolerance of complex networks arxiv:cond-mat/0008064v1 [cond-mat.dis-nn] 3 Aug 2000 Réka Albert, Hawoong Jeong, Albert-László Barabási Department of Physics, University of Notre Dame,

More information

The missing links in the BGP-based AS connectivity maps

The missing links in the BGP-based AS connectivity maps The missing links in the BGP-based AS connectivity maps Zhou, S; Mondragon, RJ http://arxiv.org/abs/cs/0303028 For additional information about this publication click this link. http://qmro.qmul.ac.uk/xmlui/handle/123456789/13070

More information

Impact of Clustering on Epidemics in Random Networks

Impact of Clustering on Epidemics in Random Networks Impact of Clustering on Epidemics in Random Networks Joint work with Marc Lelarge INRIA-ENS 8 March 2012 Coupechoux - Lelarge (INRIA-ENS) Epidemics in Random Networks 8 March 2012 1 / 19 Outline 1 Introduction

More information

Topic mash II: assortativity, resilience, link prediction CS224W

Topic mash II: assortativity, resilience, link prediction CS224W Topic mash II: assortativity, resilience, link prediction CS224W Outline Node vs. edge percolation Resilience of randomly vs. preferentially grown networks Resilience in real-world networks network resilience

More information

The Establishment Game. Motivation

The Establishment Game. Motivation Motivation Motivation The network models so far neglect the attributes, traits of the nodes. A node can represent anything, people, web pages, computers, etc. Motivation The network models so far neglect

More information

Critical Phenomena in Complex Networks

Critical Phenomena in Complex Networks Critical Phenomena in Complex Networks Term essay for Physics 563: Phase Transitions and the Renormalization Group University of Illinois at Urbana-Champaign Vikyath Deviprasad Rao 11 May 2012 Abstract

More information

Scalable P2P architectures

Scalable P2P architectures Scalable P2P architectures Oscar Boykin Electrical Engineering, UCLA Joint work with: Jesse Bridgewater, Joseph Kong, Kamen Lozev, Behnam Rezaei, Vwani Roychowdhury, Nima Sarshar Outline Introduction to

More information

Complex Networks. Structure and Dynamics

Complex Networks. Structure and Dynamics Complex Networks Structure and Dynamics Ying-Cheng Lai Department of Mathematics and Statistics Department of Electrical Engineering Arizona State University Collaborators! Adilson E. Motter, now at Max-Planck

More information

CS-E5740. Complex Networks. Scale-free networks

CS-E5740. Complex Networks. Scale-free networks CS-E5740 Complex Networks Scale-free networks Course outline 1. Introduction (motivation, definitions, etc. ) 2. Static network models: random and small-world networks 3. Growing network models: scale-free

More information

Attack Vulnerability of Network with Duplication-Divergence Mechanism

Attack Vulnerability of Network with Duplication-Divergence Mechanism Commun. Theor. Phys. (Beijing, China) 48 (2007) pp. 754 758 c International Academic Publishers Vol. 48, No. 4, October 5, 2007 Attack Vulnerability of Network with Duplication-Divergence Mechanism WANG

More information

NDIA 19th Annual System Engineering Conference, Springfield, Virginia October 24-27, 2016

NDIA 19th Annual System Engineering Conference, Springfield, Virginia October 24-27, 2016 NDIA 19th Annual System Engineering Conference, Springfield, Virginia October 24-27, 2016 Caesar S. Benipayo, PhD Student Under advisement of Dr. Michael Grenn and Dr. Blake Roberts Department of Engineering

More information

Properties of Biological Networks

Properties of Biological Networks Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási

More information

TITLE PAGE. Classification: PHYSICAL SCIENCES/Applied Physical Sciences. Title: Mitigation of Malicious Attacks on Networks

TITLE PAGE. Classification: PHYSICAL SCIENCES/Applied Physical Sciences. Title: Mitigation of Malicious Attacks on Networks TITLE PAGE Classification: PHYSICAL SCIENCES/Applied Physical Sciences Title: Mitigation of Malicious Attacks on Networks Author: C.M. Schneider 1, A.A. Moreira 2, J.S. Andrade Jr 1,2, S. Havlin 3 and

More information

An introduction to the physics of complex networks

An introduction to the physics of complex networks An introduction to the physics of complex networks Alain Barrat CPT, Marseille, France ISI, Turin, Italy http://www.cpt.univ-mrs.fr/~barrat http://www.cxnets.org http://www.sociopatterns.org REVIEWS: Statistical

More information

Supplementary material to Epidemic spreading on complex networks with community structures

Supplementary material to Epidemic spreading on complex networks with community structures Supplementary material to Epidemic spreading on complex networks with community structures Clara Stegehuis, Remco van der Hofstad, Johan S. H. van Leeuwaarden Supplementary otes Supplementary ote etwork

More information

Basics of Network Analysis

Basics of Network Analysis Basics of Network Analysis Hiroki Sayama sayama@binghamton.edu Graph = Network G(V, E): graph (network) V: vertices (nodes), E: edges (links) 1 Nodes = 1, 2, 3, 4, 5 2 3 Links = 12, 13, 15, 23,

More information

The Node Degree Distribution in Power Grid and Its Topology Robustness under Random and Selective Node Removals

The Node Degree Distribution in Power Grid and Its Topology Robustness under Random and Selective Node Removals The Node Degree Distribution in Power Grid and Its Topology Robustness under Random and Selective Node Removals Zhifang Wang, Member, IEEE, Anna Scaglione, Member, IEEE, and Robert J. Thomas, Fellow, IEEE

More information

SELF-HEALING NETWORKS: REDUNDANCY AND STRUCTURE

SELF-HEALING NETWORKS: REDUNDANCY AND STRUCTURE SELF-HEALING NETWORKS: REDUNDANCY AND STRUCTURE Guido Caldarelli IMT, CNR-ISC and LIMS, London UK DTRA Grant HDTRA1-11-1-0048 INTRODUCTION The robustness and the shape Baran, P. On distributed Communications

More information

Modeling and Simulating Social Systems with MATLAB

Modeling and Simulating Social Systems with MATLAB Modeling and Simulating Social Systems with MATLAB Lecture 8 Introduction to Graphs/Networks Olivia Woolley, Stefano Balietti, Lloyd Sanders, Dirk Helbing Chair of Sociology, in particular of Modeling

More information

ECS 289 / MAE 298, Lecture 15 Mar 2, Diffusion, Cascades and Influence, Part II

ECS 289 / MAE 298, Lecture 15 Mar 2, Diffusion, Cascades and Influence, Part II ECS 289 / MAE 298, Lecture 15 Mar 2, 2011 Diffusion, Cascades and Influence, Part II Diffusion and cascades in networks (Nodes in one of two states) Viruses (human and computer) contact processes epidemic

More information

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008 Lesson 4 Random graphs Sergio Barbarossa Graph models 1. Uncorrelated random graph (Erdős, Rényi) N nodes are connected through n edges which are chosen randomly from the possible configurations 2. Binomial

More information

Introduction to network metrics

Introduction to network metrics Universitat Politècnica de Catalunya Version 0.5 Complex and Social Networks (2018-2019) Master in Innovation and Research in Informatics (MIRI) Instructors Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

More information

Phase Transitions in Random Graphs- Outbreak of Epidemics to Network Robustness and fragility

Phase Transitions in Random Graphs- Outbreak of Epidemics to Network Robustness and fragility Phase Transitions in Random Graphs- Outbreak of Epidemics to Network Robustness and fragility Mayukh Nilay Khan May 13, 2010 Abstract Inspired by empirical studies researchers have tried to model various

More information

Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks

Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks Rui Yang, 1 Wen-Xu Wang, 1 Ying-Cheng Lai, 1,2 and Guanrong Chen 3 1 Department of Electrical Engineering, Arizona

More information

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell Nick Hamilton Institute for Molecular Bioscience Essential Graph Theory for Biologists Image: Matt Moores, The Visible Cell Outline Core definitions Which are the most important bits? What happens when

More information

On Complex Dynamical Networks. G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong

On Complex Dynamical Networks. G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong On Complex Dynamical Networks G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong 1 Complex Networks: Some Typical Examples 2 Complex Network Example: Internet (William

More information

Error and Attack Tolerance of Scale-Free Networks: Effects of Geometry

Error and Attack Tolerance of Scale-Free Networks: Effects of Geometry Error and Attack Tolerance of Scale-Free Networks: Effects of Geometry Advisor: Prof. Hawoong Jeong A thesis submitted to the faculty of the KAIST in partial fulfillment of the requirements for the degree

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 7 Jan 2004

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 7 Jan 2004 Structural Vulnerability of the North American Power Grid Réka Albert 1,2 István Albert 2 and Gary L. Nakarado 3 arxiv:cond-mat/0401084v1 [cond-mat.dis-nn] 7 Jan 2004 1. Department of Physics, Pennsylvania

More information

Data mining --- mining graphs

Data mining --- mining graphs Data mining --- mining graphs University of South Florida Xiaoning Qian Today s Lecture 1. Complex networks 2. Graph representation for networks 3. Markov chain 4. Viral propagation 5. Google s PageRank

More information

Research on Invulnerability of Wireless Sensor Networks Based on Complex Network Topology Structure

Research on Invulnerability of Wireless Sensor Networks Based on Complex Network Topology Structure Research on Invulnerability of Wireless Sensor Networks Based on Complex Network Topology Structure https://doi.org/10.3991/ijoe.v13i03.6863 Zhigang Zhao Zhejiang University of Media and Communications,

More information

Attacks and Cascades in Complex Networks

Attacks and Cascades in Complex Networks Attacks and Cascades in Complex Networks Ying-Cheng Lai 1, Adilson E. Motter 2, and Takashi Nishikawa 3 1 Department of Mathematics and Statistics, Department of Electrical Engineering, Arizona State University,

More information

Network Thinking. Complexity: A Guided Tour, Chapters 15-16

Network Thinking. Complexity: A Guided Tour, Chapters 15-16 Network Thinking Complexity: A Guided Tour, Chapters 15-16 Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-pj45avc/

More information

Statistical Analysis of the Metropolitan Seoul Subway System: Network Structure and Passenger Flows arxiv: v1 [physics.soc-ph] 12 May 2008

Statistical Analysis of the Metropolitan Seoul Subway System: Network Structure and Passenger Flows arxiv: v1 [physics.soc-ph] 12 May 2008 Statistical Analysis of the Metropolitan Seoul Subway System: Network Structure and Passenger Flows arxiv:0805.1712v1 [physics.soc-ph] 12 May 2008 Keumsook Lee a,b Woo-Sung Jung c Jong Soo Park d M. Y.

More information

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS.

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS. Graph Theory COURSE: Introduction to Biological Networks LECTURE 1: INTRODUCTION TO NETWORKS Arun Krishnan Koenigsberg, Russia Is it possible to walk with a route that crosses each bridge exactly once,

More information

The Coral Project: Defending against Large-scale Attacks on the Internet. Chenxi Wang

The Coral Project: Defending against Large-scale Attacks on the Internet. Chenxi Wang 1 The Coral Project: Defending against Large-scale Attacks on the Internet Chenxi Wang chenxi@cmu.edu http://www.ece.cmu.edu/coral.html The Motivation 2 Computer viruses and worms are a prevalent threat

More information

Structure of biological networks. Presentation by Atanas Kamburov

Structure of biological networks. Presentation by Atanas Kamburov Structure of biological networks Presentation by Atanas Kamburov Seminar Gute Ideen in der theoretischen Biologie / Systembiologie 08.05.2007 Overview Motivation Definitions Large-scale properties of cellular

More information

arxiv: v1 [cs.si] 2 Sep 2016

arxiv: v1 [cs.si] 2 Sep 2016 Miuz: measuring the impact of disconnecting a node Ivana Bachmann 1, Patricio Reyes 2, Alonso Silva 3, and Javier Bustos-Jiménez 4 arxiv:1609.00638v1 [cs.si] 2 Sep 2016 1,4 NICLabs, Computer Science Department

More information

A Generating Function Approach to Analyze Random Graphs

A Generating Function Approach to Analyze Random Graphs A Generating Function Approach to Analyze Random Graphs Presented by - Vilas Veeraraghavan Advisor - Dr. Steven Weber Department of Electrical and Computer Engineering Drexel University April 8, 2005 Presentation

More information

Examples of Complex Networks

Examples of Complex Networks Examples of Complex Networks Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-

More information

Abrupt efficiency collapse in real-world complex weighted networks:

Abrupt efficiency collapse in real-world complex weighted networks: Abrupt efficiency collapse in real-world complex weighted networks: robustness decrease with link weights heterogeneity Bellingeri M. 1*, Bevacqua D. 2, Scotognella F. 3,4, Cassi D. 1 1 Dipartimento di

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

A Statistical Method for Synthetic Power Grid Generation based on the U.S. Western Interconnection

A Statistical Method for Synthetic Power Grid Generation based on the U.S. Western Interconnection A Statistical Method for Synthetic Power Grid Generation based on the U.S. Western Interconnection Saleh Soltan, Gil Zussman Columbia University New York, NY Failures in Power Grids One of the most essential

More information

Smallest small-world network

Smallest small-world network Smallest small-world network Takashi Nishikawa, 1, * Adilson E. Motter, 1, Ying-Cheng Lai, 1,2 and Frank C. Hoppensteadt 1,2 1 Department of Mathematics, Center for Systems Science and Engineering Research,

More information

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network

More information

Community Detection. Community

Community Detection. Community Community Detection Community In social sciences: Community is formed by individuals such that those within a group interact with each other more frequently than with those outside the group a.k.a. group,

More information

Importance of IP Alias Resolution in Sampling Internet Topologies

Importance of IP Alias Resolution in Sampling Internet Topologies Importance of IP Alias Resolution in Sampling Internet Topologies Mehmet H. Gunes and Kamil Sarac Global Internet Symposium 007, Anchorage, AK Introduction: Internet Mapping Topology measurement studies

More information

Summary: What We Have Learned So Far

Summary: What We Have Learned So Far Summary: What We Have Learned So Far small-world phenomenon Real-world networks: { Short path lengths High clustering Broad degree distributions, often power laws P (k) k γ Erdös-Renyi model: Short path

More information

V 1 Introduction! Mon, Oct 15, 2012! Bioinformatics 3 Volkhard Helms!

V 1 Introduction! Mon, Oct 15, 2012! Bioinformatics 3 Volkhard Helms! V 1 Introduction! Mon, Oct 15, 2012! Bioinformatics 3 Volkhard Helms! How Does a Cell Work?! A cell is a crowded environment! => many different proteins,! metabolites, compartments,! On a microscopic level!

More information

Systems, ESD.00. Networks II. Lecture 8. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow

Systems, ESD.00. Networks II. Lecture 8. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Introduction to Engineering Systems, ESD.00 Networks II Lecture 8 Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Outline Introduction to networks Infrastructure networks Institutional

More information

Complex networks: Dynamics and security

Complex networks: Dynamics and security PRAMANA c Indian Academy of Sciences Vol. 64, No. 4 journal of April 2005 physics pp. 483 502 Complex networks: Dynamics and security YING-CHENG LAI 1, ADILSON MOTTER 2, TAKASHI NISHIKAWA 3, KWANGHO PARK

More information

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows)

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Average clustering coefficient of a graph Overall measure

More information

The Mathematical Description of Networks

The Mathematical Description of Networks Modelling Complex Systems University of Manchester, 21 st 23 rd June 2010 Tim Evans Theoretical Physics The Mathematical Description of Networs Page 1 Notation I will focus on Simple Graphs with multiple

More information

Advanced Algorithms and Models for Computational Biology -- a machine learning approach

Advanced Algorithms and Models for Computational Biology -- a machine learning approach Advanced Algorithms and Models for Computational Biology -- a machine learning approach Biological Networks & Network Evolution Eric Xing Lecture 22, April 10, 2006 Reading: Molecular Networks Interaction

More information

M.E.J. Newman: Models of the Small World

M.E.J. Newman: Models of the Small World A Review Adaptive Informatics Research Centre Helsinki University of Technology November 7, 2007 Vocabulary N number of nodes of the graph l average distance between nodes D diameter of the graph d is

More information

L Modeling and Simulating Social Systems with MATLAB

L Modeling and Simulating Social Systems with MATLAB 851-0585-04L Modeling and Simulating Social Systems with MATLAB Lecture 6 Introduction to Graphs/Networks Karsten Donnay and Stefano Balietti Chair of Sociology, in particular of Modeling and Simulation

More information

Exercise set #2 (29 pts)

Exercise set #2 (29 pts) (29 pts) The deadline for handing in your solutions is Nov 16th 2015 07:00. Return your solutions (one.pdf le and one.zip le containing Python code) via e- mail to Becs-114.4150@aalto.fi. Additionally,

More information

Design Robust Networks against Overload-Based Cascading Failures

Design Robust Networks against Overload-Based Cascading Failures Design Robust Networks against Overload-Based Cascading Failures Hoang Anh Q. Tran *1, Akira Namatame 2 Dept. of Computer Science, National Defense Academy of Japan, Yokosuka, Kanagawa, Japan *1 ed13004@nda.ac.jp;

More information

Topology and Dynamics of Complex Networks

Topology and Dynamics of Complex Networks CS 790R Seminar Modeling & Simulation Topology and Dynamics of Complex Networks ~ Lecture 3: Review based on Strogatz (2001), Barabási & Bonabeau (2003), Wang, X. F. (2002) ~ René Doursat Department of

More information

Overlay (and P2P) Networks

Overlay (and P2P) Networks Overlay (and P2P) Networks Part II Recap (Small World, Erdös Rényi model, Duncan Watts Model) Graph Properties Scale Free Networks Preferential Attachment Evolving Copying Navigation in Small World Samu

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection, most

More information

Attack vulnerability of complex networks

Attack vulnerability of complex networks Attack vulnerability of complex networks Petter Holme and Beom Jun Kim Department of Theoretical Physics, Umeå University, 901 87 Umeå, Sweden Chang No Yoon and Seung Kee Han Department of Physics, Chungbuk

More information

Supply chains involve complex webs of interactions among suppliers, manufacturers,

Supply chains involve complex webs of interactions among suppliers, manufacturers, D e p e n d a b l e A g e n t S y s t e m s Survivability of Multiagent-Based Supply Networks: A Topological Perspective Hari Prasad Thadakamalla, Usha Nandini Raghavan, Soundar Kumara, and Réka Albert,

More information

RANDOM-REAL NETWORKS

RANDOM-REAL NETWORKS RANDOM-REAL NETWORKS 1 Random networks: model A random graph is a graph of N nodes where each pair of nodes is connected by probability p: G(N,p) Random networks: model p=1/6 N=12 L=8 L=10 L=7 The number

More information

STRUCTURAL ANALYSIS OF ELECTRICAL NETWORKS

STRUCTURAL ANALYSIS OF ELECTRICAL NETWORKS CRIS, Third International Conference on Critical Infrastructures, Alexandria, VA, September 2006 STRUCTURAL ANALYSIS OF ELECTRICAL NETWORKS Karla Atkins (*), Jiangzhuo Chen (*), V. S. Anil Kumar (*) and

More information

CENTRALITIES. Carlo PICCARDI. DEIB - Department of Electronics, Information and Bioengineering Politecnico di Milano, Italy

CENTRALITIES. Carlo PICCARDI. DEIB - Department of Electronics, Information and Bioengineering Politecnico di Milano, Italy CENTRALITIES Carlo PICCARDI DEIB - Department of Electronics, Information and Bioengineering Politecnico di Milano, Italy email carlo.piccardi@polimi.it http://home.deib.polimi.it/piccardi Carlo Piccardi

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Cascading failures in complex networks with community structure

Cascading failures in complex networks with community structure International Journal of Modern Physics C Vol. 25, No. 5 (2014) 1440005 (10 pages) #.c World Scienti c Publishing Company DOI: 10.1142/S0129183114400051 Cascading failures in complex networks with community

More information

Topologies and Centralities of Replied Networks on Bulletin Board Systems

Topologies and Centralities of Replied Networks on Bulletin Board Systems Topologies and Centralities of Replied Networks on Bulletin Board Systems Qin Sen 1,2 Dai Guanzhong 2 Wang Lin 2 Fan Ming 2 1 Hangzhou Dianzi University, School of Sciences, Hangzhou, 310018, China 2 Northwestern

More information

Signal Processing for Big Data

Signal Processing for Big Data Signal Processing for Big Data Sergio Barbarossa 1 Summary 1. Networks 2.Algebraic graph theory 3. Random graph models 4. OperaGons on graphs 2 Networks The simplest way to represent the interaction between

More information

A Genetic Algorithm Framework

A Genetic Algorithm Framework Fast, good, cheap. Pick any two. The Project Triangle 3 A Genetic Algorithm Framework In this chapter, we develop a genetic algorithm based framework to address the problem of designing optimal networks

More information

Web Structure Mining Community Detection and Evaluation

Web Structure Mining Community Detection and Evaluation Web Structure Mining Community Detection and Evaluation 1 Community Community. It is formed by individuals such that those within a group interact with each other more frequently than with those outside

More information

Cascading Node Failure with Continuous States in Random Geometric Networks

Cascading Node Failure with Continuous States in Random Geometric Networks Cascading Node Failure with Continuous States in Random Geometric Networks Khashayar Kamran and Edmund Yeh Department of Electrical and Computer Engineering Northeastern University Email: kamran.k@husky.neu.edu,

More information

The Complex Network Phenomena. and Their Origin

The Complex Network Phenomena. and Their Origin The Complex Network Phenomena and Their Origin An Annotated Bibliography ESL 33C 003180159 Instructor: Gerriet Janssen Match 18, 2004 Introduction A coupled system can be described as a complex network,

More information

COMP6237 Data Mining and Networks. Markus Brede. Lecture slides available here:

COMP6237 Data Mining and Networks. Markus Brede. Lecture slides available here: COMP6237 Data Mining and Networks Markus Brede Brede.Markus@gmail.com Lecture slides available here: http://users.ecs.soton.ac.uk/mb8/stats/datamining.html Outline Why? The WWW is a major application of

More information

Maximum flow problem CE 377K. March 3, 2015

Maximum flow problem CE 377K. March 3, 2015 Maximum flow problem CE 377K March 3, 2015 Informal evaluation results 2 slow, 16 OK, 2 fast Most unclear topics: max-flow/min-cut, WHAT WILL BE ON THE MIDTERM? Most helpful things: review at start of

More information

Scalable overlay Networks

Scalable overlay Networks overlay Networks Dr. Samu Varjonen 1 Lectures MO 15.01. C122 Introduction. Exercises. Motivation. TH 18.01. DK117 Unstructured networks I MO 22.01. C122 Unstructured networks II TH 25.01. DK117 Bittorrent

More information

1 More configuration model

1 More configuration model 1 More configuration model In the last lecture, we explored the definition of the configuration model, a simple method for drawing networks from the ensemble, and derived some of its mathematical properties.

More information

Necessary backbone of superhighways for transport on geographical complex networks

Necessary backbone of superhighways for transport on geographical complex networks Necessary backbone of superhighways for transport on geographical complex networks Yukio Hayashi Japan Advanced Institute of Science and Technology, - Asahidai Ishikawa, 923-292 Japan, yhayashi@jaist.ac.jp

More information

arxiv: v1 [physics.soc-ph] 28 Mar 2016

arxiv: v1 [physics.soc-ph] 28 Mar 2016 Collective Influence Algorithm to find influencers via optimal percolation in massively large social media Flaviano Morone, Byungjoon Min, Lin Bo, Romain Mari, and Hernán A. Makse Levich Institute and

More information

arxiv:cond-mat/ v5 [cond-mat.dis-nn] 16 Aug 2006

arxiv:cond-mat/ v5 [cond-mat.dis-nn] 16 Aug 2006 arxiv:cond-mat/0505185v5 [cond-mat.dis-nn] 16 Aug 2006 Characterization of Complex Networks: A Survey of measurements L. da F. Costa F. A. Rodrigues G. Travieso P. R. Villas Boas Instituto de Física de

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec Stanford University Jure Leskovec, Stanford University http://cs224w.stanford.edu [Morris 2000] Based on 2 player coordination game 2 players

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Redes Complexas: teoria, algoritmos e aplicações em computação Bloco #7

Redes Complexas: teoria, algoritmos e aplicações em computação Bloco #7 Redes Complexas: teoria, algoritmos e aplicações em computação Bloco #7 ``Security and Complex Networks Virgílio A. F. Almeida Outubro de 2009 D d Ciê i d C ã Departamento de Ciência da Computação Universidade

More information

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Kouhei Sugiyama, Hiroyuki Ohsaki and Makoto Imase Graduate School of Information Science and Technology,

More information

SLANG Session 4. Jason Quinley Roland Mühlenbernd Seminar für Sprachwissenschaft University of Tübingen

SLANG Session 4. Jason Quinley Roland Mühlenbernd Seminar für Sprachwissenschaft University of Tübingen SLANG Session 4 Jason Quinley Roland Mühlenbernd Seminar für Sprachwissenschaft University of Tübingen Overview Network properties Degree Density and Distribution Clustering and Connections Network formation

More information

Graph Theory for Network Science

Graph Theory for Network Science Graph Theory for Network Science Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Networks or Graphs We typically

More information

Collective Influence Algorithm to find influencers via optimal percolation in massively large social media

Collective Influence Algorithm to find influencers via optimal percolation in massively large social media Collective Influence Algorithm to find influencers via optimal percolation in massively large social media Flaviano Morone, Byungjoon Min, Lin Bo, Romain Mari, and Hernán A. Makse Levich Institute and

More information

Global dynamic routing for scale-free networks

Global dynamic routing for scale-free networks Global dynamic routing for scale-free networks Xiang Ling, Mao-Bin Hu,* Rui Jiang, and Qing-Song Wu School of Engineering Science, University of Science and Technology of China, Hefei 230026, People s

More information

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein Complex networks Phys 7682: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network structure,

More information

L Modelling and Simulating Social Systems with MATLAB

L Modelling and Simulating Social Systems with MATLAB 851-0585-04L Modelling and Simulating Social Systems with MATLAB Lesson 6 Graphs (Networks) Anders Johansson and Wenjian Yu (with S. Lozano and S. Wehrli) ETH Zürich 2010-03-29 Lesson 6 Contents History:

More information

Response Network Emerging from Simple Perturbation

Response Network Emerging from Simple Perturbation Journal of the Korean Physical Society, Vol 44, No 3, March 2004, pp 628 632 Response Network Emerging from Simple Perturbation S-W Son, D-H Kim, Y-Y Ahn and H Jeong Department of Physics, Korea Advanced

More information

Erdős-Rényi Model for network formation

Erdős-Rényi Model for network formation Network Science: Erdős-Rényi Model for network formation Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Why model? Simpler representation

More information

Eciency of scale-free networks: error and attack tolerance

Eciency of scale-free networks: error and attack tolerance Available online at www.sciencedirect.com Physica A 320 (2003) 622 642 www.elsevier.com/locate/physa Eciency of scale-free networks: error and attack tolerance Paolo Crucitti a, Vito Latora b, Massimo

More information

Comprehensive Analysis on the Vulnerability and Efficiency of P2P Networks under Static Failures and Targeted Attacks

Comprehensive Analysis on the Vulnerability and Efficiency of P2P Networks under Static Failures and Targeted Attacks Comprehensive Analysis on the Vulnerability and Efficiency of P2P Networks under Static Failures and Targeted Attacks Farshad Safaei 1 and Hamidreza Sotoodeh 2 1 Faculty of ECE, Shahid Beheshti University

More information