ShortMAC: Efficient Data-plane Fault Localization. Xin Zhang, Zongwei Zhou, Hsu- Chun Hsiao, Tiffany Hyun- Jin Kim Adrian Perrig and Patrick Tague

Size: px
Start display at page:

Download "ShortMAC: Efficient Data-plane Fault Localization. Xin Zhang, Zongwei Zhou, Hsu- Chun Hsiao, Tiffany Hyun- Jin Kim Adrian Perrig and Patrick Tague"

Transcription

1 ShortMAC: Efficient Data-plane Fault Localization Xin Zhang, Zongwei Zhou, Hsu- Chun Hsiao, Tiffany Hyun- Jin Kim Adrian Perrig and Patrick Tague

2 What is Fault LocalizaDon? Problem defini-on Iden-fy faulty links during packet forwarding A;acker Model Drop, modify, misroute, or inject packets at data plane Challenges Selec-ve a;ack: break ping, traceroute, etc High overhead Slander & framing Only drop node 5 s ACKs Got it Got it Got it Got it Got it Source Dest 2

3 What is Fault LocalizaDon? Challenges (cont d) A;acks against sampling Forgery a;ack: break NeSlow, Bloom Filter, etc Natural packet loss 100 pkts Source is not sampled, drop it! Got 100 Got 100 Got 100 Got 100 Got Only modify packets Dest 3

4 Why is Fault LocalizaDon Important? The current Internet Best effort, purely end- to- end Fault localiza-on enables: Data- plane accountability Intelligent path selec-on Linear path trial Source Worst case: 3 vs 2 3 trials Worst case: 2 3 Des-na-on 4

5 Security Design Goals Against drop, modify, inject, and replay packets Against mul-ple colluding nodes Efficiency Low detec-on delay Low storage, communica-on and computa-on overhead Provable guarantees Upper bound of damage without being detected Lower bound of forwarding correctness if no fault detected 5

6 ShortMAC Key Insight #1 Fault Localiza-on Packet authen-ca-on Fault Localiza-on monitor packet count and content W/ pkt authen, content count Only counts small state, low bandwidth cost Source A B Detectable! C Detectable! 6

7 ShortMAC Key Insight #2 Limi+ng a;acks instead of perfect detec-on Detect every misbehavior? Costly! Error- prone! Absorb low- impact a;ack: tolerance threshold Trap the a;acker into a dilemma Enable probabilis-c algorithms with provable bounds A;ack more? Will get caught! Stay under 2%? Damage is bounded! Source Dest. 7

8 ShortMAC Key Ideas k- bit MAC, e.g., k = 1 Limi-ng instead of perfectly detec-ng fake packets Source marks each packet with k bits (with keyed PRF) The ShortMAC packet marking K 1 K d 1 0 K 2 1 Source K 1 K 2 K d (, 1, 0, 1) K 1 K = PRF Kd (, SN, TTL d ) = PRF K2 (, SN, TTL 2, ) Forge m? 50% chance of inconsistency. Detectable! = PRF K1 (, SN, TTL 1,, ) Dest K d 8

9 High- level steps ShortMAC Key Ideas Each node maintains two counters (counter only!) Secure repor-ng Threshold- based detec-on robust to natural errors sends 1000 pkts 1- bit MAC 1000 Source forges 500 pkt More details: Onion ACK for repor-ng, threshold- based detec-on, etc Dest. 9

10 The math θ =(1 T dr ) d β N. The numbers TheoreDcal Bounds e of its malicious links without being β = T in q + r ( etection threshold N = ln( 2d δ ( ) 2 T dr ρ ) 2+8qTin ln 2 δ ln 2 δ +ln 2 δ 4q 2 dr,the ) 2 (1 T dr ) d espondingly, the fraction o PAAI- 1: X. Zhang, A. Jain, and A. Perrig, Packet- dropping Protocol ShortMAC PAAI- 1 SSS Sketch Adversary Iden-fica-on on Data- plane security. Delay (pkt) SSS, Sketch: B. Barak, 4 S Goldberg, 5 D. Xiao, Protocols 8 10 and 6 Lower Bounds for Failure Localiza-on State (bytes)

11 Experimental EvaluaDon Average- case performance, proof of concept Simula-on + Prototyping Simula-on: large- scale, security proper-es Prototype: computa-onal overhead SSF- net based simula-on Single 6- hop path Malicious node in the middle Independently dropping/injec-ng packets 11

12 SimulaDon Results False rates, detec-on delay, and comparison 2- bit- MAC false rates - linear scale drop 2 inject 2 drop 5 inject 5 drop 5 inject detection delay (N) - linear scale 12

13 Prototyping Results Pure- sosware router prototype in Linux/Click Evalua-on of fast path performance Per- packet PRF computa-on Different MACs with AES- ni Computa-onal overhead Throughput and latency Linear path topology Netperf benchmark 13

14 Prototyping Results Throughput and latency Throughput latency (µs) (Mb/s) MTU MTU MTU MTU baseline 20 no parallel 10 internal external path path length length 14

15 Phew the end Limi+ng instead of perfectly detec-ng Enables efficient algorithms Provable security guarantee Theore-cal bounds, against strong adversaries High efficiency Low detec-on delay, router state, comm. overhead Probabilis+c packet authen-ca-on Building block for other applica-ons 15

16 Thank you! QuesDons? Xin Zhang

Wireless Network Security Spring 2015

Wireless Network Security Spring 2015 Wireless Network Security Spring 2015 Patrick Tague Class #12 Forwarding Security 2015 Patrick Tague 1 SoW Presentation SoW Thursday in class I'll post a template Each team gets ~5-8 minutes Written SoW

More information

Network Fault Localization Adrian Perrig. Overview

Network Fault Localization Adrian Perrig. Overview Network Fault Localization Adrian Perrig CyLab / Carnegie Mellon University Overview Fault localiza/on overview Four fault localiza/on schemes PAAI ShortMAC TrueNet DynaFL 2 1 What is Fault Localization?

More information

Wireless Network Security Spring 2016

Wireless Network Security Spring 2016 Wireless Network Security Spring 2016 Patrick Tague Class #12 Routing Security; Forwarding Security 2016 Patrick Tague 1 SoW Presentation SoW Thursday in class I'll post a template Each team gets ~5 minutes

More information

ShortMAC: Efficient Data-Plane Fault Localization

ShortMAC: Efficient Data-Plane Fault Localization ShortMAC: Efficient Data-Plane Fault Localization Xin Zhang, Zongwei Zhou, Hsu-Chun Hsiao, Tiffany Kim, Patrick Tague, and Adrian Perrig January 30, 2011 CMU-CyLab-11-007 CyLab Carnegie Mellon University

More information

The Role of Trustworthy Computing to Build Future Secure Internet Architectures

The Role of Trustworthy Computing to Build Future Secure Internet Architectures The Role of Trustworthy Computing to Build Future Secure Internet Architectures Adrian Perrig Network Security Group ETH Zürich Overview Trusted Compu-ng Overview Cuckoo a7ack Secure rou-ng and BGP with

More information

ShortMAC: Efficient Data-Plane Fault Localization

ShortMAC: Efficient Data-Plane Fault Localization ShortMAC: Efficient Data-Plane Fault Localization Xin Zhang, Zongwei Zhou, Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Adrian Perrig and Patrick Tague CyLab / Carnegie Mellon University Abstract The rising demand

More information

the Presence of Adversaries Sharon Goldberg David Xiao, Eran Tromer, Boaz Barak, Jennifer Rexford

the Presence of Adversaries Sharon Goldberg David Xiao, Eran Tromer, Boaz Barak, Jennifer Rexford Internet Path-Quality Monitoring in the Presence of Adversaries Sharon Goldberg David Xiao, Eran Tromer, Boaz Barak, Jennifer Rexford Princeton University Penn State University CS Seminar November 29,

More information

Secure and Efficient Network Fault Localization

Secure and Efficient Network Fault Localization Secure and Efficient Network Fault Localization Xin Zhang CMU-CS-12-104 April 9, 2012 School of Computer Science Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee:

More information

TrueNet: Efficient Fault Localization with Small TCB

TrueNet: Efficient Fault Localization with Small TCB TrueNet: Efficient Fault Localization with Small TCB Xin Zhang, Zongwei Zhou, Geoff Hasker, Adrian Perrig and Virgil Gligor Abstract Clear evidence indicates the existence of compromised routers in ISP

More information

OPT: LIGHTWEIGHT SOURCE AUTHENTICATION & PATH VALIDATION

OPT: LIGHTWEIGHT SOURCE AUTHENTICATION & PATH VALIDATION OPT: LIGHTWEIGHT SOURCE AUTHENTICATION & PATH VALIATION Tiffany Hyun- Jin Kim, 1 Cris(na Basescu, 2 Limin Jia, 1 Soo Bum Lee, 3 Yih- Chun Hu, 4 and Adrian Perrig 2 1 Carnegie Mellon University, 2 ETH Zurich,

More information

Network Fault Localization with Small TCB

Network Fault Localization with Small TCB Network Fault Localization with Small TCB Xin Zhang, Zongwei Zhou, Geoff Hasker, Adrian Perrig and Virgil Gligor {xzhang1, zongweiz, hasker, perrig, gligor}@cmu.edu Carnegie Mellon University Abstract

More information

Packet-dropping Adversary Identification for Data Plane Security

Packet-dropping Adversary Identification for Data Plane Security Packet-dropping Adversary Identification for Data Plane Security Xin Zhang Carnegie Mellon University xzhang1@cmu.edu Abhishek Jain UCLA abhishek@cs.ucla.edu Adrian Perrig Carnegie Mellon University perrig@cmu.edu

More information

Available Bandwidth Estimation. Probing Packet Train in Pathneck. Transmission of RPT. Choke Point Detection. Packet train probing

Available Bandwidth Estimation. Probing Packet Train in Pathneck. Transmission of RPT. Choke Point Detection. Packet train probing Measuring the Path Network Measurement: Measuring the Path Available Bandwidth/Bottleneck BFind,Pathchar,Cartouche Pathneck Link Capacity: Pathchar CapProbe Loss/Delay/Re-ording Tulip Joy Zhang Pathneck

More information

IGMP and MLD Op-miza-on for Mobile Hosts and Routers

IGMP and MLD Op-miza-on for Mobile Hosts and Routers 76 th IETF, Nov. 2009, Hiroshima, Japan IGMP and MLD Op-miza-on for Mobile Hosts and Routers dra< asaeda mul-mob igmp mld op-miza-on 01 Hitoshi Asaeda (Keio University) 1 Overview This dra< aims to describe

More information

Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Intra- AS Rou-ng h0p://kcd.com/85/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesle Some materials copright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

Wireless Network Security Spring 2011

Wireless Network Security Spring 2011 Wireless Network Security 14-814 Spring 2011 Patrick Tague Jan 20, 2011 Class #4 Broadcast information security Agenda Broadcast information security Broadcast authentication and encryption Key management

More information

An On-demand Secure Routing Protocol Resilient to Byzantine Failures. Routing: objective. Communication Vulnerabilities

An On-demand Secure Routing Protocol Resilient to Byzantine Failures. Routing: objective. Communication Vulnerabilities An On-demand Secure Routing Protocol Resilient to Byzantine Failures Baruch Awerbuch Johns Hopkins University On-Demand vs. Proactive Routing Security Concerns On-Demand Source Authentication Caching presents

More information

An On-demand Secure Routing Protocol Resilient to Byzantine Failures

An On-demand Secure Routing Protocol Resilient to Byzantine Failures An On-demand Secure Routing Protocol Resilient to Byzantine Failures Baruch Awerbuch Johns Hopkins University Joint work with David Holmer, Cristina Nita-Rotaru, and Herbert Rubens Based on paper at WiSe2002

More information

Failure Localization in the Internet

Failure Localization in the Internet Failure Localization in the Internet Boaz Barak, Sharon Goldberg, David Xiao Princeton University Excerpts of talks presented at Stanford, U Maryland, NYU. Why use Internet path-quality monitoring? Internet:

More information

Protocols and Lower Bounds for Failure Localization in the Internet

Protocols and Lower Bounds for Failure Localization in the Internet Protocols and Lower Bounds for Failure Localization in the Internet Boaz Barak, Sharon Goldberg, and David Xiao Princeton University, Princeton, NJ 08544 Abstract. A secure failure-localization path-quality-monitoring

More information

Measuring Path Quality in the Presence of Adversaries: The Role of Cryptography in Network Accountability

Measuring Path Quality in the Presence of Adversaries: The Role of Cryptography in Network Accountability Measuring Path Quality in the Presence of Adversaries: The Role of Cryptography in Network Accountability Sharon Goldberg, David Xiao, Boaz Barak, and Jennifer Rexford Princeton University ABSTRACT Mechanisms

More information

TVA: A DoS-limiting Network Architecture L

TVA: A DoS-limiting Network Architecture L DoS is not even close to be solved : A DoS-limiting Network Architecture L Xiaowei Yang (UC Irvine) David Wetherall (Univ. of Washington) Thomas Anderson (Univ. of Washington) 1 n Address validation is

More information

Sybil defenses via social networks

Sybil defenses via social networks Sybil defenses via social networks Abhishek University of Oslo, Norway 19/04/2012 1 / 24 Sybil identities Single user pretends many fake/sybil identities i.e., creating multiple accounts observed in real-world

More information

STM. Computing. Specifica on Topics. High Level Skills you should think about to take your work to the next level:

STM. Computing. Specifica on Topics. High Level Skills you should think about to take your work to the next level: Specifica on Topics High Level Skills you should think about to take your work to the next level: Discussing the advantages and disadvantages of the different topology types Describing the key fields in

More information

Security Issues In Mobile Ad hoc Network Routing Protocols

Security Issues In Mobile Ad hoc Network Routing Protocols Abstraction Security Issues In Mobile Ad hoc Network Routing Protocols Philip Huynh phuynh@uccs.edu Mobile ad hoc network (MANET) is gaining importance with increasing number of applications. It can be

More information

Comparison of Public End-to-End Bandwidth Estimation tools on High-Speed Links

Comparison of Public End-to-End Bandwidth Estimation tools on High-Speed Links Comparison of Public End-to-End Bandwidth Estimation tools on High-Speed Links Alok Shriram, Margaret Murray, Young Hyun, Nevil Brownlee, Andre Broido, Marina Fomenkov and kc claffy What is Available Bandwidth?

More information

Housekeeping. Fall /5 CptS/EE 555 1

Housekeeping. Fall /5 CptS/EE 555 1 Housekeeping Lab access HW turn-in Jin? Class preparation for next time: look at the section on CRCs 2.4.3. Be prepared to explain how/why the shift register implements the CRC Skip Token Rings section

More information

Wireless Internet Routing. Learning from Deployments Link Metrics

Wireless Internet Routing. Learning from Deployments Link Metrics Wireless Internet Routing Learning from Deployments Link Metrics 1 Learning From Deployments Early worked focused traditional routing issues o Control plane: topology management, neighbor discovery o Data

More information

FTTH-GPON OLT Emulator with integrated Network Analyser

FTTH-GPON OLT Emulator with integrated Network Analyser By WYZARTEL FTTH-GPON OLT Emulator with integrated Network Analyser Features OLT Emula on Emulates OLT func onality, allowing to build specific provi sioning models and configure OMCI enes individually

More information

Performance Analysis of Mobile Ad Hoc Network in the Presence of Wormhole Attack

Performance Analysis of Mobile Ad Hoc Network in the Presence of Wormhole Attack Performance Analysis of Mobile Ad Hoc Network in the Presence of Wormhole Attack F. Anne Jenefer & D. Vydeki E-mail : annejenefer@gmail.com, vydeki.d@srmeaswari.ac.in Abstract Mobile Ad-Hoc Network (MANET)

More information

Packet Estimation with CBDS Approach to secure MANET

Packet Estimation with CBDS Approach to secure MANET Packet Estimation with CBDS Approach to secure MANET Mr. Virendra P. Patil 1 and Mr. Rajendra V. Patil 2 1 PG Student, SSVPS COE, Dhule, Maharashtra, India 2 Assistance Professor, SSVPS COE, Dhule, Maharashtra,

More information

Cutting the Cord: A Robust Wireless Facilities Network for Data Centers

Cutting the Cord: A Robust Wireless Facilities Network for Data Centers Cutting the Cord: A Robust Wireless Facilities Network for Data Centers Yibo Zhu, Xia Zhou, Zengbin Zhang, Lin Zhou, Amin Vahdat, Ben Y. Zhao and Haitao Zheng U.C. Santa Barbara, Dartmouth College, U.C.

More information

Wireless Network Security Spring 2013

Wireless Network Security Spring 2013 Wireless Network Security 14-814 Spring 2013 Patrick Tague Class #11 Control-Plane Routing Misbehavior Agenda Control-Plane Routing Misbehavior MANET Routing Misbehavior at the control-plane Toward secure

More information

EXAM TCP/IP NETWORKING Duration: 3 hours

EXAM TCP/IP NETWORKING Duration: 3 hours SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours Jean-Yves Le Boudec January 2013 INSTRUCTIONS 1. Write your solution into this document and return it to us (you do not need to

More information

NetCache: Balancing Key-Value Stores with Fast In-Network Caching

NetCache: Balancing Key-Value Stores with Fast In-Network Caching NetCache: Balancing Key-Value Stores with Fast In-Network Caching Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé Jeongkeun Lee, Nate Foster, Changhoon Kim, Ion Stoica NetCache is a rack-scale key-value

More information

NetCache: Balancing Key-Value Stores with Fast In-Network Caching

NetCache: Balancing Key-Value Stores with Fast In-Network Caching NetCache: Balancing Key-Value Stores with Fast In-Network Caching Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé Jeongkeun Lee, Nate Foster, Changhoon Kim, Ion Stoica NetCache is a rack-scale key-value

More information

Cisco Exam Cisco Certified Network Associate (CCNA) Version: 14.7 [ Total Questions: 653 ]

Cisco Exam Cisco Certified Network Associate (CCNA) Version: 14.7 [ Total Questions: 653 ] s@lm@n Cisco Exam 640-802 Cisco Certified Network Associate (CCNA) Version: 14.7 [ Total Questions: 653 ] Topic 1, Describe how a network works Cisco 640-802 : Practice Test Question No : 1 - (Topic 1)

More information

To Filter or to Authorize: Network-Layer DoS Defense against Multimillion-node Botnets. Xiaowei Yang Duke Unversity

To Filter or to Authorize: Network-Layer DoS Defense against Multimillion-node Botnets. Xiaowei Yang Duke Unversity To Filter or to Authorize: Network-Layer DoS Defense against Multimillion-node Botnets Xiaowei Yang Duke Unversity Denial of Service (DoS) flooding attacks Send packet floods to a targeted victim Exhaust

More information

Troubleshooting High CPU Caused by the BGP Scanner or BGP Router Process

Troubleshooting High CPU Caused by the BGP Scanner or BGP Router Process Troubleshooting High CPU Caused by the BGP Scanner or BGP Router Process Document ID: 107615 Contents Introduction Before You Begin Conventions Prerequisites Components Used Understanding BGP Processes

More information

MENCIUS: BUILDING EFFICIENT

MENCIUS: BUILDING EFFICIENT MENCIUS: BUILDING EFFICIENT STATE MACHINE FOR WANS By: Yanhua Mao Flavio P. Junqueira Keith Marzullo Fabian Fuxa, Chun-Yu Hsiung November 14, 2018 AGENDA 1. Motivation 2. Breakthrough 3. Rules of Mencius

More information

Content Distribu-on Networks (CDNs)

Content Distribu-on Networks (CDNs) Second Half of the Course Content Distribu-on Networks (CDNs) Mike Freedman COS 461: Computer Networks h@p://www.cs.princeton.edu/courses/archive/spr14/cos461/ Applica-on case studies Content distribu-on,

More information

ZHT: Const Eventual Consistency Support For ZHT. Group Member: Shukun Xie Ran Xin

ZHT: Const Eventual Consistency Support For ZHT. Group Member: Shukun Xie Ran Xin ZHT: Const Eventual Consistency Support For ZHT Group Member: Shukun Xie Ran Xin Outline Problem Description Project Overview Solution Maintains Replica List for Each Server Operation without Primary Server

More information

Using Lamport s Logical Clocks

Using Lamport s Logical Clocks Fast Classification of MPI Applications Using Lamport s Logical Clocks Zhou Tong, Scott Pakin, Michael Lang, Xin Yuan Florida State University Los Alamos National Laboratory 1 Motivation Conventional trace-based

More information

Analysis of Black-Hole Attack in MANET using AODV Routing Protocol

Analysis of Black-Hole Attack in MANET using AODV Routing Protocol Analysis of Black-Hole Attack in MANET using Routing Protocol Ms Neha Choudhary Electronics and Communication Truba College of Engineering, Indore India Dr Sudhir Agrawal Electronics and Communication

More information

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions Jean-Yves Le Boudec January 2013 INSTRUCTIONS 1. Write your solution into this document and return it to us (you

More information

Sleep/Wake Aware Local Monitoring (SLAM)

Sleep/Wake Aware Local Monitoring (SLAM) Sleep/Wake Aware Local Monitoring (SLAM) Issa Khalil, Saurabh Bagchi, Ness Shroff Dependable Computing Systems Lab (DCSL) & Center for Wireless Systems and Applications (CWSA) School of Electrical and

More information

DevoFlow: Scaling Flow Management for High Performance Networks

DevoFlow: Scaling Flow Management for High Performance Networks DevoFlow: Scaling Flow Management for High Performance Networks SDN Seminar David Sidler 08.04.2016 1 Smart, handles everything Controller Control plane Data plane Dump, forward based on rules Existing

More information

Scalable Enterprise Networks with Inexpensive Switches

Scalable Enterprise Networks with Inexpensive Switches Scalable Enterprise Networks with Inexpensive Switches Minlan Yu minlanyu@cs.princeton.edu Princeton University Joint work with Alex Fabrikant, Mike Freedman, Jennifer Rexford and Jia Wang 1 Enterprises

More information

Truth In Advertising: Lightweight Verification of Route Integrity

Truth In Advertising: Lightweight Verification of Route Integrity Truth In Advertising: Lightweight Verification of Route Integrity Edmund L. Wong, raveen Balasubramanian, Lorenzo Alvisi, Mohamed G. Gouda, Vitaly Shmatikov Dept. of Computer Sciences, The University of

More information

IMR-Pathload: Robust Available Bandwidth Estimation under End-Host Interrupt Delay

IMR-Pathload: Robust Available Bandwidth Estimation under End-Host Interrupt Delay IMR-Pathload: Robust Available Bandwidth Estimation under End-Host Interrupt Delay Seong Kang Joint work with Dmitri Loguinov Internet Research Lab Department of Computer Science Texas A&M University,

More information

Wireless Network Security Spring 2015

Wireless Network Security Spring 2015 Wireless Network Security Spring 2015 Patrick Tague Class #10 Network Layer Threats; Identity Mgmt. 2015 Patrick Tague 1 Class #10 Summary of wireless network layer threats Specific threats related to

More information

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup Chapter 4 Routers with Tiny Buffers: Experiments This chapter describes two sets of experiments with tiny buffers in networks: one in a testbed and the other in a real network over the Internet2 1 backbone.

More information

Opera-ng Systems and Networks. Network Lecture 5: Network Layer 1. Pending Issues. Exercise sessions are star-ng today!

Opera-ng Systems and Networks. Network Lecture 5: Network Layer 1. Pending Issues. Exercise sessions are star-ng today! Opera-ng Systems and Networks Network Lecture 5: Network Layer 1 Adrian Perrig Network Security Group ETH Zürich Pending Issues Exercise sessions are star-ng today! 2 1 Where we are in the Course Star-ng

More information

SCION: Scalability, Control and Isolation On Next-Generation Networks

SCION: Scalability, Control and Isolation On Next-Generation Networks SCION: Scalability, Control and Isolation On Next-Generation Networks Xin Zhang, Hsu-Chun Hsiao, Geoff Hasker, Haowen Chan, Adrian Perrig, David Andersen 1 After years of patching, the Internet is Reliable

More information

Enabling Efficient Source and Path Verification via Probabilistic Packet Marking

Enabling Efficient Source and Path Verification via Probabilistic Packet Marking Enabling Efficient Source and Path Verification via Probabilistic Packet Marking Bo Wu, Ke Xu, Qi Li, Zhuotao Liu, Yih-Chun Hu, Martin J. Reed, Meng Shen k, Fan Yang Department of Computer Science and

More information

Lessons learned from MPI

Lessons learned from MPI Lessons learned from MPI Patrick Geoffray Opinionated Senior Software Architect patrick@myri.com 1 GM design Written by hardware people, pre-date MPI. 2-sided and 1-sided operations: All asynchronous.

More information

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN)

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) G. S. Ahn, A. T. Campbell, A. Veres, and L. H. Sun IEEE Trans. On Mobile Computing

More information

Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol

Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol Li Fan, Pei Cao and Jussara Almeida University of Wisconsin-Madison Andrei Broder Compaq/DEC System Research Center Why Web Caching One of

More information

Lecture 11: Fragmentation & Addressing. CSE 123: Computer Networks Stefan Savage

Lecture 11: Fragmentation & Addressing. CSE 123: Computer Networks Stefan Savage Lecture 11: Fragmentation & Addressing CSE 123: Computer Networks Stefan Savage So what does IP do? Addressing Fragmentation E.g. FDDI s maximum packet is 4500 bytes while Ethernet is 1500 bytes, how to

More information

Introduction to Networking and Systems Measurements

Introduction to Networking and Systems Measurements Introduction to Networking and Systems Measurements Lecture 2: Basic Network Measurements Dr Noa Zilberman noa.zilberman@cl.cam.ac.uk Networking and Systems Measurements(L50) 1 Terminology Matters! in

More information

Stateful Detection in High Throughput Distributed Systems

Stateful Detection in High Throughput Distributed Systems Stateful Detection in High Throughput Distributed Systems Gunjan Khanna, Ignacio Laguna, Fahad A. Arshad, Saurabh Bagchi Dependable Computing Systems Lab School of Electrical and Computer Engineering Purdue

More information

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Dr. Vinod Vokkarane Assistant Professor, Computer and Information Science Co-Director, Advanced Computer Networks Lab University

More information

Topologies. Maurizio Palesi. Maurizio Palesi 1

Topologies. Maurizio Palesi. Maurizio Palesi 1 Topologies Maurizio Palesi Maurizio Palesi 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and

More information

RAMCube: Exploiting Network Proximity for RAM-Based Key-Value Store

RAMCube: Exploiting Network Proximity for RAM-Based Key-Value Store RAMCube: Exploiting Network Proximity for RAM-Based Key-Value Store Yiming Zhang, Rui Chu @ NUDT Chuanxiong Guo, Guohan Lu, Yongqiang Xiong, Haitao Wu @ MSRA June, 2012 1 Background Disk-based storage

More information

Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE)

Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE) Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE) Problem Definition Solution Approach Benefits to End User Talk Overview Metrics Summary of Results to Date Lessons Learned & Future Work

More information

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing Algorithms Link- State algorithm Each node maintains a view of the whole network topology Find the shortest path

More information

Replicated State Machine in Wide-area Networks

Replicated State Machine in Wide-area Networks Replicated State Machine in Wide-area Networks Yanhua Mao CSE223A WI09 1 Building replicated state machine with consensus General approach to replicate stateful deterministic services Provide strong consistency

More information

Cutting the Cord: A Robust Wireless Facilities Network for Data Centers

Cutting the Cord: A Robust Wireless Facilities Network for Data Centers Cutting the Cord: A Robust Wireless Facilities Network for Data Centers Yibo Zhu, Xia Zhou, Zengbin Zhang, Lin Zhou, Amin Vahdat, Ben Y. Zhao and Haitao Zheng U.C. Santa Barbara, Dartmouth College, U.C.

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

Reminder: Datalink Functions Computer Networking. Datalink Architectures

Reminder: Datalink Functions Computer Networking. Datalink Architectures Reminder: Datalink Functions 15-441 15 441 15-641 Computer Networking Lecture 5 Media Access Control Peter Steenkiste Fall 2015 www.cs.cmu.edu/~prs/15-441-f15 Framing: encapsulating a network layer datagram

More information

TCP Congestion Control

TCP Congestion Control 6.033, Spring 2014 TCP Congestion Control Dina Katabi & Sam Madden nms.csail.mit.edu/~dina Sharing the Internet How do you manage resources in a huge system like the Internet, where users with different

More information

Path-Quality Monitoring in the Presence of Adversaries

Path-Quality Monitoring in the Presence of Adversaries Path-Quality Monitoring in the Presence of Adversaries Sharon Goldberg 1, David Xiao 1, Eran Tromer, Boaz Barak 1, Jennifer Rexford 1 1 Princeton University, Princeton, NJ 08544 MIT, Cambridge, MA 0139

More information

Topics for This Week

Topics for This Week Topics for This Week Routing Protocols in the Internet OSPF, BGP More on IP Fragmentation and Reassembly ICMP Readings Sections 5.6.4-5.6.5 1 Hierarchical Routing aggregate routers into regions, autonomous

More information

DoS Attacks. Network Traceback. The Ultimate Goal. The Ultimate Goal. Overview of Traceback Ideas. Easy to launch. Hard to trace.

DoS Attacks. Network Traceback. The Ultimate Goal. The Ultimate Goal. Overview of Traceback Ideas. Easy to launch. Hard to trace. DoS Attacks Network Traceback Eric Stone Easy to launch Hard to trace Zombie machines Fake header info The Ultimate Goal Stopping attacks at the source To stop an attack at its source, you need to know

More information

Peer-to-peer systems and overlay networks

Peer-to-peer systems and overlay networks Complex Adaptive Systems C.d.L. Informatica Università di Bologna Peer-to-peer systems and overlay networks Fabio Picconi Dipartimento di Scienze dell Informazione 1 Outline Introduction to P2P systems

More information

Research on Transmission Based on Collaboration Coding in WSNs

Research on Transmission Based on Collaboration Coding in WSNs Research on Transmission Based on Collaboration Coding in WSNs LV Xiao-xing, ZHANG Bai-hai School of Automation Beijing Institute of Technology Beijing 8, China lvxx@mail.btvu.org Journal of Digital Information

More information

TCEP: Traffic Consolidation for Energy-Proportional High-Radix Networks

TCEP: Traffic Consolidation for Energy-Proportional High-Radix Networks TCEP: Traffic Consolidation for Energy-Proportional High-Radix Networks Gwangsun Kim Arm Research Hayoung Choi, John Kim KAIST High-radix Networks Dragonfly network in Cray XC30 system 1D Flattened butterfly

More information

Low Latency via Redundancy

Low Latency via Redundancy Low Latency via Redundancy Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, Scott Shenker Presenter: Meng Wang 2 Low Latency Is Important Injecting just 400 milliseconds

More information

OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management

OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management Marina Garcia 22 August 2013 OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management M. Garcia, E. Vallejo, R. Beivide, M. Valero and G. Rodríguez Document number OFAR-CM: Efficient Dragonfly

More information

Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven

Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven Goals of authenticated encryption Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven More details, credits: competitions.cr.yp.to /features.html Encryption sender

More information

SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines

SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines Hanyu Zhao *, Quanlu Zhang, Zhi Yang *, Ming Wu, Yafei Dai * * Peking University Microsoft Research Replication for Fault Tolerance

More information

TCP Nice: A Mechanism for Background Transfers

TCP Nice: A Mechanism for Background Transfers Improving Internet Availability and Reliability TCP : A Mechanism for Background Transfers Z. Morley Mao Lecture 7 Feb 2, 2004 Arun Venkataramani, Ravi Kokku, Mike Dahlin Laboratory of Advanced Systems

More information

Secure Routing and Transmission Protocols for Ad Hoc Networks

Secure Routing and Transmission Protocols for Ad Hoc Networks MobiHoc 2002 Working Session on Security in Ad Hoc Networks Secure Routing and Transmission Protocols for Ad Hoc Networks Zygmunt J. Haas and P. Papadimitratos (Panos) Cornell University Wireless Networks

More information

Medium Access Protocols

Medium Access Protocols Medium Access Protocols Summary of MAC protocols What do you do with a shared media? Channel Partitioning, by time, frequency or code Time Division,Code Division, Frequency Division Random partitioning

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer ICMP (5.6), Network Management(5.7) & SDN (5.1, 5.5, 4.4) Prof. Lina Battestilli Fall 2017 Outline 5.6 ICMP: The Internet Control Message

More information

A Report on Modified Onion Routing and its Proof of Concept

A Report on Modified Onion Routing and its Proof of Concept A Report on Modified Onion Routing and its Proof of Concept Introduction: This document briefly describes the architecture, code layout, operation principles and testing covered in the implementation of

More information

CS 138: Communication I. CS 138 V 1 Copyright 2012 Thomas W. Doeppner. All rights reserved.

CS 138: Communication I. CS 138 V 1 Copyright 2012 Thomas W. Doeppner. All rights reserved. CS 138: Communication I CS 138 V 1 Copyright 2012 Thomas W. Doeppner. All rights reserved. Topics Network Metrics Layering Reliability Congestion Control Routing CS 138 V 2 Copyright 2012 Thomas W. Doeppner.

More information

Class A Bridge Latency Calculations

Class A Bridge Latency Calculations Class A Bridge Latency Calculations Christian Boiger IEEE 802 Plenary Meeting November 2010 Dallas, TX 1 Example - 15 port FE Bridge - 13 FE talkers, each is sending one stream - 1 FE listener L, is receiving

More information

13 Sensor networks Gathering in an adversarial environment

13 Sensor networks Gathering in an adversarial environment 13 Sensor networks Wireless sensor systems have a broad range of civil and military applications such as controlling inventory in a warehouse or office complex, monitoring and disseminating traffic conditions,

More information

NetChain: Scale-Free Sub-RTT Coordination

NetChain: Scale-Free Sub-RTT Coordination NetChain: Scale-Free Sub-RTT Coordination Xin Jin Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon Kim, Ion Stoica Conventional wisdom: avoid coordination NetChain: lightning

More information

Defense Against Packet Injection in Ad Hoc Networks

Defense Against Packet Injection in Ad Hoc Networks Defense Against Packet Injection in Ad Hoc Networks Qijun Gu 1 Peng Liu 2 Chao-Hsien Chu 2 Sencun Zhu 3 1 Department of Computer Science Texas State University, San Marcos, TX 78666 2 School of Information

More information

ECE 544 Protocol Design Project Team Member Names Aneesh Abhyankar Satakshi Tiwari Vishalsingh Hajeri

ECE 544 Protocol Design Project Team Member Names Aneesh Abhyankar Satakshi Tiwari Vishalsingh Hajeri ECE 544 Protocol Design Project 2016 Team Member Names Aneesh Abhyankar Satakshi Tiwari Vishalsingh Hajeri Network Architecture & Topology Assumptions Service Objective: k-out-of-n packet datagram multicast

More information

SoftRing: Taming the Reactive Model for Software Defined Networks

SoftRing: Taming the Reactive Model for Software Defined Networks SoftRing: Taming the Reactive Model for Software Defined Networks Chengchen Hu, Kaiyu Hou, Hao Li, Ruilong Wang Peng Zheng, Peng Zhang, Huanzhao Wang MOE KLINNS Lab Xi an Jiaotong University Match-Action

More information

Wireless Network Security Spring 2011

Wireless Network Security Spring 2011 Wireless Network Security 14-814 Spring 2011 Patrick Tague Feb 17, 2011 Class #12 Network layer security Announcements No more scheduled office hours after today Email or call me to make an appointment

More information

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today Network Science: Peer-to-Peer Systems Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Introduction Peer-to-peer (PP) systems have become

More information

AN exam March

AN exam March AN exam March 29 2018 Dear student This exam consists of 7 questions. The total number of points is 100. Read the questions carefully. Be precise and concise. Write in a readable way. Q1. UDP and TCP (25

More information

Lecture 9 The Data Link Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 9 The Data Link Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 9 The Data Link Layer part II Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Physical Addresses Physical (or LAN or MAC) address: 48 bit string Hexadecimal representation

More information

Communication and Networks. Problems

Communication and Networks. Problems Electrical and Information Technology Communication and Networks Problems Link Layer 2016 Problems 1. Consider a network applying a slotted Aloha access system. The assumption for this is that all nodes

More information

Table of Contents 1 System Maintaining and Debugging Commands 1-1

Table of Contents 1 System Maintaining and Debugging Commands 1-1 Table of Contents 1 System Maintaining and Debugging Commands 1-1 System Maintaining Commands 1-1 ping 1-1 tracert 1-4 System Debugging Commands 1-6 debugging 1-6 display debugging 1-7 i 1 System Maintaining

More information

measurement goals why traffic measurement of Internet is so hard? measurement needs combined skills diverse traffic massive volume of traffic

measurement goals why traffic measurement of Internet is so hard? measurement needs combined skills diverse traffic massive volume of traffic measurement goals Traffic Measurement and Analysis () SOI ASIA Lecture 22//26 Kenjiro Cho Sony Computer Science Labs, Inc. kjc@csl.sony.co.jp for operations trouble shooting diagnosis and tuning of performance,

More information