A Survey of Peer-to-Peer Content Distribution Technologies

Size: px
Start display at page:

Download "A Survey of Peer-to-Peer Content Distribution Technologies"

Transcription

1 A Survey of Peer-to-Peer Content Distribution Technologies Stephanos Androutsellis-Theotokis and Diomidis Spinellis ACM Computing Surveys, December 2004 Presenter: Seung-hwan Baek Ja-eun Choi

2 Outline Overview of P2P P2P Motivation P2P Characteristics & Benefits P2P Application Types P2P Classification Unstructured: Gnutella, Kazaa, Napster Structured: Freenet, Chord, CAN, Tapestry Other Aspects Conclusions 2/50

3 P2P Motivation Client/Server Architecture: Well known, powerful, reliable server is a data source Clients request data from server Very successful model WWW (HTTP), FTP, Web services, etc. 3/50

4 P2P Motivation (Cont d) Client/Server Limitation: Scalability is hard to achieve Presents a single point of failure Requires administration Unused resources at the network edge P2P systems try to address these limitations 4/50

5 P2P Characteristics P2P Computing: P2P computing is the sharing of computer resources and services by direct exchange between systems. These resources and services include the exchange of information, processing cycles, cache storage, and disk storage for files. P2P computing takes advantage of existing computing power, computer storage and networking connectivity, allowing users to leverage their collective power to the benefit of all. 5/50

6 P2P Characteristics (Cont d) P2P Characteristics: All nodes are both clients and servers Provide and consume data Any node can initiate a connection No centralized data source Nodes collaborate directly with each other (not through well-known servers) Network is dynamic Nodes enter and leave the network frequently 6/50

7 P2P Benefits Ease of administration Nodes self-organize adaptively No need to deploy servers to satisfy demand (c.f. scalability) Built-in fault tolerance, replication, and load balancing Scalability Consumers of resources also donate resources Aggregate resources grow naturally with utilization Reliability Geographic distribution No single point of failure 7/50

8 P2P Application Types Direct real-time communication: instant messaging Combine processing power of multiple distributed machines to perform complex computations: analysis of SETI data, prime computation Distributed database systems Store and distribute digital content: mp3 file sharing (Content Distribution) 8/50

9 P2P Classification Architecture Types: Unstructured Structured Loosely structured Here, By structure, we refer to whether overlay network is created non-deterministically or whether it s created based on a specific rules 9/50

10 Centralization P2P Classification (Cont d) Data organization Unstructured Loosely Structured Highly Structured Hybrid Napster, IM Partial Kazaa, Gia None Gnutella Freenet Chord, CAN 10/50

11 Unstructured Architectures Placement of content is unrelated to overlay topology Search mechanism is required. Appropriate for case of highly-transient node population Degrees of centralization: Purely Decentralized Partially Centralized Hybrid Decentralized 11/50

12 Purely Decentralized Purely Decentralized No central coordination Users (servents) connect to each other directly. Gnutella architecture Query: Flooding Send messages to all neighbors Response: Route back Scalability Issues With TTL, virtual horizon Without TTL, unlimited flooding E.g., Gnutella, FreeHaven query request registration reply query query registration query download registration reply query query registration registration 12/50

13 Partially Centralized Partially Centralized Supernodes Indexing & caching files of small subpart of the peer network Peers are automatically elected to become supernodes. Advantages Reduced discovery time Normal nodes will be lightly loaded. E.g., Kazaa, Edutella, Gnutella (later version) query reply query registration reply request download 13/50

14 Hybrid Decentralized Hybrid Decentralized Central directory server Advantages User connection info. File & metadata info. Simple to implement Locate files quickly and efficiently Disadvantages Vulnerable to technical failure Inherently unscalable E.g., Napster, Publius request download resigtration query reply 14/50

15 Outline Overview of P2P P2P Motivation P2P Characteristics & Benefits P2P Application Types P2P Classification Unstructured: Gnutella, Kazaa, Napster Structured: Freenet, Chord, CAN, Tapestry Other Aspects Conclusions 15/50

16 Structured Architectures Features Mapping of content and location Scalable solution for exact-match queries Examples Freenet Chord CAN Tapestry

17 Freenet Loosely Structured System Chain mode propagation Each node Local data store Dynamic routing table Each file ( node address, file key ) Unique binary key

18 Freenet (Cont d) Messages Node ID, Timeout, Src ID, Dst ID Message types Data insert : key, data Data request : key Data reply : file Data filed : failure location, reason

19 Freenet (Cont d) Data Insert Calculates a binary key Sends a data insert message to itself Receiving a Data Insert message If not taken Store the data Forwards to the closest key s owner If taken Returns the preexisting file

20 Freenet (Cont d) Data Request Chain mode propagation Receiving a Data Request If locally stored The search stops and the data is forwarded back If not Forwards to the closest key s owner

21 Freenet (Cont d) Data Fail Timeout (hops-to-live) Receiving a Data Failed Message Forwards the request to the next best node After failed through all neighbors, Sends back data filed message to the request sender

22 Freenet (Cont d) Data Reply Includes the actual data Passed back through the chain The data is cached in all intermediate nodes A subsequent request w/ the same key served immediately A request for a similar key forwarded to the node that previously provided the data

23 Freenet (Cont d) Indirect Files A special class of lightweight files Named according to search keywords Contain pointers to the real file Multiple files w/ the same key

24 Indirect Files Freenet (Cont d)

25 Freenet (Cont d) Properties Nodes specialize in searching for similar keys Nodes store similar keys Similarity of keys does not reflect similarity of files Routing does not reflect the underlying network topology

26 Chord Nodes and Files are identified by keys m-bit identifiers a deterministic hash function Mapping File ID onto Node ID Nodes store (key, data item) pairs

27 Chord (Cont d) A Chord Identifier Circle

28 Simple Key Location Chord (Cont d)

29 Chord (Cont d) Scalable Key Location

30 Chord (Cont d) Simple Key Location Routing Information: Successor pointer O( n ) Scalable Key Location Routing Information: Finger Table O( logn )

31 Chord (Cont d) Node Joining Certain keys assigned to its successor are reassigned to it Node Departing Keys are reassigned to its successor

32 Chord (Cont d) Node Joining N26 joins the network

33 CAN Content Addressable Network Hash Table Maps file names to their location ( key K, value V ) pairs stored Each node storing a part of the hash table A zone

34 CAN (Cont d) Virtual coordinate space A zone corresponds to a segment of space Key K is mapped onto a point P A deterministic function ( K, V ) is stored at the node responsible for P

35 CAN (Cont d) Virtual coordinate space

36 Retrieve CAN (Cont d) Map K to P Retrieve the value from the node covering P Routing Request is routed to the node covering P Nodes maintain a routing table Addresses of Nodes holding adjoining zones Following the straight line path in the space

37 Routing CAN (Cont d)

38 CAN (Cont d) Node Joining Allocatedits own portion of the space By splitting the zone of an existing node Node Departing Hand over hash table entries to one of its neighbors

39 Tapestry Location and Routing Infrastructure Self Administeration Fault Tolerance Stability By bypassing failed routes and nodes Plaxton Mesh Routing mechanism Location mechanism

40 Tapestry (Cont d) Routing Mechanism Neighbor Maps Local routing maps Incrementally route messages Multiple levels Level l node ID matched w/ l digits Multiple entries The number equals to the base of the ID Pointer to the closest node in the network

41 Tapestry (Cont d) Neighbor Map of Node w/ ID 67493

42 Tapestry (Cont d) Routing Path from to xxxx7 xxx67 xx567 x

43 Tapestry (Cont d) Location Mechanism Root node Provide a guaranteed node from which the object can be located Assigned when an object is inserted A globally consistent deterministic algorithm When inserted Server node Ns, object O, root node Nr Message routed to Ns to Nr (O, Ns) stored along the routing path

44 Tapestry (Cont d) Location Mechanism Location query Messages destined for O Initially routed toward to Nr Meet a node containing (O, Ns) mapping

45 Tapestry (Cont d) Advantages of Plexton Mesh Simple fault-handling Routing by choosing a node w/ a similar suffix Scalability w/ the only bottleneck (root nodes) Limitations The need for global knowledge Assigning and identifying root nodes The vulnerability of the root nodes

46 Tapestry (Cont d) Extending Plaxton mesh s Design Plaxton mesh assumes a static node population Tapestry adapts it to the transient population Adaptibility Fault tolerance Optimizations

47 Tapestry (Cont d) Optimizations Back-pointers for dynamic node insertion Flexible concept of distance between nodes Maintain cached content for failures Multiple roots to each object Adapt to environment changes

48 Other Aspects Content Caching, Replication and Migration Security Provisions for Anonymity Provisions for Deniability Incentive Mechanisms and Accountability Resource Management Capability Semantic Grouping of Information

49 Conclusions Study of P2P Content Distribution Systems Properties Design features Location and routing algorithms Two Categories Unstructured system Structured system Remains Open Research Problems

Peer-to-Peer Systems. Chapter General Characteristics

Peer-to-Peer Systems. Chapter General Characteristics Chapter 2 Peer-to-Peer Systems Abstract In this chapter, a basic overview is given of P2P systems, architectures, and search strategies in P2P systems. More specific concepts that are outlined include

More information

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 17. Distributed Lookup Paul Krzyzanowski Rutgers University Fall 2016 1 Distributed Lookup Look up (key, value) Cooperating set of nodes Ideally: No central coordinator Some nodes can

More information

Architectures for Distributed Systems

Architectures for Distributed Systems Distributed Systems and Middleware 2013 2: Architectures Architectures for Distributed Systems Components A distributed system consists of components Each component has well-defined interface, can be replaced

More information

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC Distributed Meta-data Servers: Architecture and Design Sarah Sharafkandi David H.C. Du DISC 5/22/07 1 Outline Meta-Data Server (MDS) functions Why a distributed and global Architecture? Problem description

More information

Telecommunication Services Engineering Lab. Roch H. Glitho

Telecommunication Services Engineering Lab. Roch H. Glitho 1 Support Infrastructure Support infrastructure for application layer Why? Re-usability across application layer protocols Modularity (i.e. separation between application layer protocol specification /

More information

Telematics Chapter 9: Peer-to-Peer Networks

Telematics Chapter 9: Peer-to-Peer Networks Telematics Chapter 9: Peer-to-Peer Networks Beispielbild User watching video clip Server with video clips Application Layer Presentation Layer Application Layer Presentation Layer Session Layer Session

More information

DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES

DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Outline System Architectural Design Issues Centralized Architectures Application

More information

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE for for March 10, 2006 Agenda for Peer-to-Peer Sytems Initial approaches to Their Limitations CAN - Applications of CAN Design Details Benefits for Distributed and a decentralized architecture No centralized

More information

Introduction to Peer-to-Peer Systems

Introduction to Peer-to-Peer Systems Introduction Introduction to Peer-to-Peer Systems Peer-to-peer (PP) systems have become extremely popular and contribute to vast amounts of Internet traffic PP basic definition: A PP system is a distributed

More information

Early Measurements of a Cluster-based Architecture for P2P Systems

Early Measurements of a Cluster-based Architecture for P2P Systems Early Measurements of a Cluster-based Architecture for P2P Systems Balachander Krishnamurthy, Jia Wang, Yinglian Xie I. INTRODUCTION Peer-to-peer applications such as Napster [4], Freenet [1], and Gnutella

More information

A Survey of Peer-to-Peer Content Distribution Technologies

A Survey of Peer-to-Peer Content Distribution Technologies http://www.spinellis.gr/pubs/jrnl/2004-acmcs-p2p/html/as04.html This is an HTML rendering of a working paper draft that led to a publication. The publication should always be cited in preference to this

More information

CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing. March 8, 2016 Prof. George Porter

CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing. March 8, 2016 Prof. George Porter CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing March 8, 2016 rof. George orter Outline Today: eer-to-peer networking Distributed hash tables Consistent hashing

More information

Unit 8 Peer-to-Peer Networking

Unit 8 Peer-to-Peer Networking Unit 8 Peer-to-Peer Networking P2P Systems Use the vast resources of machines at the edge of the Internet to build a network that allows resource sharing without any central authority. Client/Server System

More information

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications Introduction to Computer Networks Lecture30 Today s lecture Peer to peer applications Napster Gnutella KaZaA Chord What is P2P? Significant autonomy from central servers Exploits resources at the edges

More information

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002 EE 122: Peer-to-Peer (P2P) Networks Ion Stoica November 27, 22 How Did it Start? A killer application: Naptser - Free music over the Internet Key idea: share the storage and bandwidth of individual (home)

More information

Introduction to P2P Computing

Introduction to P2P Computing Introduction to P2P Computing Nicola Dragoni Embedded Systems Engineering DTU Compute 1. Introduction A. Peer-to-Peer vs. Client/Server B. Overlay Networks 2. Common Topologies 3. Data Location 4. Gnutella

More information

Peer-to-peer systems

Peer-to-peer systems Prof. Dr. Claudia Müller-Birn Institute for Computer Science, Networked Information Systems Peer-to-peer systems Netzprogrammierung (lgorithmen und Programmierung V) Where are we on our topic map? Descriptive

More information

Making Gnutella-like P2P Systems Scalable

Making Gnutella-like P2P Systems Scalable Making Gnutella-like P2P Systems Scalable Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker Presented by: Herman Li Mar 2, 2005 Outline What are peer-to-peer (P2P) systems? Early P2P systems

More information

Flooded Queries (Gnutella) Centralized Lookup (Napster) Routed Queries (Freenet, Chord, etc.) Overview N 2 N 1 N 3 N 4 N 8 N 9 N N 7 N 6 N 9

Flooded Queries (Gnutella) Centralized Lookup (Napster) Routed Queries (Freenet, Chord, etc.) Overview N 2 N 1 N 3 N 4 N 8 N 9 N N 7 N 6 N 9 Peer-to-Peer Networks -: Computer Networking L-: PP Typically each member stores/provides access to content Has quickly grown in popularity Bulk of traffic from/to CMU is Kazaa! Basically a replication

More information

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today Network Science: Peer-to-Peer Systems Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Introduction Peer-to-peer (PP) systems have become

More information

Distributed Knowledge Organization and Peer-to-Peer Networks

Distributed Knowledge Organization and Peer-to-Peer Networks Knowledge Organization and Peer-to-Peer Networks Klaus Wehrle Group Chair of Computer Science IV RWTH Aachen University http://ds.cs.rwth-aachen.de 1 Organization of Information Essential challenge in?

More information

Lecture-2 Content Sharing in P2P Networks Different P2P Protocols

Lecture-2 Content Sharing in P2P Networks Different P2P Protocols Lecture-2 Content Sharing in P2P Networks Different P2P Protocols Zhou Shuigeng March 10, 2005 Outline Classification of content sharing P2P systems Content sharing P2P systems Napster; Gnutella; Freenet

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [P2P SYSTEMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Byzantine failures vs malicious nodes

More information

A Framework for Peer-To-Peer Lookup Services based on k-ary search

A Framework for Peer-To-Peer Lookup Services based on k-ary search A Framework for Peer-To-Peer Lookup Services based on k-ary search Sameh El-Ansary Swedish Institute of Computer Science Kista, Sweden Luc Onana Alima Department of Microelectronics and Information Technology

More information

Scalable overlay Networks

Scalable overlay Networks overlay Networks Dr. Samu Varjonen 1 Lectures MO 15.01. C122 Introduction. Exercises. Motivation. TH 18.01. DK117 Unstructured networks I MO 22.01. C122 Unstructured networks II TH 25.01. DK117 Bittorrent

More information

Content Overlays. Nick Feamster CS 7260 March 12, 2007

Content Overlays. Nick Feamster CS 7260 March 12, 2007 Content Overlays Nick Feamster CS 7260 March 12, 2007 Content Overlays Distributed content storage and retrieval Two primary approaches: Structured overlay Unstructured overlay Today s paper: Chord Not

More information

L3S Research Center, University of Hannover

L3S Research Center, University of Hannover , University of Hannover Structured Peer-to to-peer Networks Wolf-Tilo Balke and Wolf Siberski 3..6 *Original slides provided by K. Wehrle, S. Götz, S. Rieche (University of Tübingen) Peer-to-Peer Systems

More information

Assignment 5. Georgia Koloniari

Assignment 5. Georgia Koloniari Assignment 5 Georgia Koloniari 2. "Peer-to-Peer Computing" 1. What is the definition of a p2p system given by the authors in sec 1? Compare it with at least one of the definitions surveyed in the last

More information

6. Peer-to-peer (P2P) networks I.

6. Peer-to-peer (P2P) networks I. 6. Peer-to-peer (P2P) networks I. PA159: Net-Centric Computing I. Eva Hladká Faculty of Informatics Masaryk University Autumn 2010 Eva Hladká (FI MU) 6. P2P networks I. Autumn 2010 1 / 46 Lecture Overview

More information

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 Lecture 6: Overlay Networks CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 1 Overlay networks: Motivations Protocol changes in the network happen very slowly Why? Internet is shared

More information

Distributed Systems. 16. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 16. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 16. Distributed Lookup Paul Krzyzanowski Rutgers University Fall 2017 1 Distributed Lookup Look up (key, value) Cooperating set of nodes Ideally: No central coordinator Some nodes can

More information

Peer-to-Peer Architectures and Signaling. Agenda

Peer-to-Peer Architectures and Signaling. Agenda Peer-to-Peer Architectures and Signaling Juuso Lehtinen Juuso@netlab.hut.fi Slides based on presentation by Marcin Matuszewski in 2005 Introduction P2P architectures Skype Mobile P2P Summary Agenda 1 Introduction

More information

Distributed Information Processing

Distributed Information Processing Distributed Information Processing 14 th Lecture Eom, Hyeonsang ( 엄현상 ) Department of Computer Science & Engineering Seoul National University Copyrights 2016 Eom, Hyeonsang All Rights Reserved Outline

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 9: Peer-to-Peer Systems Previous Topics Data Database design Queries Query processing Localization Operators Optimization Transactions

More information

Scalability In Peer-to-Peer Systems. Presented by Stavros Nikolaou

Scalability In Peer-to-Peer Systems. Presented by Stavros Nikolaou Scalability In Peer-to-Peer Systems Presented by Stavros Nikolaou Background on Peer-to-Peer Systems Definition: Distributed systems/applications featuring: No centralized control, no hierarchical organization

More information

Slides for Chapter 10: Peer-to-Peer Systems

Slides for Chapter 10: Peer-to-Peer Systems Slides for Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Napster

More information

Simulations of Chord and Freenet Peer-to-Peer Networking Protocols Mid-Term Report

Simulations of Chord and Freenet Peer-to-Peer Networking Protocols Mid-Term Report Simulations of Chord and Freenet Peer-to-Peer Networking Protocols Mid-Term Report Computer Communications and Networking (SC 546) Professor D. Starobinksi Brian Mitchell U09-62-9095 James Nunan U38-03-0277

More information

Motivation for peer-to-peer

Motivation for peer-to-peer Peer-to-peer systems INF 5040 autumn 2015 lecturer: Roman Vitenberg INF5040, Frank Eliassen & Roman Vitenberg 1 Motivation for peer-to-peer Ø Inherent restrictions of the standard client/ server model

More information

*Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen)

*Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) Distributed Hash Tables (DHT) Jukka K. Nurminen *Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) The Architectures of st and nd Gen. PP Client-Server Peer-to-Peer.

More information

Peer-To-Peer Techniques

Peer-To-Peer Techniques PG DynaSearch Markus Benter 31th October, 2013 Introduction Centralized P2P-Networks Unstructured P2P-Networks Structured P2P-Networks Misc 1 What is a Peer-to-Peer System? Definition Peer-to-peer systems

More information

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley

More information

INF5070 media storage and distribution systems. to-peer Systems 10/

INF5070 media storage and distribution systems. to-peer Systems 10/ INF5070 Media Storage and Distribution Systems: Peer-to to-peer Systems 10/11 2003 Client-Server! Traditional distributed computing! Successful architecture, and will continue to be so (adding proxy servers)!

More information

Overlay and P2P Networks. Unstructured networks. Prof. Sasu Tarkoma

Overlay and P2P Networks. Unstructured networks. Prof. Sasu Tarkoma Overlay and P2P Networks Unstructured networks Prof. Sasu Tarkoma 19.1.2015 Contents Unstructured networks Last week Napster Skype This week: Gnutella BitTorrent P2P Index It is crucial to be able to find

More information

Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Distributed and Agent Systems

Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Distributed and Agent Systems Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Distributed and Agent Systems Peer-to-Peer Systems & JXTA Prof. Agostino Poggi What is Peer-to-Peer

More information

Overlay and P2P Networks. Unstructured networks: Freenet. Dr. Samu Varjonen

Overlay and P2P Networks. Unstructured networks: Freenet. Dr. Samu Varjonen Overlay and P2P Networks Unstructured networks: Freenet Dr. Samu Varjonen 1.2.2015 Contents Last week Napster Skype Gnutella BitTorrent and analysis This week: Freenet Introduction to structured networks

More information

Ossification of the Internet

Ossification of the Internet Ossification of the Internet The Internet evolved as an experimental packet-switched network Today, many aspects appear to be set in stone - Witness difficulty in getting IP multicast deployed - Major

More information

CIS 700/005 Networking Meets Databases

CIS 700/005 Networking Meets Databases Announcements CIS / Networking Meets Databases Boon Thau Loo Spring Lecture Paper summaries due at noon today. Office hours: Wed - pm ( Levine) Project proposal: due Feb. Student presenter: rd Jan: A Scalable

More information

*Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen)

*Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) Distributed Hash Tables (DHT) Jukka K. Nurminen *Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) The Architectures of st and nd Gen. PP Client-Server Peer-to-Peer.

More information

Decentralized Object Location In Dynamic Peer-to-Peer Distributed Systems

Decentralized Object Location In Dynamic Peer-to-Peer Distributed Systems Decentralized Object Location In Dynamic Peer-to-Peer Distributed Systems George Fletcher Project 3, B649, Dr. Plale July 16, 2003 1 Introduction One of the key requirements for global level scalability

More information

Peer-to-Peer Internet Applications: A Review

Peer-to-Peer Internet Applications: A Review Peer-to-Peer Internet Applications: A Review Davide Quaglia 01/14/10 Introduction Key points Lookup task Outline Centralized (Napster) Query flooding (Gnutella) Distributed Hash Table (Chord) Simulation

More information

Overlay and P2P Networks. Unstructured networks. PhD. Samu Varjonen

Overlay and P2P Networks. Unstructured networks. PhD. Samu Varjonen Overlay and P2P Networks Unstructured networks PhD. Samu Varjonen 25.1.2016 Contents Unstructured networks Last week Napster Skype This week: Gnutella BitTorrent P2P Index It is crucial to be able to find

More information

Peer-to-peer systems and overlay networks

Peer-to-peer systems and overlay networks Complex Adaptive Systems C.d.L. Informatica Università di Bologna Peer-to-peer systems and overlay networks Fabio Picconi Dipartimento di Scienze dell Informazione 1 Outline Introduction to P2P systems

More information

Distributed Hash Tables (DHT)

Distributed Hash Tables (DHT) Distributed Hash Tables (DHT) Jukka K. Nurminen Aalto University *Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) The Architectures of st and nd Gen. PP Client-Server

More information

Peer-to-Peer Networks

Peer-to-Peer Networks Peer-to-Peer Networks 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia Quiz #1 is next week

More information

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4 Xiaowei Yang xwy@cs.duke.edu Overview Problem Evolving solutions IP multicast Proxy caching Content distribution networks

More information

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 2 ARCHITECTURES

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 2 ARCHITECTURES DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 2 ARCHITECTURES Architectural Styles Important styles of architecture for distributed systems Layered

More information

Searching for Shared Resources: DHT in General

Searching for Shared Resources: DHT in General 1 ELT-53206 Peer-to-Peer Networks Searching for Shared Resources: DHT in General Mathieu Devos Tampere University of Technology Department of Electronics and Communications Engineering Based on the original

More information

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals.

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals. Overlay Networks: Motivations CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University

More information

Design and Implementation of a Distributed Object Storage System on Peer Nodes. Roger Kilchenmann. Diplomarbeit Von. aus Zürich

Design and Implementation of a Distributed Object Storage System on Peer Nodes. Roger Kilchenmann. Diplomarbeit Von. aus Zürich Design and Implementation of a Distributed Object Storage System on Peer Nodes Diplomarbeit Von Roger Kilchenmann aus Zürich vorgelegt am Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg

More information

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Global Computation Model. Cluster-based Applications

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Global Computation Model. Cluster-based Applications Challenges in the Wide-area Tapestry: Decentralized Routing and Location System Seminar S 0 Ben Y. Zhao CS Division, U. C. Berkeley Trends: Exponential growth in CPU, b/w, storage Network expanding in

More information

Searching for Shared Resources: DHT in General

Searching for Shared Resources: DHT in General 1 ELT-53207 P2P & IoT Systems Searching for Shared Resources: DHT in General Mathieu Devos Tampere University of Technology Department of Electronics and Communications Engineering Based on the original

More information

Peer-to-Peer Signalling. Agenda

Peer-to-Peer Signalling. Agenda Peer-to-Peer Signalling Marcin Matuszewski marcin@netlab.hut.fi S-38.115 Signalling Protocols Introduction P2P architectures Skype Mobile P2P Summary Agenda 1 Introduction Peer-to-Peer (P2P) is a communications

More information

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations.

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations. Goals CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University of California, Berkeley

More information

Peer-to-Peer (P2P) Systems

Peer-to-Peer (P2P) Systems Peer-to-Peer (P2P) Systems What Does Peer-to-Peer Mean? A generic name for systems in which peers communicate directly and not through a server Characteristics: decentralized self-organizing distributed

More information

Advanced Distributed Systems. Peer to peer systems. Reference. Reference. What is P2P? Unstructured P2P Systems Structured P2P Systems

Advanced Distributed Systems. Peer to peer systems. Reference. Reference. What is P2P? Unstructured P2P Systems Structured P2P Systems Advanced Distributed Systems Peer to peer systems Karl M. Göschka Karl.Goeschka@tuwien.ac.at http://www.infosys.tuwien.ac.at/teaching/courses/ AdvancedDistributedSystems/ What is P2P Unstructured P2P Systems

More information

A Resource Exchange Architecture for Peer-to-Peer File Sharing Applications

A Resource Exchange Architecture for Peer-to-Peer File Sharing Applications The Computer Journal Vol. 48 No. 1 The British Computer Society 2005; all rights reserved DOI:10.1093/comjnl/bxh055 A Resource Exchange Architecture for -to- File Sharing Applications Chung-Ming Huang

More information

Stratos Idreos. A thesis submitted in fulfillment of the requirements for the degree of. Electronic and Computer Engineering

Stratos Idreos. A thesis submitted in fulfillment of the requirements for the degree of. Electronic and Computer Engineering P2P-DIET: A QUERY AND NOTIFICATION SERVICE BASED ON MOBILE AGENTS FOR RAPID IMPLEMENTATION OF P2P APPLICATIONS by Stratos Idreos A thesis submitted in fulfillment of the requirements for the degree of

More information

P2P Network Structured Networks: Distributed Hash Tables. Pedro García López Universitat Rovira I Virgili

P2P Network Structured Networks: Distributed Hash Tables. Pedro García López Universitat Rovira I Virgili P2P Network Structured Networks: Distributed Hash Tables Pedro García López Universitat Rovira I Virgili Pedro.garcia@urv.net Index Introduction to DHT s Origins of structured overlays Case studies Chord

More information

Addressed Issue. P2P What are we looking at? What is Peer-to-Peer? What can databases do for P2P? What can databases do for P2P?

Addressed Issue. P2P What are we looking at? What is Peer-to-Peer? What can databases do for P2P? What can databases do for P2P? Peer-to-Peer Data Management - Part 1- Alex Coman acoman@cs.ualberta.ca Addressed Issue [1] Placement and retrieval of data [2] Server architectures for hybrid P2P [3] Improve search in pure P2P systems

More information

Peer-to-Peer (P2P) Distributed Storage. Dennis Kafura CS5204 Operating Systems

Peer-to-Peer (P2P) Distributed Storage. Dennis Kafura CS5204 Operating Systems Peer-to-Peer (P2P) Distributed Storage Dennis Kafura CS5204 Operating Systems 1 Peer-to-Peer Systems Definition: Peer-to-peer systems can be characterized as distributed systems in which all nodes have

More information

An Expresway over Chord in Peer-to-Peer Systems

An Expresway over Chord in Peer-to-Peer Systems An Expresway over Chord in Peer-to-Peer Systems Hathai Tanta-ngai Technical Report CS-2005-19 October 18, 2005 Faculty of Computer Science 6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada An

More information

Overlay and P2P Networks. Unstructured networks. Prof. Sasu Tarkoma

Overlay and P2P Networks. Unstructured networks. Prof. Sasu Tarkoma Overlay and P2P Networks Unstructured networks Prof. Sasu Tarkoma 20.1.2014 Contents P2P index revisited Unstructured networks Gnutella Bloom filters BitTorrent Freenet Summary of unstructured networks

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing Department of Computer Science Institute for System Architecture, Chair for Computer Networks File Sharing What is file sharing? File sharing is the practice of making files available for other users to

More information

Overview Computer Networking Lecture 16: Delivering Content: Peer to Peer and CDNs Peter Steenkiste

Overview Computer Networking Lecture 16: Delivering Content: Peer to Peer and CDNs Peter Steenkiste Overview 5-44 5-44 Computer Networking 5-64 Lecture 6: Delivering Content: Peer to Peer and CDNs Peter Steenkiste Web Consistent hashing Peer-to-peer Motivation Architectures Discussion CDN Video Fall

More information

: Scalable Lookup

: Scalable Lookup 6.824 2006: Scalable Lookup Prior focus has been on traditional distributed systems e.g. NFS, DSM/Hypervisor, Harp Machine room: well maintained, centrally located. Relatively stable population: can be

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks P2P Systems Jianping Pan Summer 2007 5/30/07 csc485b/586b/seng480b 1 C/S vs P2P Client-server server is well-known server may become a bottleneck Peer-to-peer everyone is a (potential)

More information

Introduction to P2P Systems

Introduction to P2P Systems Lecture Coverage 1. Characteristics, Properties and Requirements 2. Survey of Approaches 3. Napster/Gnutella 4. Distributed Hash Table Based Systems 1. Chord 2. Can 5. Similarity Metric Based Systems 1.

More information

Hierarchical peer-to-peer look-up service. Prototype implementation

Hierarchical peer-to-peer look-up service. Prototype implementation Hierarchical peer-to-peer look-up service Prototype implementation (Master Thesis) Francisco Javier Garcia Romero Tutor in Institut Eurecom: Prof. Dr. Ernst Biersack March 28, 2003 Acknowledges I first

More information

A Hybrid Peer-to-Peer Architecture for Global Geospatial Web Service Discovery

A Hybrid Peer-to-Peer Architecture for Global Geospatial Web Service Discovery A Hybrid Peer-to-Peer Architecture for Global Geospatial Web Service Discovery Shawn Chen 1, Steve Liang 2 1 Geomatics, University of Calgary, hschen@ucalgary.ca 2 Geomatics, University of Calgary, steve.liang@ucalgary.ca

More information

Chapter 10: Peer-to-Peer Systems

Chapter 10: Peer-to-Peer Systems Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, Addison-Wesley 2005 Introduction To enable the sharing of data and resources

More information

EE 122: Peer-to-Peer Networks

EE 122: Peer-to-Peer Networks EE 122: Peer-to-Peer Networks Ion Stoica (and Brighten Godfrey) TAs: Lucian Popa, David Zats and Ganesh Ananthanarayanan http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer

More information

Peer Clustering and Firework Query Model in Peer-to-Peer Networks

Peer Clustering and Firework Query Model in Peer-to-Peer Networks Peer Clustering and Firework Query Model in Peer-to-Peer Networks Ng, Cheuk Hang A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy in Department of Computer

More information

Scalable overlay Networks

Scalable overlay Networks overlay Networks Dr. Samu Varjonen 1 Lectures MO 15.01. C122 Introduction. Exercises. Motivation. TH 18.01. DK117 Unstructured networks I MO 22.01. C122 Unstructured networks II TH 25.01. DK117 Bittorrent

More information

A Survey of Peer-to-Peer Systems

A Survey of Peer-to-Peer Systems A Survey of Peer-to-Peer Systems Kostas Stefanidis Department of Computer Science, University of Ioannina, Greece kstef@cs.uoi.gr Abstract Peer-to-Peer systems have become, in a short period of time, one

More information

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Key: Location and Routing. Driving Applications

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Key: Location and Routing. Driving Applications Challenges in the Wide-area Tapestry: Decentralized Routing and Location SPAM Summer 00 Ben Y. Zhao CS Division, U. C. Berkeley! Trends: Exponential growth in CPU, b/w, storage Network expanding in reach

More information

Introduction on Peer to Peer systems

Introduction on Peer to Peer systems Introduction on Peer to Peer systems Georges Da Costa dacosta@irit.fr dacosta@irit.fr 1/55 Goal of this Lecture What can P2P do, not only as a buzzword What it can't do Shows some examples & algorithms

More information

Peer-to-peer computing research a fad?

Peer-to-peer computing research a fad? Peer-to-peer computing research a fad? Frans Kaashoek kaashoek@lcs.mit.edu NSF Project IRIS http://www.project-iris.net Berkeley, ICSI, MIT, NYU, Rice What is a P2P system? Node Node Node Internet Node

More information

Chord : A Scalable Peer-to-Peer Lookup Protocol for Internet Applications

Chord : A Scalable Peer-to-Peer Lookup Protocol for Internet Applications : A Scalable Peer-to-Peer Lookup Protocol for Internet Applications Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashock, Frank Dabek, Hari Balakrishnan March 4, 2013 One slide

More information

Opportunistic Application Flows in Sensor-based Pervasive Environments

Opportunistic Application Flows in Sensor-based Pervasive Environments Opportunistic Application Flows in Sensor-based Pervasive Environments Nanyan Jiang, Cristina Schmidt, Vincent Matossian, and Manish Parashar ICPS 2004 1 Outline Introduction to pervasive sensor-based

More information

15-744: Computer Networking P2P/DHT

15-744: Computer Networking P2P/DHT 15-744: Computer Networking P2P/DHT Overview P2P Lookup Overview Centralized/Flooded Lookups Routed Lookups Chord Comparison of DHTs 2 Peer-to-Peer Networks Typically each member stores/provides access

More information

Chapter 6 PEER-TO-PEER COMPUTING

Chapter 6 PEER-TO-PEER COMPUTING Chapter 6 PEER-TO-PEER COMPUTING Distributed Computing Group Computer Networks Winter 23 / 24 Overview What is Peer-to-Peer? Dictionary Distributed Hashing Search Join & Leave Other systems Case study:

More information

Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination

Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination By Shelley Zhuang,Ben Zhao,Anthony Joseph, Randy Katz,John Kubiatowicz Introduction Multimedia Streaming typically involves

More information

Overlay networks. To do. Overlay networks. P2P evolution DHTs in general, Chord and Kademlia. Turtles all the way down. q q q

Overlay networks. To do. Overlay networks. P2P evolution DHTs in general, Chord and Kademlia. Turtles all the way down. q q q Overlay networks To do q q q Overlay networks P2P evolution DHTs in general, Chord and Kademlia Turtles all the way down Overlay networks virtual networks Different applications with a wide range of needs

More information

Web caches (proxy server) Applications (part 3) Applications (part 3) Caching example (1) More about Web caching

Web caches (proxy server) Applications (part 3) Applications (part 3) Caching example (1) More about Web caching By the end of this lecture, you should be able to. Explain the idea of edge delivery Explain the operation of CDNs Explain the operation of P2P file sharing systems such as Napster and Gnutella Web caches

More information

Today. Architectural Styles

Today. Architectural Styles Today Architectures for distributed systems (Chapter 2) Centralized, decentralized, hybrid Middleware Self-managing systems Lecture 2, page 1 Architectural Styles Important styles of architecture for distributed

More information

Hierarchical Peer-to-Peer Networks

Hierarchical Peer-to-Peer Networks Hierarchical Peer-to-Peer Networks H. T. Kung Division of Engineering and Applied Sciences Harvard University Cambridge, MA 02138, USA Abstract -- In this paper, we describe a hierarchical architecture

More information

Distributed File Systems: An Overview of Peer-to-Peer Architectures. Distributed File Systems

Distributed File Systems: An Overview of Peer-to-Peer Architectures. Distributed File Systems Distributed File Systems: An Overview of Peer-to-Peer Architectures Distributed File Systems Data is distributed among many sources Ex. Distributed database systems Frequently utilize a centralized lookup

More information

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University CPSC 4/5 PP Lookup Service Ennan Zhai Computer Science Department Yale University Recall: Lec- Network basics: - OSI model and how Internet works - Socket APIs red PP network (Gnutella, KaZaA, etc.) UseNet

More information

Evolution of Peer-to-peer algorithms: Past, present and future.

Evolution of Peer-to-peer algorithms: Past, present and future. Evolution of Peer-to-peer algorithms: Past, present and future. Alexei Semenov Helsinki University of Technology alexei.semenov@hut.fi Abstract Today peer-to-peer applications are widely used for different

More information

Peer to Peer Networks

Peer to Peer Networks Sungkyunkwan University Peer to Peer Networks Prepared by T. Le-Duc and H. Choo Copyright 2000-2018 Networking Laboratory P2P Applications Traditional P2P applications: for file sharing BitTorrent, Emule

More information