AcuSolve Performance Benchmark and Profiling. October 2011

Size: px
Start display at page:

Download "AcuSolve Performance Benchmark and Profiling. October 2011"

Transcription

1 AcuSolve Performance Benchmark and Profiling October 2011

2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox, Altair Compute resource: HPC Advisory Council Cluster Center For more info please refer to

3 AcuSolve AcuSolve AcuSolve is a leading general-purpose finite element-based Computational Fluid Dynamics (CFD) flow solver with superior robustness, speed, and accuracy AcuSolve can be used by designers and research engineers with all levels of expertise, either as a standalone product or seamlessly integrated into a powerful design and analysis application With AcuSolve, users can quickly obtain quality solutions without iterating on solution procedures or worrying about mesh quality or topology 3

4 Objectives The following was done to provide best practices AcuSolve performance benchmarking Understanding AcuSolve communication patterns Ways to increase AcuSolve productivity Network interconnects comparisons The presented results will demonstrate The scalability of the compute environment The capability of AcuSolve to achieve scalable productivity Considerations for performance optimizations 4

5 Test Cluster Configuration Dell PowerEdge C node Quad-socket (288-core) cluster AMD Opteron 6174 (code name Magny-Cours ) 2.2 GHz CPUs Memory: 128GB memory per node DDR3 1066MHz Mellanox ConnectX-3 VPI adapters for 56Gb/s FDR InfiniBand and 40Gb/s Ethernet Mellanox MTS3600Q 36-Port 40Gb/s QDR InfiniBand switch Fulcrum-based 10Gb/s Ethernet Switch OS: RHEL 6.1, MLNX-OFED InfiniBand SW stack MPI: Platform MPI 7.1 Application: AcuSolve 1.8a Benchmark workload: Pipe_fine, 2 meshes 350 axial nodes, 1.52 million mesh points total, 8.89 million tetrahedral elements 700 axial nodes, 3.04 million mesh points total, 17.8 million tetrahedral elements The pipe_fine test computes the steady state flow conditions for the turbulent flow (Re = 30000) of water in a pipe with heat transfer. The pipe is 1 meter in length and 150 cm in diameter. Water enters the inlet at room temperature conditions. 5

6 About Dell PowerEdge Platform Advantages Best of breed technologies and partners Combination of AMD Opteron 6100 series platform and Mellanox ConnectX InfiniBand on Dell HPC Solutions provide the ultimate platform for speed and scale Dell PowerEdge C6145 system delivers 8 socket performance in dense 2U form factor Up to 48 core/32dimms per server 2016 core in 42U enclosure Integrated stacks designed to deliver the best price/performance/watt 2x more memory and processing power in half of the space Energy optimized low flow fans, improved power supplies and dual SD modules Optimized for long-term capital and operating investment protection System expansion Component upgrades and feature releases 6

7 AcuSolve Performance Threads Per Node AcuSolve allows running in MPI-thread hybrid mode Allow MPI process to focus on message passing while threads for computation The optimal thread count are different for the datasets Using 12 threads per node is the most optimal for the dataset with 350 axial nodes Using 24 threads per node is the most optimal for the dataset with 700 axial nodes Higher is better 6 nodes InfiniBand QDR 7

8 AcuSolve Performance Interconnect InfiniBand QDR delivers the best performance for AcuSolve Seen up to 75% better performance than 10GigE on 6-node (12 threads per node) Seen up to 99% better performance than 1GigE on 6-node (12 threads per node) Network bandwidth enables AcuSolve to scale Higher throughput allows AcuSolve to achieve higher productivity 99% 75% 67% 34% Higher is better 48 Cores/Node 8

9 AcuSolve Performance CPU Frequency Higher CPU core frequency enables higher job performance Seen 28% more jobs produced by running CPU core at 2200MHz instead of 1800MHz The increase in CPU core frequencies can directly improve the overall job performance 28% Higher is better 48 Threads/Node 9

10 AcuSolve Profiling MPI/User Time Ratio Communication time has a major role for AcuSolve Communication time occupies the majority of run time after 4 nodes for this benchmark High speed interconnect becomes crucial as the node number grows 48 Threads/Node 10

11 AcuSolve Profiling MPI/User Run Time InfiniBand reduces CPU overhead for processing network data Better network communication reduces time in computation and in communication InfiniBand offloads network transfers to HCA which CPU to focus on computation The Ethernet solutions causes job to run slower 12 Threads/Node 11

12 AcuSolve Profiling Number of MPI Calls The most used MPI functions are for data transfers MPI_Recv and MPI_Isend Reflects that AcuSolve does communication and requires good network throughput The number of calls increases proportionally as the cluster scales 48 Threads/Node 12

13 AcuSolve Profiling Time Spent of MPI Calls The time in communications is taken place in the following MPI functions: InfiniBand: MPI_Allreduce(41%), MPI_Recv(30%), MPI_Barrier(24%) 10GigE: MPI_Allreduce(58%), MPI_Recv(32%), MPI_Barrier(9%) 1GigE: MPI_Recv(54%), MPI_Barrier(29%), MPI_Allreduce(16%) 13

14 AcuSolve Profiling MPI Message Sizes Majority of the MPI messages are small to medium message sizes In the ranges of between 0B and 256B The ratio of the message distribution are very close between the 2 datasets The dataset with 700 mesh points has much larger number of messages 14

15 AcuSolve Profiling Data Transfer By Process Data transferred to each MPI rank are not evenly distributed Data transfer to the rank is mirrored according to the rank numbers Amount of data grows as the cluster scales From around 20GB max per rank on 4-node up to around 80GB per rank for 6-node 15

16 AcuSolve Profiling Aggregated Data Transfer Aggregated data transfer refers to: Total amount of data being transferred in the network between all MPI ranks collectively The total data transfer jumps unexpectedly as the cluster scales For both datasets, a sizable amount of data being sent and received across the network As a compute node being added, more generally data communications will take place InfiniBand QDR 16

17 Summary AcuSolve is a CFD application that has the capability to scale to many nodes MPI-thread Hybrid mode: Allow MPI process to focus on message passing while threads for computation Selecting a suitable thread count can have a huge impact on performance and productivity CPU: AcuSolve has a high demand for good CPU utilization Higher CPU core frequency allows AcuSolve to achieve higher performance Interconnects: InfiniBand QDR can deliver great network throughput needed for scaling to many nodes 10GigE and 1GigE takes away CPU runtime for handling network transfers Interconnect becomes crucial after 4 nodes as more time is spent on MPI for these datasets Profiling: Sizable load of data is exchanged in the network MPI calls are mostly concentrated for data transfers instead of data synchronization 17

18 Thank You HPC Advisory Council All trademarks are property of their respective owners. All information is provided As-Is without any kind of warranty. The HPC Advisory Council makes no representation to the accuracy and completeness of the information contained herein. HPC Advisory Council Mellanox undertakes no duty and assumes no obligation to update or correct any information presented herein 18 18

AcuSolve Performance Benchmark and Profiling. October 2011

AcuSolve Performance Benchmark and Profiling. October 2011 AcuSolve Performance Benchmark and Profiling October 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox, Altair Compute

More information

Altair RADIOSS Performance Benchmark and Profiling. May 2013

Altair RADIOSS Performance Benchmark and Profiling. May 2013 Altair RADIOSS Performance Benchmark and Profiling May 2013 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Altair, AMD, Dell, Mellanox Compute

More information

CP2K Performance Benchmark and Profiling. April 2011

CP2K Performance Benchmark and Profiling. April 2011 CP2K Performance Benchmark and Profiling April 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

AMBER 11 Performance Benchmark and Profiling. July 2011

AMBER 11 Performance Benchmark and Profiling. July 2011 AMBER 11 Performance Benchmark and Profiling July 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource -

More information

GROMACS Performance Benchmark and Profiling. September 2012

GROMACS Performance Benchmark and Profiling. September 2012 GROMACS Performance Benchmark and Profiling September 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource

More information

Himeno Performance Benchmark and Profiling. December 2010

Himeno Performance Benchmark and Profiling. December 2010 Himeno Performance Benchmark and Profiling December 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource

More information

HYCOM Performance Benchmark and Profiling

HYCOM Performance Benchmark and Profiling HYCOM Performance Benchmark and Profiling Jan 2011 Acknowledgment: - The DoD High Performance Computing Modernization Program Note The following research was performed under the HPC Advisory Council activities

More information

LAMMPS Performance Benchmark and Profiling. July 2012

LAMMPS Performance Benchmark and Profiling. July 2012 LAMMPS Performance Benchmark and Profiling July 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

NAMD Performance Benchmark and Profiling. February 2012

NAMD Performance Benchmark and Profiling. February 2012 NAMD Performance Benchmark and Profiling February 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource -

More information

CESM (Community Earth System Model) Performance Benchmark and Profiling. August 2011

CESM (Community Earth System Model) Performance Benchmark and Profiling. August 2011 CESM (Community Earth System Model) Performance Benchmark and Profiling August 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell,

More information

Altair OptiStruct 13.0 Performance Benchmark and Profiling. May 2015

Altair OptiStruct 13.0 Performance Benchmark and Profiling. May 2015 Altair OptiStruct 13.0 Performance Benchmark and Profiling May 2015 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute

More information

NAMD GPU Performance Benchmark. March 2011

NAMD GPU Performance Benchmark. March 2011 NAMD GPU Performance Benchmark March 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Dell, Intel, Mellanox Compute resource - HPC Advisory

More information

GROMACS Performance Benchmark and Profiling. August 2011

GROMACS Performance Benchmark and Profiling. August 2011 GROMACS Performance Benchmark and Profiling August 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

STAR-CCM+ Performance Benchmark and Profiling. July 2014

STAR-CCM+ Performance Benchmark and Profiling. July 2014 STAR-CCM+ Performance Benchmark and Profiling July 2014 Note The following research was performed under the HPC Advisory Council activities Participating vendors: CD-adapco, Intel, Dell, Mellanox Compute

More information

SNAP Performance Benchmark and Profiling. April 2014

SNAP Performance Benchmark and Profiling. April 2014 SNAP Performance Benchmark and Profiling April 2014 Note The following research was performed under the HPC Advisory Council activities Participating vendors: HP, Mellanox For more information on the supporting

More information

NAMD Performance Benchmark and Profiling. January 2015

NAMD Performance Benchmark and Profiling. January 2015 NAMD Performance Benchmark and Profiling January 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

ABySS Performance Benchmark and Profiling. May 2010

ABySS Performance Benchmark and Profiling. May 2010 ABySS Performance Benchmark and Profiling May 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

ANSYS Fluent 14 Performance Benchmark and Profiling. October 2012

ANSYS Fluent 14 Performance Benchmark and Profiling. October 2012 ANSYS Fluent 14 Performance Benchmark and Profiling October 2012 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information

More information

ICON Performance Benchmark and Profiling. March 2012

ICON Performance Benchmark and Profiling. March 2012 ICON Performance Benchmark and Profiling March 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource - HPC

More information

OCTOPUS Performance Benchmark and Profiling. June 2015

OCTOPUS Performance Benchmark and Profiling. June 2015 OCTOPUS Performance Benchmark and Profiling June 2015 2 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the

More information

NAMD Performance Benchmark and Profiling. November 2010

NAMD Performance Benchmark and Profiling. November 2010 NAMD Performance Benchmark and Profiling November 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: HP, Mellanox Compute resource - HPC Advisory

More information

LAMMPSCUDA GPU Performance. April 2011

LAMMPSCUDA GPU Performance. April 2011 LAMMPSCUDA GPU Performance April 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Dell, Intel, Mellanox Compute resource - HPC Advisory Council

More information

OpenFOAM Performance Testing and Profiling. October 2017

OpenFOAM Performance Testing and Profiling. October 2017 OpenFOAM Performance Testing and Profiling October 2017 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Huawei, Mellanox Compute resource - HPC

More information

LS-DYNA Performance Benchmark and Profiling. April 2015

LS-DYNA Performance Benchmark and Profiling. April 2015 LS-DYNA Performance Benchmark and Profiling April 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

CPMD Performance Benchmark and Profiling. February 2014

CPMD Performance Benchmark and Profiling. February 2014 CPMD Performance Benchmark and Profiling February 2014 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

MM5 Modeling System Performance Research and Profiling. March 2009

MM5 Modeling System Performance Research and Profiling. March 2009 MM5 Modeling System Performance Research and Profiling March 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox HPC Advisory Council Cluster Center

More information

CP2K Performance Benchmark and Profiling. April 2011

CP2K Performance Benchmark and Profiling. April 2011 CP2K Performance Benchmark and Profiling April 2011 Note The following research was performed under the HPC Advisory Council HPC works working group activities Participating vendors: HP, Intel, Mellanox

More information

MILC Performance Benchmark and Profiling. April 2013

MILC Performance Benchmark and Profiling. April 2013 MILC Performance Benchmark and Profiling April 2013 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

LAMMPS-KOKKOS Performance Benchmark and Profiling. September 2015

LAMMPS-KOKKOS Performance Benchmark and Profiling. September 2015 LAMMPS-KOKKOS Performance Benchmark and Profiling September 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox, NVIDIA

More information

LS-DYNA Performance Benchmark and Profiling. October 2017

LS-DYNA Performance Benchmark and Profiling. October 2017 LS-DYNA Performance Benchmark and Profiling October 2017 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: LSTC, Huawei, Mellanox Compute resource

More information

The Impact of Inter-node Latency versus Intra-node Latency on HPC Applications The 23 rd IASTED International Conference on PDCS 2011

The Impact of Inter-node Latency versus Intra-node Latency on HPC Applications The 23 rd IASTED International Conference on PDCS 2011 The Impact of Inter-node Latency versus Intra-node Latency on HPC Applications The 23 rd IASTED International Conference on PDCS 2011 HPC Scale Working Group, Dec 2011 Gilad Shainer, Pak Lui, Tong Liu,

More information

Scheduling Strategies for HPC as a Service (HPCaaS) for Bio-Science Applications

Scheduling Strategies for HPC as a Service (HPCaaS) for Bio-Science Applications Scheduling Strategies for HPC as a Service (HPCaaS) for Bio-Science Applications Sep 2009 Gilad Shainer, Tong Liu (Mellanox); Jeffrey Layton (Dell); Joshua Mora (AMD) High Performance Interconnects for

More information

NEMO Performance Benchmark and Profiling. May 2011

NEMO Performance Benchmark and Profiling. May 2011 NEMO Performance Benchmark and Profiling May 2011 Note The following research was performed under the HPC Advisory Council HPC works working group activities Participating vendors: HP, Intel, Mellanox

More information

GROMACS (GPU) Performance Benchmark and Profiling. February 2016

GROMACS (GPU) Performance Benchmark and Profiling. February 2016 GROMACS (GPU) Performance Benchmark and Profiling February 2016 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Dell, Mellanox, NVIDIA Compute

More information

LS-DYNA Performance Benchmark and Profiling. October 2017

LS-DYNA Performance Benchmark and Profiling. October 2017 LS-DYNA Performance Benchmark and Profiling October 2017 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: LSTC, Huawei, Mellanox Compute resource

More information

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Pak Lui, Gilad Shainer, Brian Klaff Mellanox Technologies Abstract From concept to

More information

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance 11 th International LS-DYNA Users Conference Computing Technology LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton

More information

MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA

MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA Gilad Shainer 1, Tong Liu 1, Pak Lui 1, Todd Wilde 1 1 Mellanox Technologies Abstract From concept to engineering, and from design to

More information

LS-DYNA Productivity and Power-aware Simulations in Cluster Environments

LS-DYNA Productivity and Power-aware Simulations in Cluster Environments LS-DYNA Productivity and Power-aware Simulations in Cluster Environments Gilad Shainer 1, Tong Liu 1, Jacob Liberman 2, Jeff Layton 2 Onur Celebioglu 2, Scot A. Schultz 3, Joshua Mora 3, David Cownie 3,

More information

Optimizing LS-DYNA Productivity in Cluster Environments

Optimizing LS-DYNA Productivity in Cluster Environments 10 th International LS-DYNA Users Conference Computing Technology Optimizing LS-DYNA Productivity in Cluster Environments Gilad Shainer and Swati Kher Mellanox Technologies Abstract Increasing demand for

More information

Clustering Optimizations How to achieve optimal performance? Pak Lui

Clustering Optimizations How to achieve optimal performance? Pak Lui Clustering Optimizations How to achieve optimal performance? Pak Lui 130 Applications Best Practices Published Abaqus CPMD LS-DYNA MILC AcuSolve Dacapo minife OpenMX Amber Desmond MILC PARATEC AMG DL-POLY

More information

Dell EMC Ready Bundle for HPC Digital Manufacturing Dassault Systѐmes Simulia Abaqus Performance

Dell EMC Ready Bundle for HPC Digital Manufacturing Dassault Systѐmes Simulia Abaqus Performance Dell EMC Ready Bundle for HPC Digital Manufacturing Dassault Systѐmes Simulia Abaqus Performance This Dell EMC technical white paper discusses performance benchmarking results and analysis for Simulia

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Maximizing Productivity With InfiniBand-Based Clusters Gilad Shainer Director of Technical Marketing Mellanox Technologies 2008 ANSYS, Inc. All rights reserved. 1 ANSYS,

More information

RADIOSS Benchmark Underscores Solver s Scalability, Quality and Robustness

RADIOSS Benchmark Underscores Solver s Scalability, Quality and Robustness RADIOSS Benchmark Underscores Solver s Scalability, Quality and Robustness HPC Advisory Council studies performance evaluation, scalability analysis and optimization tuning of RADIOSS 12.0 on a modern

More information

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007 Mellanox Technologies Maximize Cluster Performance and Productivity Gilad Shainer, shainer@mellanox.com October, 27 Mellanox Technologies Hardware OEMs Servers And Blades Applications End-Users Enterprise

More information

Dell EMC Ready Bundle for HPC Digital Manufacturing ANSYS Performance

Dell EMC Ready Bundle for HPC Digital Manufacturing ANSYS Performance Dell EMC Ready Bundle for HPC Digital Manufacturing ANSYS Performance This Dell EMC technical white paper discusses performance benchmarking results and analysis for ANSYS Mechanical, ANSYS Fluent, and

More information

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 Leading Supplier of End-to-End Interconnect Solutions Analyze Enabling the Use of Data Store ICs Comprehensive End-to-End InfiniBand and Ethernet Portfolio

More information

OPEN MPI WITH RDMA SUPPORT AND CUDA. Rolf vandevaart, NVIDIA

OPEN MPI WITH RDMA SUPPORT AND CUDA. Rolf vandevaart, NVIDIA OPEN MPI WITH RDMA SUPPORT AND CUDA Rolf vandevaart, NVIDIA OVERVIEW What is CUDA-aware History of CUDA-aware support in Open MPI GPU Direct RDMA support Tuning parameters Application example Future work

More information

IBM Information Technology Guide For ANSYS Fluent Customers

IBM Information Technology Guide For ANSYS Fluent Customers IBM ISV & Developer Relations Manufacturing IBM Information Technology Guide For ANSYS Fluent Customers A collaborative effort between ANSYS and IBM 2 IBM Information Technology Guide For ANSYS Fluent

More information

Introduction to High-Speed InfiniBand Interconnect

Introduction to High-Speed InfiniBand Interconnect Introduction to High-Speed InfiniBand Interconnect 2 What is InfiniBand? Industry standard defined by the InfiniBand Trade Association Originated in 1999 InfiniBand specification defines an input/output

More information

VPI / InfiniBand. Performance Accelerated Mellanox InfiniBand Adapters Provide Advanced Data Center Performance, Efficiency and Scalability

VPI / InfiniBand. Performance Accelerated Mellanox InfiniBand Adapters Provide Advanced Data Center Performance, Efficiency and Scalability VPI / InfiniBand Performance Accelerated Mellanox InfiniBand Adapters Provide Advanced Data Center Performance, Efficiency and Scalability Mellanox enables the highest data center performance with its

More information

Performance Optimizations for LS-DYNA with Mellanox HPC-X Scalable Software Toolkit

Performance Optimizations for LS-DYNA with Mellanox HPC-X Scalable Software Toolkit Performance Optimizations for LS-DYNA with Mellanox HPC-X Scalable Software Toolkit Pak Lui 1, David Cho 1, Gilad Shainer 1, Scot Schultz 1, Brian Klaff 1 1 Mellanox Technologies, Inc. 1 Abstract From

More information

GRID Testing and Profiling. November 2017

GRID Testing and Profiling. November 2017 GRID Testing and Profiling November 2017 2 GRID C++ library for Lattice Quantum Chromodynamics (Lattice QCD) calculations Developed by Peter Boyle (U. of Edinburgh) et al. Hybrid MPI+OpenMP plus NUMA aware

More information

VPI / InfiniBand. Performance Accelerated Mellanox InfiniBand Adapters Provide Advanced Data Center Performance, Efficiency and Scalability

VPI / InfiniBand. Performance Accelerated Mellanox InfiniBand Adapters Provide Advanced Data Center Performance, Efficiency and Scalability VPI / InfiniBand Performance Accelerated Mellanox InfiniBand Adapters Provide Advanced Data Center Performance, Efficiency and Scalability Mellanox enables the highest data center performance with its

More information

Birds of a Feather Presentation

Birds of a Feather Presentation Mellanox InfiniBand QDR 4Gb/s The Fabric of Choice for High Performance Computing Gilad Shainer, shainer@mellanox.com June 28 Birds of a Feather Presentation InfiniBand Technology Leadership Industry Standard

More information

ARISTA: Improving Application Performance While Reducing Complexity

ARISTA: Improving Application Performance While Reducing Complexity ARISTA: Improving Application Performance While Reducing Complexity October 2008 1.0 Problem Statement #1... 1 1.1 Problem Statement #2... 1 1.2 Previous Options: More Servers and I/O Adapters... 1 1.3

More information

The Effect of HPC Cluster Architecture on the Scalability Performance of CAE Simulations

The Effect of HPC Cluster Architecture on the Scalability Performance of CAE Simulations The Effect of HPC Cluster Architecture on the Scalability Performance of CAE Simulations Pak Lui HPC Advisory Council June 7, 2016 1 Agenda Introduction to HPC Advisory Council Benchmark Configuration

More information

QLogic TrueScale InfiniBand and Teraflop Simulations

QLogic TrueScale InfiniBand and Teraflop Simulations WHITE Paper QLogic TrueScale InfiniBand and Teraflop Simulations For ANSYS Mechanical v12 High Performance Interconnect for ANSYS Computer Aided Engineering Solutions Executive Summary Today s challenging

More information

Performance Accelerated Mellanox InfiniBand Adapters Provide Advanced Data Center Performance, Efficiency and Scalability

Performance Accelerated Mellanox InfiniBand Adapters Provide Advanced Data Center Performance, Efficiency and Scalability Performance Accelerated Mellanox InfiniBand Adapters Provide Advanced Data Center Performance, Efficiency and Scalability Mellanox InfiniBand Host Channel Adapters (HCA) enable the highest data center

More information

Designing High Performance Communication Middleware with Emerging Multi-core Architectures

Designing High Performance Communication Middleware with Emerging Multi-core Architectures Designing High Performance Communication Middleware with Emerging Multi-core Architectures Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Single-Points of Performance

Single-Points of Performance Single-Points of Performance Mellanox Technologies Inc. 29 Stender Way, Santa Clara, CA 9554 Tel: 48-97-34 Fax: 48-97-343 http://www.mellanox.com High-performance computations are rapidly becoming a critical

More information

DESCRIPTION GHz, 1.536TB shared memory RAM, and 20.48TB RAW internal storage teraflops About ScaleMP

DESCRIPTION GHz, 1.536TB shared memory RAM, and 20.48TB RAW internal storage teraflops About ScaleMP DESCRIPTION The Auburn University College of Engineering Computational Fluid Dynamics Cluster is built using Dell M1000E Blade Chassis Server Platform. The Cluster will consist of (4) M1000E Blade Chassis

More information

Solutions for Scalable HPC

Solutions for Scalable HPC Solutions for Scalable HPC Scot Schultz, Director HPC/Technical Computing HPC Advisory Council Stanford Conference Feb 2014 Leading Supplier of End-to-End Interconnect Solutions Comprehensive End-to-End

More information

The Future of Interconnect Technology

The Future of Interconnect Technology The Future of Interconnect Technology Michael Kagan, CTO HPC Advisory Council Stanford, 2014 Exponential Data Growth Best Interconnect Required 44X 0.8 Zetabyte 2009 35 Zetabyte 2020 2014 Mellanox Technologies

More information

Maximizing Memory Performance for ANSYS Simulations

Maximizing Memory Performance for ANSYS Simulations Maximizing Memory Performance for ANSYS Simulations By Alex Pickard, 2018-11-19 Memory or RAM is an important aspect of configuring computers for high performance computing (HPC) simulation work. The performance

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

FUSION1200 Scalable x86 SMP System

FUSION1200 Scalable x86 SMP System FUSION1200 Scalable x86 SMP System Introduction Life Sciences Departmental System Manufacturing (CAE) Departmental System Competitive Analysis: IBM x3950 Competitive Analysis: SUN x4600 / SUN x4600 M2

More information

MSC Nastran Explicit Nonlinear (SOL 700) on Advanced SGI Architectures

MSC Nastran Explicit Nonlinear (SOL 700) on Advanced SGI Architectures MSC Nastran Explicit Nonlinear (SOL 700) on Advanced SGI Architectures Presented By: Dr. Olivier Schreiber, Application Engineering, SGI Walter Schrauwen, Senior Engineer, Finite Element Development, MSC

More information

Performance Analysis of LS-DYNA in Huawei HPC Environment

Performance Analysis of LS-DYNA in Huawei HPC Environment Performance Analysis of LS-DYNA in Huawei HPC Environment Pak Lui, Zhanxian Chen, Xiangxu Fu, Yaoguo Hu, Jingsong Huang Huawei Technologies Abstract LS-DYNA is a general-purpose finite element analysis

More information

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09 RDMA over Ethernet - A Preliminary Study Hari Subramoni, Miao Luo, Ping Lai and Dhabaleswar. K. Panda Computer Science & Engineering Department The Ohio State University Introduction Problem Statement

More information

Real Application Performance and Beyond

Real Application Performance and Beyond Real Application Performance and Beyond Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400 Fax: 408-970-3403 http://www.mellanox.com Scientists, engineers and analysts

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Matthew Koop 1 Miao Luo D. K. Panda matthew.koop@nasa.gov {luom, panda}@cse.ohio-state.edu 1 NASA Center for Computational

More information

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,

More information

ANSYS HPC Technology Leadership

ANSYS HPC Technology Leadership ANSYS HPC Technology Leadership 1 ANSYS, Inc. November 14, Why ANSYS Users Need HPC Insight you can t get any other way It s all about getting better insight into product behavior quicker! HPC enables

More information

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS)

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) DELIVERABLE D5.5 Report on ICARUS visualization cluster installation John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) 02 May 2011 NextMuSE 2 Next generation Multi-mechanics Simulation Environment Cluster

More information

What is Parallel Computing?

What is Parallel Computing? What is Parallel Computing? Parallel Computing is several processing elements working simultaneously to solve a problem faster. 1/33 What is Parallel Computing? Parallel Computing is several processing

More information

The Road to ExaScale. Advances in High-Performance Interconnect Infrastructure. September 2011

The Road to ExaScale. Advances in High-Performance Interconnect Infrastructure. September 2011 The Road to ExaScale Advances in High-Performance Interconnect Infrastructure September 2011 diego@mellanox.com ExaScale Computing Ambitious Challenges Foster Progress Demand Research Institutes, Universities

More information

The Effect of In-Network Computing-Capable Interconnects on the Scalability of CAE Simulations

The Effect of In-Network Computing-Capable Interconnects on the Scalability of CAE Simulations The Effect of In-Network Computing-Capable Interconnects on the Scalability of CAE Simulations Ophir Maor HPC Advisory Council ophir@hpcadvisorycouncil.com The HPC-AI Advisory Council World-wide HPC non-profit

More information

The rcuda technology: an inexpensive way to improve the performance of GPU-based clusters Federico Silla

The rcuda technology: an inexpensive way to improve the performance of GPU-based clusters Federico Silla The rcuda technology: an inexpensive way to improve the performance of -based clusters Federico Silla Technical University of Valencia Spain The scope of this talk Delft, April 2015 2/47 More flexible

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

AMD EPYC and NAMD Powering the Future of HPC February, 2019

AMD EPYC and NAMD Powering the Future of HPC February, 2019 AMD EPYC and NAMD Powering the Future of HPC February, 19 Exceptional Core Performance NAMD is a compute-intensive workload that benefits from AMD EPYC s high core IPC (Instructions Per Clock) and high

More information

HIGH-PERFORMANCE STORAGE FOR DISCOVERY THAT SOARS

HIGH-PERFORMANCE STORAGE FOR DISCOVERY THAT SOARS HIGH-PERFORMANCE STORAGE FOR DISCOVERY THAT SOARS OVERVIEW When storage demands and budget constraints collide, discovery suffers. And it s a growing problem. Driven by ever-increasing performance and

More information

SUN CUSTOMER READY HPC CLUSTER: REFERENCE CONFIGURATIONS WITH SUN FIRE X4100, X4200, AND X4600 SERVERS Jeff Lu, Systems Group Sun BluePrints OnLine

SUN CUSTOMER READY HPC CLUSTER: REFERENCE CONFIGURATIONS WITH SUN FIRE X4100, X4200, AND X4600 SERVERS Jeff Lu, Systems Group Sun BluePrints OnLine SUN CUSTOMER READY HPC CLUSTER: REFERENCE CONFIGURATIONS WITH SUN FIRE X4100, X4200, AND X4600 SERVERS Jeff Lu, Systems Group Sun BluePrints OnLine April 2007 Part No 820-1270-11 Revision 1.1, 4/18/07

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand. Abstract

Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand. Abstract Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand Abstract...1 Introduction...2 Overview of ConnectX Architecture...2 Performance Results...3 Acknowledgments...7 For

More information

Future Routing Schemes in Petascale clusters

Future Routing Schemes in Petascale clusters Future Routing Schemes in Petascale clusters Gilad Shainer, Mellanox, USA Ola Torudbakken, Sun Microsystems, Norway Richard Graham, Oak Ridge National Laboratory, USA Birds of a Feather Presentation Abstract

More information

INCREASE IT EFFICIENCY, REDUCE OPERATING COSTS AND DEPLOY ANYWHERE

INCREASE IT EFFICIENCY, REDUCE OPERATING COSTS AND DEPLOY ANYWHERE www.iceotope.com DATA SHEET INCREASE IT EFFICIENCY, REDUCE OPERATING COSTS AND DEPLOY ANYWHERE BLADE SERVER TM PLATFORM 80% Our liquid cooling platform is proven to reduce cooling energy consumption by

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

Maximizing Cluster Scalability for LS-DYNA

Maximizing Cluster Scalability for LS-DYNA Maximizing Cluster Scalability for LS-DYNA Pak Lui 1, David Cho 1, Gerald Lotto 1, Gilad Shainer 1 1 Mellanox Technologies, Inc. Sunnyvale, CA, USA 1 Abstract High performance network interconnect is an

More information

Amazon Web Services: Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud

Amazon Web Services: Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud Amazon Web Services: Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud Summarized by: Michael Riera 9/17/2011 University of Central Florida CDA5532 Agenda

More information

FROM HPC TO THE CLOUD WITH AMQP AND OPEN SOURCE SOFTWARE

FROM HPC TO THE CLOUD WITH AMQP AND OPEN SOURCE SOFTWARE FROM HPC TO THE CLOUD WITH AMQP AND OPEN SOURCE SOFTWARE Carl Trieloff cctrieloff@redhat.com Red Hat Lee Fisher lee.fisher@hp.com Hewlett-Packard High Performance Computing on Wall Street conference 14

More information

Readme for Platform Open Cluster Stack (OCS)

Readme for Platform Open Cluster Stack (OCS) Readme for Platform Open Cluster Stack (OCS) Version 4.1.1-2.0 October 25 2006 Platform Computing Contents What is Platform OCS? What's New in Platform OCS 4.1.1-2.0? Supported Architecture Distribution

More information

PERFORMANCE ACCELERATED Mellanox InfiniBand Adapters Provide Advanced Levels of Data Center IT Performance, Productivity and Efficiency

PERFORMANCE ACCELERATED Mellanox InfiniBand Adapters Provide Advanced Levels of Data Center IT Performance, Productivity and Efficiency PERFORMANCE ACCELERATED Mellanox InfiniBand Adapters Provide Advanced Levels of Data Center IT Performance, Productivity and Efficiency Mellanox continues its leadership providing InfiniBand Host Channel

More information

Choosing the Best Network Interface Card for Cloud Mellanox ConnectX -3 Pro EN vs. Intel XL710

Choosing the Best Network Interface Card for Cloud Mellanox ConnectX -3 Pro EN vs. Intel XL710 COMPETITIVE BRIEF April 5 Choosing the Best Network Interface Card for Cloud Mellanox ConnectX -3 Pro EN vs. Intel XL7 Introduction: How to Choose a Network Interface Card... Comparison: Mellanox ConnectX

More information

Introduction to High-Performance Computing

Introduction to High-Performance Computing Introduction to High-Performance Computing 2 What is High Performance Computing? There is no clear definition Computing on high performance computers Solving problems / doing research using computer modeling,

More information

Interconnect Your Future

Interconnect Your Future #OpenPOWERSummit Interconnect Your Future Scot Schultz, Director HPC / Technical Computing Mellanox Technologies OpenPOWER Summit, San Jose CA March 2015 One-Generation Lead over the Competition Mellanox

More information

Remote GPU virtualization: pros and cons of a recent technology. Federico Silla Technical University of Valencia Spain

Remote GPU virtualization: pros and cons of a recent technology. Federico Silla Technical University of Valencia Spain Remote virtualization: pros and cons of a recent technology Federico Silla Technical University of Valencia Spain The scope of this talk HPC Advisory Council Brazil Conference 2015 2/43 st Outline What

More information

Cray XD1 Supercomputer Release 1.3 CRAY XD1 DATASHEET

Cray XD1 Supercomputer Release 1.3 CRAY XD1 DATASHEET CRAY XD1 DATASHEET Cray XD1 Supercomputer Release 1.3 Purpose-built for HPC delivers exceptional application performance Affordable power designed for a broad range of HPC workloads and budgets Linux,

More information

Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science

Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science ECSS Symposium, 12/16/14 M. L. Norman, R. L. Moore, D. Baxter, G. Fox (Indiana U), A Majumdar, P Papadopoulos, W Pfeiffer, R. S.

More information