Factors Affecting the Performance of Ad Hoc Networks

Size: px
Start display at page:

Download "Factors Affecting the Performance of Ad Hoc Networks"

Transcription

1 Factors Affecting the Performance of Ad Hoc Networks Dmitri D. Perkins, Herman D. Hughes, and Charles B. Owen Department of Computer Science and Engineering Michigan State University East Lansing, MI 88-6 Abstract- Mobile Ad Hoc NETworks (MANETs) are an emerging class of network architectures that are characterized by their highly dynamic topology, limited resources (i.e., bandwidth and power), and lack of fixed infrastructure.the primary motivation for such networks is increased flexibility and mobility.random node mobility along with various other factors such as network size and traffic intensity may be very dynamic, resulting in unpredictable variations in the overall network performance.this study centers on investigating and quantifying the effects of various factors and their two-way interactions on the overall performance of ad hoc networks. This study will contribute to the modeling and development of adaptive ad hoc protocols (routing, medium access control, scheduling and buffer management).using k r factorial experimental design, we isolate and quantify the effects of five factors: node speed, pause-time, network size, number of traffic sources, and type of routing (source versus distributed), that affect the performance of ad hoc networks.specifically, this paper evaluates the impact of these factors on the following performance metrics: throughput, average routing overhead, and power consumption. I. INTRODUCTION AND MOTIVATION A Mobile Ad Hoc NETworks (MANET) [] is an selforganizing system of mobile routers (and associated hosts) connected by wireless links. Ad hoc networks may operate autonomously, or may be connected to the larger Internet. The goal of mobile ad hoc networking is to provide a rapidly deployable means of communication (and computing), independent of a pre-existing infrastructure (e.g., base stations). Such networks will utilize a wireless physical layer consisting of relatively low bandwidth, time-varying links. In current wireless networks, the wireless mobile node is never more than one hop from a base station that can route data across the communication infrastructure. In mobile ad hoc networks, there are no base stations and because of a limited transmission range, multiple hops may be required for nodes to communicate across the ad hoc network. Routing functionality is incorporated into each host. Thus, MANETs can be characterized as having a dynamic, multi-hop and, constantly changing topology. While mobile ad hoc networks can be used without a fixed infrastructure, their use is also being considered as part of the vision for a truly ubiquitous communications environment (e.g., Wireless Internet). The future success of ad hoc networking will depend on its ability to support existing and future Internet applications and protocols. Such adynamic environment poses tremendous protocol design challenges at every layer of the network architecture, ranging from physical layer issues to distributed medium access control to routing. Several factors will affect the overall performance of any protocol operating in an ad hoc network. For example, node mobility may cause link failures, which will negatively impact routing and quality-of-service support. Network size, control overhead, and traffic intensity will have a considerable impact on network scalability. These factors along with inherent characteristics of ad hoc networks may result in unpredictable variations in the overall network performance. The primary objective of this study is to evaluate and quantify the effects of various factors (and their two-way interactions) that may influence network performance. While there have been performance evaluations of ad hoc networks [, ], none have actually quantified the effects of the influential factors. Using a factorial experimental design [6, 7], we determine the impact of five factors: () node speed, () node pause time, () network size, () number of traffic sources and () routing protocol (source vs. distributed) on the performance of ad hoc networks. We examine the impact of these five factors on three performance metrics: () average throughput, () average routing overhead, a nd () power consumption. Quantifying the effects of these factors will help guide the design choices and tradeoffs. For example, suppose node mobility is shown to have a greater impact on average control overhead than any other factor. This would suggest that designing algorithms that adapt to node mobility would have the greatest impact on network performance. The factorial design model used in this work is based on a linear regression model and thus, makes the assumption that the effects of the factors are additive. Further, our model assumes that experimental errors are independent and normally distributed. The remainder of this paper is organized as follows. Section II describes the simulation environment and methodology. A discussion of the performance metrics and experimental factors is presented in Section III. In Section IV, the simulation results and design analysis are presented, followed by asummary in Section VI. II. METHODOLOGY, SIMULATION AND EXPERIMENTAL DESIGN Again, the goal of our experiments is to examine and quantify the affects of various factors and their interactions on the overall performance of ad hoc networks. To achieve this goal, //$7. IEEE 8

2 we used a k r (k=, r=) factorial design methodology [6], thus conducting separate experiments referred to as design points. Each experiment was replicated times, resulting in 8 simulation runs. This section provides a brief discussion of the simulation environment and the factorial experimental design. Our simulation study was conducted using the librarybased Global Mobile System Simulator (GloMoSim) [8] for sequential and parallel simulation of wireless networks. It was designed using the parallel discrete-event simulation capability provided by Parsec [9], a C-based parallel simulation language. GloMoSim was developed based on a layered approach similar to the OSI seven layer network architecture. Our model is simulated for seconds of simulated time. The radio transmission range of each node is approximately meters and the channel capacity is Mbits/sec. The free space propagation model [8] was used to determine if a node is reachable. The free space model predicts received signal strength when the transmitter and receiver have a clear, unobstructed line-of-sight path between them. Received power decays as a function of the T-R separation distance. The IEEE 8. Medium Access Control Protocol was used as the MAC protocol. In this study, we used constant bit rate CBR sources that continuously transmit -byte data packets at a rate of packets per second for the duration of the simulation. As it is our goal to investigate the impact of routing in ad hoc networks, we utilize two different routing protocols: Dynamic Source Routing (DSR) [] and Ad-hoc On demand Distance Vector (AODV) []. Both routing protocols are ondemand protocols and, thus, do not transmit periodic routing messages. These protocols differ with regard to the method by which routes are computed. DSR uses source routing in order to deliver packets to any destination in a mobile ad hoc network. Source routing requires that the headers of all data packets carry an ordered list of nodes through which the packet must traverse. AODV uses a distributed (e.g., hop-byhop) technique to deliver packets and uses sequence numbers (e.g., to avoid routing loops) for each route entry. The random waypoint mobility model [8] is used in our evaluations. In the random waypoint model, each node is placed randomly in the simulated area (6Xm ). After remaining at the location for a specified pause time, the node randomly selects another destination from the physical terrain. The node then moves to the new location at a speed uniformly chosen between aminimum and maximum speed (meters/sec). After reaching the destination, the node stays there for amobility-wp-pause time period. III. PERFORMANCE METRICS AND EXPERIMENTAL FACTORS To maintain consistency with factorial design terminology, we will refer to the variables that affect the outcome of an experiment as factors and the actual outcomes as performance responses or metrics. The following performance metrics are examined in this study []:. Throughput: throughput measures the effectiveness of the network in delivering data packets. That is, how well does the network deliver packets from the source to the destination?. Average routing overhead: the average number of control packets produced per node. Control packets include route requests, replies and error messages.. Average power consumption: measures the average power consumptions per node, as energy is a limited resource in ad hoc networks. Table shows the levels for each of the factors examined in this study. Each factor is examined at two different factor levels. We also examine the effects of the two-way interactions. That is, we want to determine whether the effect of one factor is dependent on the level of another. It should be noted that there are certainly many other factors (i.e., transmission range, MAC protocol, link bandwidth, size of roaming area, etc.) that may have an effect on network performance. The following factors were chosen as a starting point for this investigation. The main effect of a factor is the average change in the throughput due to changing the factor from its - level to its + level, while holding all other factors fixed. This average is taken over all possible combinations of the other (k-) factors. The two-way interaction effect is the difference between the average throughput when two factors are at the same level and the average throughput when they are at opposite levels. Table Factors Examined Label Factor Level (-) Level (+) Speed (m/s) Pause-time (sec) Network size 8 # of sources Routing Source Distributed IV. SIMULATION RESULTS ANDDESIGN ANALYSIS This section presents the main effects and two-way interaction for each factor. For brevity and convenience, each factor is denoted by its label (see Table ) and each two-way interaction, say and, by(). Before examining the main effects and their two factor interactions, we first observed the average performance results of the three performance metrics. Figures - show the performance metrics averaged over four replications at each design. By closely examining the following graphs and the experimental design matrix, we can make three key observations: For control overhead, there are fluctuations at each design point (one "high" followed by one "lower" value). 9

3 Examining the experimental design matrix, we observe that this pattern follows the level changes of factor, node speed. The fluctuations become more pronounced for higher design points (i.e., 6-) suggesting astrong interaction of node speed, routing and, potentially, network size. For throughput, the second and fourth blocks of eight design points experience significant fluctuations (one "high" followed by one "low" values), indicating a factor interaction. Looking at the design matrix, we observe that these fluctuations correspond to level changes of multiple factors, namely factors one (node speed), and five (routing protocol), and, possibly, factor three (network size). For power consumption, the design points are consistently grouped in blocks of four. There are minor fluctuations (one "high" followed by one "low" values) within each block, again suggesting that node speed has significant influence on power consumption. The consistent groupings of four suggest some interaction among factors. Figures - and the above observations are certainly beneficial to understanding the main effects of each factor as well as their two-way interactions, but such observations are only qualitative. To confirm the results, we must now quantify the effects. Next, we formally substantiate the observations discussed above. Figures -6 show the 9% confidence intervals for the expected main effects and twoway interaction on control overhead, throughput and power consumption, respectively. For control overhead and throughput, the graphs show that the main effects of factors,,, and are real (significantly different from zero) and thus impact network performance. The results also show that the main effect of factor two (pause-time) does not significantly influence either performance metric. Moreover, the two-way interactions and the main effects of factors and have no real impact on power consumption. Additional observations and discussion are presented for each metric in the following sections. A. The Effects on Control Overhead As shown in Figure, the effects of factors,, and result in a significant increase of control data. Interestingly, this result suggests that using distributed routing gives rise to an increase in control overhead. Finally, we see that the amount of control overhead is negatively influenced by several twoway interactions: (x), (x), and (x). Thus, the previous observations regarding control overhead are valid. Average Packet Overhead Control Overhead Design Points Figure. Average control overhead for each experiment. Average Throughput (bps) Figure. Average throughput for each experiment. Average Power Consumption Average Throughput Design Point Power Consumption Design Point Figure. Average power consumption for each experiment.

4 Effects on Cntrl data (pkts/router) - - Effects on Control Overhead x x x x x x x x Effect Labels Figure. 9% confidence intervals for the expected main effects and two-way interaction effects on Control Overhead (packets/router). Effect on Throughput (kps) Effects on Throughput x x x x x x x x Effect labels Figure. 9% confidence intervals for the expected main effects and two-way interaction effects on average throughput in kbps. Effect on Power (mwhr) Effects of Power Consumption x x x x x x x x Effect Labels Figure 6. 9% confidence intervals for main effects and two-way interaction effects on power consumption in (mwhr). B. The Effects on Average Throughput The effects of factors and (and their two-way interactions) are significantly negative for throughput. The effect of factor, network size, is positive, indicating that larger network size results in improved throughput. Notice, that the type of routing used has a negligible effect on throughput performance. Combining this fact with the results (using distributed routing results in an increase in control overhead) from the Subsection IV.A suggest that distributed routing is less efficient than source routing. Thus, source routing tends to be a"better" design choice if efficiency is the primary concern. C. The Effects on Power Consumption Power consumption is strongly influenced by two factors. The effect of factor, network size, is positive, decreasing the average power consumption as the network size is increased. The effect of factor, number of sources, is negative, increasing the average power consumption as the number of sources increases Intuitively, this is reasonable since increasing the network size while maintaining a constant traffic load essentially increases the number of routers eligible to forward packets, resulting in a reduced load. On the other hand, increasing the number of traffic sources simply increases the routing load of each mobile host, resulting in increased power consumption. D. Quantifying the Effects: Allocation of Variation The importance of a factor can be determined by the proportion of variation in the performance metric that is explained by the factor. The proportions of variation explained by each factor and the two-way interactions are shown in Table. The last row, labeled EE, is the proportion of variation attributed to experimental error. Notice that main effect of factor, the number of sources, is responsible for 69 percent, percent, and percent of the variation in power consumption, control over, and throughput, respectively. Based on these results and analysis, it appears that factor is the most influential factor, followed by node speed and network size. The two-way interaction of node speed and the number of traffic sources (x) is also significant. Table Allocation of Variation for each Performance response Percentage of Variation Explained by Factor Power Consumption Control Overhead Factor Throughput x x...7 x.8.. x x..6.7 x x..9.7 x.7..8 EE

5 V. SUMMARY This paper has presented a comprehensive analysis of five factors: node speed, pause-time, network size, number of traffic sources, and type of routing (source versus distributed), that affect the routing performance of ad hoc networks. A factorial experimental design was used to isolate and quantify the main effects as well and two-way interactions of these factors on three performance responses: throughput, average routing overhead, and power consumption. The main results and observations of our analysis are as follows: For the experimental design used in this study, source routing was more efficient. That is, it achieved approximately the same performance as distributed routing but used less control overhead. As the result show, the main effect of factor, number of traffic sources, has the strongest impact on the performance responses followed closely by node speed and network size. Increasing the network size, while maintaining the traffic load results in increased throughput, decreased control overhead and decreased power consumption. Increasing traffic load and increasing the number of traffic sources may not result in the same performance results. For example, adding more traffic sources will certainly increase the control overhead, while increasing the transmission rate at a single source does not necessarily result in increased control overhead. It is important to note that, while we were very sensitive to the selection of factor levels, our results and conclusions (e.g., estimates of effects and interactions) are based upon the factor levels used in this design and may vary if different factor levels are used. To reduce the potential variations when different factor levels are used, we executed several simulations and selected the factors most appropriate. That is, we took special care not to select factors levels too far apart to provide any meaningful or useful results. Thus, we believe the results of this study will greatly contribute to the modeling and design of adaptive protocols for ad hoc networks. [] J. Broch, J, D. B. Johnson, a nd D. A. Ma ltz, The Dynamic Source Routing protocol for mobile ad hoc networks. Internet Draft, draft-ietf-manet-dsr-.txt, October 999. Work in progress. [] C. E. Perkins, Ad Hoc On Demand Distance Vector Routing. Internet Draft, draft-ietf-manet-aodv-.txt, November 998. Work in progress. [] J.Broch,D.A.Maltz,D.B.Johnson,Y.C.Hu,andJ. Jetcheva. "A performance comparison of multi-hop wireless ad hoc network routing protocols". Proceedings of the ACM/IEEE MOBICOM '98, Dallas, Texas, October 998. [] D. D. Perkins and H. Hughes, A performance comparison of routing protocols for mobile ad hoc networks. Proceedings of SPECTS, Vancouver, B.C. Canada, July. [6] R. Jain, 99. The Art of Computer System Performance Analysis. New York: John Wiley & Sons Inc. [7] A. M. Law and W. David Kelton,. Simulation, Modeling, and Analysis. New York: McGraw-Hill Higher Education. [8] L.Bajaj,M.Takai,R.Ahuja,K.Tang,R.Bagrodia,and M. Gerla, "GloMoSim: a scalable network simulation environment". UCLA Computer Science Department, Technical Report 997, May 999. [9] R. Bagrodia, R. Meyer and M. Takai, Parsec: a parallel simulation environment for complex System. IEEE Computer, Vol. no., October 998, pp [] M. S. Corson. and J. Macker, Mobile ad hoc networking: routing protocol performance issues and evaluation considerations. Internet RFC, January 999, REFERENCES [] M. S. Corson, J. P. Macker, and G. H. Cirincione, Internet-based mobile ad hoc networking. IEEE Internet Computing, Vol., No., July/August 999, pp. 6-7.

Performance Analysis of Three Routing Protocols for Varying MANET Size

Performance Analysis of Three Routing Protocols for Varying MANET Size Proceedings of the International MultiConference of Engineers and Computer Scientists 8 Vol II IMECS 8, 9- March, 8, Hong Kong Performance Analysis of Three Routing Protocols for Varying MANET Size N Vetrivelan,

More information

Performance of Ad-Hoc Network Routing Protocols in Different Network Sizes

Performance of Ad-Hoc Network Routing Protocols in Different Network Sizes Performance of Ad-Hoc Network Routing Protocols in Different Network Sizes Sudheer Kumar 1, Akhilesh Yadav 2 Department of Computer Science and Engineering Kanpur Institute of Technology, Kanpur sudheerkr21@gmail.co

More information

IMPACT OF MOBILITY SPEED ON PROACTIVE AND REACTIVE ROUTING PROTOCOLS IN MOBILE ADHOC NETWORKS

IMPACT OF MOBILITY SPEED ON PROACTIVE AND REACTIVE ROUTING PROTOCOLS IN MOBILE ADHOC NETWORKS IMPACT OF MOBILITY SPEED ON PROACTIVE AND REACTIVE ROUTING PROTOCOLS IN MOBILE ADHOC NETWORKS E. Gnanamanoharan and R. Bensraj Department of Electrical Engineering, Annamalai University, Tamil Nadu, India

More information

Simulation & Performance Analysis of Mobile Ad-Hoc Network Routing Protocol

Simulation & Performance Analysis of Mobile Ad-Hoc Network Routing Protocol Simulation & Performance Analysis of Mobile Ad-Hoc Network Routing Protocol V.S.Chaudhari 1, Prof.P.N.Matte 2, Prof. V.P.Bhope 3 Department of E&TC, Raisoni College of Engineering, Ahmednagar Abstract:-

More information

Keywords: AODV, MANET, WRP

Keywords: AODV, MANET, WRP Performance Analysis of AODV and WRP in MANET Sachchida Nand Singh*, Surendra Verma**, Ravindra Kumar Gupta*** *(Pursuing M.Tech in Software Engineering, SSSIST Sehore(M.P), India, Email: sesachchida@gmail.com)

More information

Statistical study of performance metrics of Adaptive Fault Tolerant Replication Routing Protocol for MANET

Statistical study of performance metrics of Adaptive Fault Tolerant Replication Routing Protocol for MANET Statistical study of performance metrics of Adaptive Fault Tolerant Replication Routing Protocol for MANET SWATI SAXENA Research Scholar AIM & ACT Banasthali Vidyapith Banasthali (Raj.) Dr. MADHAVI SINHA

More information

Gateway Discovery Approaches Implementation and Performance Analysis in the Integrated Mobile Ad Hoc Network (MANET)-Internet Scenario

Gateway Discovery Approaches Implementation and Performance Analysis in the Integrated Mobile Ad Hoc Network (MANET)-Internet Scenario Gateway Discovery Approaches Implementation and Performance Analysis in the Integrated Mobile Ad Hoc Network (MANET)-Internet Scenario K.Gautham 1, Nagajothi A 2 Student, Computer Science and Engineering,

More information

PERFORMANCE EVALUATION OF DSR USING A NOVEL APPROACH

PERFORMANCE EVALUATION OF DSR USING A NOVEL APPROACH PERFORMANCE EVALUATION OF DSR USING A NOVEL APPROACH 1. Prof.S.P. Setti 2. Narasimha Raju K 3. Naresh Kumar K CS&SE Dept., CS&SE Dept., CS&SE Dept., AU College of Engineering, AU College of Engineering,

More information

Multicasting in Ad-Hoc Networks: Comparing MAODV and ODMRP

Multicasting in Ad-Hoc Networks: Comparing MAODV and ODMRP Multicasting in Ad-Hoc Networks: Comparing MAODV and ODMRP Thomas Kunz and Ed Cheng Carleton University tkunz@sce.carleton.ca Abstract. Multicasting can efficiently support a variety of applications that

More information

AODV-PA: AODV with Path Accumulation

AODV-PA: AODV with Path Accumulation -PA: with Path Accumulation Sumit Gwalani Elizabeth M. Belding-Royer Department of Computer Science University of California, Santa Barbara fsumitg, ebeldingg@cs.ucsb.edu Charles E. Perkins Communications

More information

An Extensive Simulation Analysis of AODV Protocol with IEEE MAC for Chain Topology in MANET

An Extensive Simulation Analysis of AODV Protocol with IEEE MAC for Chain Topology in MANET An Extensive Simulation Analysis of AODV Protocol with IEEE 802.11 MAC for Chain Topology in MANET V.K.Taksande 1, Dr.K.D.Kulat 2 1 Department of Electronics & Communication, Nagpur University Priyadarshini

More information

COMPARATIVE ANALYSIS AND STUDY OF DIFFERENT QOS PARAMETERS OF WIRELESS AD-HOC NETWORK

COMPARATIVE ANALYSIS AND STUDY OF DIFFERENT QOS PARAMETERS OF WIRELESS AD-HOC NETWORK COMPARATIVE ANALYSIS AND STUDY OF DIFFERENT QOS PARAMETERS OF WIRELESS AD-HOC NETWORK Nalin Gahlaut 1, Jaya sharma 2, Pankaj Kumar 3, Kaushal Kumar 4 1 Doctoral Candidate, Uttarakhand Technical University,

More information

COMPARATIVE STUDY AND ANALYSIS OF AODTPRR WITH DSR, DSDV AND AODV FOR MOBILE AD HOC NETWORK

COMPARATIVE STUDY AND ANALYSIS OF AODTPRR WITH DSR, DSDV AND AODV FOR MOBILE AD HOC NETWORK International Journal of Information Technology and Knowledge Management July-December 2011, Volume 4, No. 2, pp. 531-538 COMPARATIVE STUDY AND ANALYSIS OF AODTPRR WITH DSR, DSDV AND AODV FOR MOBILE AD

More information

Security Scheme for Malicious Node Detection in Mobile Ad Hoc Networks

Security Scheme for Malicious Node Detection in Mobile Ad Hoc Networks Security Scheme for Malicious Node Detection in Mobile Ad Hoc Networks Punit Rathod 1, Nirali Mody 1, Dhaval Gada 1, Rajat Gogri 1, Zalak Dedhia 1, Sugata Sanyal 2 and Ajith Abraham 3 1 Mumbai University,

More information

Performance Analysis and Enhancement of Routing Protocol in Manet

Performance Analysis and Enhancement of Routing Protocol in Manet Vol.2, Issue.2, Mar-Apr 2012 pp-323-328 ISSN: 2249-6645 Performance Analysis and Enhancement of Routing Protocol in Manet Jaya Jacob*, V.Seethalakshmi** *II MECS, Sri Shakthi Institute of Engineering and

More information

Experiment and Evaluation of a Mobile Ad Hoc Network with AODV Routing Protocol

Experiment and Evaluation of a Mobile Ad Hoc Network with AODV Routing Protocol Experiment and Evaluation of a Mobile Ad Hoc Network with AODV Routing Protocol Kalyan Kalepu, Shiv Mehra and Chansu Yu, Department of Electrical and Computer Engineering Cleveland State University 2121

More information

Measure of Impact of Node Misbehavior in Ad Hoc Routing: A Comparative Approach

Measure of Impact of Node Misbehavior in Ad Hoc Routing: A Comparative Approach ISSN (Print): 1694 0814 10 Measure of Impact of Node Misbehavior in Ad Hoc Routing: A Comparative Approach Manoj Kumar Mishra 1, Binod Kumar Pattanayak 2, Alok Kumar Jagadev 3, Manojranjan Nayak 4 1 Dept.

More information

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET 2011 International Conference on Information and Network Technology IPCSIT vol.4 (2011) (2011) IACSIT Press, Singapore QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET Ashwini V. Biradar

More information

Performance Comparison of Ad Hoc Routing Protocols over IEEE DCF and TDMA MAC Layer Protocols

Performance Comparison of Ad Hoc Routing Protocols over IEEE DCF and TDMA MAC Layer Protocols Performance Comparison of Ad Hoc Routing Protocols over IEEE 82.11 DCF and TDMA MAC Layer Protocols Govind. P. Gupta Computer Science Department R.K.G.I.T, Ghaziabad (India) er_gpgupta@yahoo.com A. K.

More information

Performance Evaluation of Various Routing Protocols in MANET

Performance Evaluation of Various Routing Protocols in MANET 208 Performance Evaluation of Various Routing Protocols in MANET Jaya Jacob 1,V.Seethalakshmi 2 1 II MECS,Sri Shakthi Institute of Science and Technology, Coimbatore, India 2 Associate Professor-ECE, Sri

More information

The Impact of Transmission Power on the Performance of MANET Routing Protocols

The Impact of Transmission Power on the Performance of MANET Routing Protocols IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 2 (Feb. 2013), V3 PP 34-41 The Impact of Transmission Power on the Performance of MANET Routing Protocols V.Lalitha

More information

Enhancing the Performance of Mobile Ad Hoc Networks with the Aid of Internet Gateways 1

Enhancing the Performance of Mobile Ad Hoc Networks with the Aid of Internet Gateways 1 Enhancing the Performance of Mobile Ad Hoc Networks with the Aid of Internet Gateways 1 Shiv Mehra and Chansu Yu Department of Electrical and Computer Engineering Cleveland State University E-mail: {s.mehra,c.yu91}@csuohio.edu

More information

Computation of Multiple Node Disjoint Paths

Computation of Multiple Node Disjoint Paths Chapter 5 Computation of Multiple Node Disjoint Paths 5.1 Introduction In recent years, on demand routing protocols have attained more attention in mobile Ad Hoc networks as compared to other routing schemes

More information

Impact of Hello Interval on Performance of AODV Protocol

Impact of Hello Interval on Performance of AODV Protocol Impact of Hello Interval on Performance of AODV Nisha Bhanushali Priyanka Thakkar Prasanna Shete ABSTRACT The multi-hop ad hoc networks are self organizing networks with dynamic topology. The reactive

More information

A Comparative and Performance Study of On Demand Multicast Routing Protocols for Ad Hoc Networks

A Comparative and Performance Study of On Demand Multicast Routing Protocols for Ad Hoc Networks A Comparative and Performance Study of On Demand Multicast Routing Protocols for Ad Hoc Networks P.Madhan Mohan #, J.James Johnson #, K.Murugan $ and V.Ramachandran % # Under Graduate Student $ Senior

More information

Security Scheme for Distributed DoS in Mobile Ad Hoc Networks

Security Scheme for Distributed DoS in Mobile Ad Hoc Networks Security Scheme for Distributed DoS in Mobile Ad Hoc Networks Sugata Sanyal 1, Ajith Abraham 2, Dhaval Gada 3, Rajat Gogri 3, Punit Rathod 3, Zalak Dedhia 3 and Nirali Mody 3 1 School of Technology and

More information

Anil Saini Ph.D. Research Scholar Department of Comp. Sci. & Applns, India. Keywords AODV, CBR, DSDV, DSR, MANETs, PDF, Pause Time, Speed, Throughput.

Anil Saini Ph.D. Research Scholar Department of Comp. Sci. & Applns, India. Keywords AODV, CBR, DSDV, DSR, MANETs, PDF, Pause Time, Speed, Throughput. Volume 6, Issue 7, July 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Performance Analysis

More information

ROUTE STABILITY MODEL FOR DSR IN WIRELESS ADHOC NETWORKS

ROUTE STABILITY MODEL FOR DSR IN WIRELESS ADHOC NETWORKS ROUTE STABILITY MODEL FOR DSR IN WIRELESS ADHOC NETWORKS Ganga S 1, Binu Chandran R 2 1, 2 Mohandas College Of Engineering And Technology Abstract: Wireless Ad-Hoc Network is a collection of wireless mobile

More information

Performance Analysis of Routing Protocols in MANETs Using OPNET 14.0

Performance Analysis of Routing Protocols in MANETs Using OPNET 14.0 Performance Analysis of Routing Protocols in MANETs Using OPNET 14.0 Karanveer Singh 1, Naveen Goyal 2 1 Research Scholar,ECE Deptt.,Bhai Gurdas Institute of Engineering and Technology, Sangrur 2 Assistant

More information

Simulation and Performance Analysis of Throughput and Delay on Varying Time and Number of Nodes in MANET

Simulation and Performance Analysis of Throughput and Delay on Varying Time and Number of Nodes in MANET International Journal of Recent Research and Review, Vol. VII, Issue 2, June 2014 ISSN 2277 8322 Simulation and Performance Analysis of and on Varying and Number of Nodes in MANET Arun Jain 1, Ramesh Bharti

More information

Efficient Location Services Using Hierarchical Topology of Mobile Ad Hoc Networks

Efficient Location Services Using Hierarchical Topology of Mobile Ad Hoc Networks Journal of Software Engineering and Applications, 2012, 5, 14-20 http://dx.doi.org/10.4236/jsea.2012.51003 Published Online January 2012 (http://www.scirp.org/journal/jsea) Efficient Location Services

More information

Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks

Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks Mounir FRIKHA, Manel MAAMER Higher School of Communication of Tunis (SUP COM), Network Department, m.frikha@supcom.rnu.tn ABSTRACT

More information

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols By Josh Broch, David A. Maltz, David B. Johnson, Yih- Chun Hu, Jorjeta Jetcheva Presentation by: Michael Molignano Jacob

More information

PERFORMANCE EVALUATION OF AODV AND DSR ROUTING PROTOCOLS IN MANET NETWORKS

PERFORMANCE EVALUATION OF AODV AND DSR ROUTING PROTOCOLS IN MANET NETWORKS PERFORMANCE EVALUATION OF AODV AND DSR ROUTING PROTOCOLS IN MANET NETWORKS Ammar Odeh, Eman AbdelFattah and Muneer Alshowkan Department of Computer Science & Engineering, University of Bridgeport Bridgeport,

More information

Performance Evaluation of Routing Protocols for MAC Layer Models

Performance Evaluation of Routing Protocols for MAC Layer Models IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 4 (Mar. - Apr. 2013), PP 71-77 Performance Evaluation of Routing Protocols for MAC Layer Models Somya

More information

Performance Comparison of Routing Protocols for wrecked ship scenario under Random Waypoint Mobility Model for MANET

Performance Comparison of Routing Protocols for wrecked ship scenario under Random Waypoint Mobility Model for MANET Advances in Wireless and Mobile Communications. ISSN 0973-6972 Volume 10, Number 5 (2017), pp. 1051-1058 Research India Publications http://www.ripublication.com Performance Comparison of Routing Protocols

More information

Chapter 7 CONCLUSION

Chapter 7 CONCLUSION 97 Chapter 7 CONCLUSION 7.1. Introduction A Mobile Ad-hoc Network (MANET) could be considered as network of mobile nodes which communicate with each other without any fixed infrastructure. The nodes in

More information

!"# $ I. Introduction

!# $ I. Introduction !"# $ LAGRIT (Laboratoire de gestion des réseaux informatiques et de télécommunications) * LACIME (Laboratoire de communications et d'intégration de la microélectronique) Department of Electrical Engineering,

More information

Efficient On-Demand Routing for Mobile Ad-Hoc Wireless Access Networks

Efficient On-Demand Routing for Mobile Ad-Hoc Wireless Access Networks Efficient On-Demand Routing for Mobile Ad-Hoc Wireless Access Networks Joo-Han Song, Vincent Wong and Victor Leung Department of Electrical and Computer Engineering The University of British Columbia 56

More information

Analysis of Network Traffic in Ad-Hoc Networks based on DSDV Protocol

Analysis of Network Traffic in Ad-Hoc Networks based on DSDV Protocol Analysis of Network Traffic in Ad-Hoc Networks based on DSDV Protocol with Emphasis on Mobility and Communication Patterns Vahid Garousi Department of Systems and Computer Engineering Carleton University,

More information

Analysis and Simulations of Routing Protocols with Different Load Conditions of MANETs

Analysis and Simulations of Routing Protocols with Different Load Conditions of MANETs Analysis and Simulations of Routing Protocols with Different Load Conditions of MANETs Poonam Pahuja Department of Computer Engineering, Mewar University, Chittorgarh Rajasthan, Email: poonamsanjay2007@gmail.com

More information

Figure 1: Ad-Hoc routing protocols.

Figure 1: Ad-Hoc routing protocols. Performance Analysis of Routing Protocols for Wireless Ad-Hoc Networks Sukhchandan Lally and Ljiljana Trajković Simon Fraser University Vancouver, British Columbia Canada E-mail: {lally, ljilja}@sfu.ca

More information

A COMPARISON OF IMPROVED AODV ROUTING PROTOCOL BASED ON IEEE AND IEEE

A COMPARISON OF IMPROVED AODV ROUTING PROTOCOL BASED ON IEEE AND IEEE Journal of Engineering Science and Technology Vol. 4, No. 2 (2009) 132-141 School of Engineering, Taylor s University College A COMPARISON OF IMPROVED AODV ROUTING PROTOCOL BASED ON IEEE 802.11 AND IEEE

More information

Poonam kori et al. / International Journal on Computer Science and Engineering (IJCSE)

Poonam kori et al. / International Journal on Computer Science and Engineering (IJCSE) An Effect of Route Caching Scheme in DSR for Vehicular Adhoc Networks Poonam kori, Dr. Sanjeev Sharma School Of Information Technology, RGPV BHOPAL, INDIA E-mail: Poonam.kori@gmail.com Abstract - Routing

More information

A Review of Ant Colony based Routing Algorithm in Wireless Ad-hoc Networks

A Review of Ant Colony based Routing Algorithm in Wireless Ad-hoc Networks A Review of Ant Colony based Routing Algorithm in Wireless Ad-hoc Networks Sai Priya Thottempudi $, Dr Syed Umar * $ Student, Department of ECE, V R Siddhartha Eng College, A.P.INDIA. * Assoc. Professor,

More information

Effect of 3 Key Factors on Average End to End Delay in MANET

Effect of 3 Key Factors on Average End to End Delay in MANET Effect of 3 Key Factors on Average End to End Delay in MANET Suhaimi. Abd. Latif, Saqib Hakak Department of Electrical and Computer Engineering International Islamic University Malaysia, Kuala Lumpur,

More information

A Simulation study : Performance comparison of AODV and DSR

A Simulation study : Performance comparison of AODV and DSR A Simulation study : Performance comparison of AODV and DSR K.Dileep Kumar 1, N.Seethayya 2, H.Venkata Bhagya Sri 3,S.Papa Rao 4 1,2,3,4 Asst.Professor Department of CSE, Sri Sivani College of Engineering,

More information

Performance Evaluation of AODV and DSR routing protocols in MANET

Performance Evaluation of AODV and DSR routing protocols in MANET Performance Evaluation of AODV and DSR routing protocols in MANET Naresh Dobhal Diwakar Mourya ABSTRACT MANETs are wireless temporary adhoc networks that are being setup with no prior infrastructure and

More information

Multipath Dynamic Source Routing Protocol For Mobile Adhoc Networks

Multipath Dynamic Source Routing Protocol For Mobile Adhoc Networks Multipath Dynamic Source Routing Protocol For Mobile Adhoc Networks R. Raja Kishore, B. Kalyani, K. Rajkumar Department of Electronics & communication Assistant Professor, MRIET Duljapally, Secunderabed

More information

CHAPTER 5 PROPAGATION DELAY

CHAPTER 5 PROPAGATION DELAY 98 CHAPTER 5 PROPAGATION DELAY Underwater wireless sensor networks deployed of sensor nodes with sensing, forwarding and processing abilities that operate in underwater. In this environment brought challenges,

More information

Variable Length and Dynamic Addressing for Mobile Ad Hoc Networks

Variable Length and Dynamic Addressing for Mobile Ad Hoc Networks Variable Length and Dynamic Addressing for Mobile Ad Hoc Networks Som Chandra Neema Venkata Nishanth Lolla {sneema,vlolla}@cs.ucr.edu Computer Science Department University of California, Riverside Abstract

More information

Performance Analysis of MANET Routing Protocols OLSR and AODV

Performance Analysis of MANET Routing Protocols OLSR and AODV VOL. 2, NO. 3, SEPTEMBER 211 Performance Analysis of MANET Routing Protocols OLSR and AODV Jiri Hosek Faculty of Electrical Engineering and Communication, Brno University of Technology Email: hosek@feec.vutbr.cz

More information

Efficient Hybrid Multicast Routing Protocol for Ad-Hoc Wireless Networks

Efficient Hybrid Multicast Routing Protocol for Ad-Hoc Wireless Networks Efficient Hybrid Multicast Routing Protocol for Ad-Hoc Wireless Networks Jayanta Biswas and Mukti Barai and S. K. Nandy CAD Lab, Indian Institute of Science Bangalore, 56, India {jayanta@cadl, mbarai@cadl,

More information

Impact of Pause Time on the Performance of DSR, LAR1 and FSR Routing Protocols in Wireless Ad hoc Network

Impact of Pause Time on the Performance of DSR, LAR1 and FSR Routing Protocols in Wireless Ad hoc Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 2, February 2015,

More information

A Review of Reactive, Proactive & Hybrid Routing Protocols for Mobile Ad Hoc Network

A Review of Reactive, Proactive & Hybrid Routing Protocols for Mobile Ad Hoc Network ShriRam College of Engineering & Management 1 A Review of Reactive, Proactive & Hybrid Routing Protocols for Mobile Ad Hoc Network M.Ramaiya Rohit Gupta Rachit Jain Head,Dept. Computer Science Dept. Computer

More information

On the Impact of Noise Sensitivity on Performance in Based Ad Hoc Networks

On the Impact of Noise Sensitivity on Performance in Based Ad Hoc Networks On the Impact of Noise Sensitivity on Performance in 82.11 Based Ad Hoc Networks Saman Desilva Computer Science Department The Univ. of Texas at San Antonio, San Antonio, TX 78249 Email: sdesilva@cs.utsa.edu

More information

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. Broch et al Presented by Brian Card

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. Broch et al Presented by Brian Card A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols Broch et al Presented by Brian Card 1 Outline Introduction NS enhancements Protocols: DSDV TORA DRS AODV Evaluation Conclusions

More information

Evaluation of Information Dissemination Characteristics in a PTS VANET

Evaluation of Information Dissemination Characteristics in a PTS VANET Evaluation of Information Dissemination Characteristics in a PTS VANET Holger Kuprian 1, Marek Meyer 2, Miguel Rios 3 1) Technische Universität Darmstadt, Multimedia Communications Lab Holger.Kuprian@KOM.tu-darmstadt.de

More information

Congestion Avoidance in Source Routed Ad Hoc Networks

Congestion Avoidance in Source Routed Ad Hoc Networks Congestion Avoidance in Source Routed Ad Hoc Networks Bryan J. Hogan, Michael Barry, Sean McGrath Wireless Access Research Group University of Limerick, Ireland bryan.hogan@ul.ie michael.barry@ul.ie sean.mcgrath@ul.ie

More information

Throughput Analysis of Many to One Multihop Wireless Mesh Ad hoc Network

Throughput Analysis of Many to One Multihop Wireless Mesh Ad hoc Network Throughput Analysis of Many to One Multihop Wireless Mesh Ad hoc Network Dr.S.Senthil Kumar,Assistant Professor, Dept of Electrical and Electronics Engineering, Government College of Engineering, Salem,India

More information

Efficient On-Demand Routing for Mobile Ad-Hoc Wireless Access Networks

Efficient On-Demand Routing for Mobile Ad-Hoc Wireless Access Networks Efficient On-Demand Routing for Mobile Ad-Hoc Wireless Access Networks Joo-Han Song, Vincent W. S. Wong and Victor C. M. Leung Department of Electrical and Computer Engineering The University of British

More information

Comparative Study of Mobility Models using MANET Routing Protocols under TCP and CBR Traffic

Comparative Study of Mobility Models using MANET Routing Protocols under TCP and CBR Traffic Comparative Study of Mobility Models using MANET Routing Protocols under TCP and CBR Traffic 1. Sunita (M Tech Scholar), 2. Ms. Kavita Choudhary (Associate Prof.) Department of computer Science and engineering,

More information

Performance Comparison of MANETs Routing Protocols for Dense and Sparse Topology

Performance Comparison of MANETs Routing Protocols for Dense and Sparse Topology 2012 International Conference on Information and Computer Networks (ICICN 2012) IPCSIT vol. 27 (2012) (2012) IACSIT Press, Singapore Performance Comparison of MANETs Routing Protocols for Dense and Sparse

More information

Ad Hoc Routing Protocols and Issues

Ad Hoc Routing Protocols and Issues Ad Hoc Routing Protocols and Issues Stefano Basagni ECE Dept Northeastern University Boston, Jan 2003 Ad hoc (AD-HAHK or AD-HOKE)-Adjective a) Concerned with a particular end or purpose, and b) formed

More information

Review on IEEE n Operation Base on MANET Routing Protocols

Review on IEEE n Operation Base on MANET Routing Protocols Review on IEEE 802.11n Operation Base on MANET Routing Protocols Mehdi Effatparvar and Babak Golaminia Abstract An ad hoc network is a dynamically reconfigurable wireless network with no fixed wired infrastructure.

More information

Performance Evaluation of DSDV, DSR AND ZRP Protocol in MANET

Performance Evaluation of DSDV, DSR AND ZRP Protocol in MANET Performance Evaluation of, AND Protocol in MANET Zaiba Ishrat IIMT Engg college,meerut Meerut, India Pankaj singh Sidhi vinayak Group of College,Alwar Alwar,Rajasthan Rehan Ahmad IIMT Engg college,meerut

More information

Performance of Routing Protocols in Very Large-Scale Mobile Wireless Ad Hoc Networks

Performance of Routing Protocols in Very Large-Scale Mobile Wireless Ad Hoc Networks Performance of Routing Protocols in Very Large-Scale Mobile Wireless Ad Hoc Networks Xin Zhang, George F. Riley Department of ECE Georgia Institute of Technology Atlanta, GA 3332-25 xinzhang, riley@ece.gatech.edu

More information

A Comparative Analysis of Pro-active Routing Protocols in MANET

A Comparative Analysis of Pro-active Routing Protocols in MANET Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 6, June 2014, pg.144

More information

Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols

Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols Akshay Shankar, Lavanya Chelle Information Science Engineering RNS Institute of Technology Bangalore, India Abstract- A Mobile

More information

forward packets do not forward packets

forward packets do not forward packets Power-aware Routing in Wireless Packet Networks Javier Gomez, Andrew T. Campbell Dept. of Electrical Engineering Columbia University, N 10027, USA Mahmoud Naghshineh, Chatschik Bisdikian IBM T.J. Watson

More information

A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET

A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET ISSN: 2278 1323 All Rights Reserved 2016 IJARCET 296 A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET Dr. R. Shanmugavadivu 1, B. Chitra 2 1 Assistant Professor, Department of Computer

More information

Performance Analysis of Wireless Mobile ad Hoc Network with Varying Transmission Power

Performance Analysis of Wireless Mobile ad Hoc Network with Varying Transmission Power , pp.1-6 http://dx.doi.org/10.14257/ijsacs.2015.3.1.01 Performance Analysis of Wireless Mobile ad Hoc Network with Varying Transmission Power Surabhi Shrivastava, Laxmi Shrivastava and Sarita Singh Bhadauria

More information

Investigation on OLSR Routing Protocol Efficiency

Investigation on OLSR Routing Protocol Efficiency Investigation on OLSR Routing Protocol Efficiency JIRI HOSEK 1, KAROL MOLNAR 2 Department of Telecommunications Faculty of Electrical Engineering and Communication, Brno University of Technology Purkynova

More information

Zone-based Proactive Source Routing Protocol for Ad-hoc Networks

Zone-based Proactive Source Routing Protocol for Ad-hoc Networks 2014 IJSRSET Volume i Issue i Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Science Zone-based Proactive Source Routing Protocol for Ad-hoc Networks Dr.Sangheethaa.S 1, Dr. Arun Korath

More information

Comparison of proposed path selection protocols for IEEE s WLAN mesh networks

Comparison of proposed path selection protocols for IEEE s WLAN mesh networks Comparison of proposed path selection protocols for IEEE 802.11s WLAN mesh networks Sana Ghannay, Sonia Mettali Gammar and Farouk Kamoun CRISTAL lab, National School of Computer Sciences, ENSI, 2010, Manouba

More information

3. Evaluation of Selected Tree and Mesh based Routing Protocols

3. Evaluation of Selected Tree and Mesh based Routing Protocols 33 3. Evaluation of Selected Tree and Mesh based Routing Protocols 3.1 Introduction Construction of best possible multicast trees and maintaining the group connections in sequence is challenging even in

More information

A Test-Bed for Power Consumption Performance Evaluation of AODV and DSDV Routing Protocols in Mobile Ad-hoc Networks

A Test-Bed for Power Consumption Performance Evaluation of AODV and DSDV Routing Protocols in Mobile Ad-hoc Networks A Test-Bed for Power Consumption Performance Evaluation of AODV and DSDV Routing Protocols in Mobile Ad-hoc Networks Abdulrahman Issa Kh Shybub 1, Tarek Mosbah Abdala 2 1, Computer Department Higher Institute

More information

Performance Comparison of DSDV, AODV, DSR, Routing protocols for MANETs

Performance Comparison of DSDV, AODV, DSR, Routing protocols for MANETs 2012 International Conference on Computer Networks and Communication Systems (CNCS 2012) IPCSIT vol.35(2012) (2012) IACSIT Press, Singapore Performance Comparison of DSDV, AODV, DSR, Routing protocols

More information

A Novel Interference Aware Optimized Link State Routing Protocol for Power Heterogeneous MANETs

A Novel Interference Aware Optimized Link State Routing Protocol for Power Heterogeneous MANETs A Novel Interference Aware Optimized Link State Routing Protocol for Power Heterogeneous MANETs Vijaya Lekshmi. S.V, E.P.Prakash PG Scholar, Assistant Professor Department of CSE SNS College of Engineering

More information

Effects of Wireless Physical Layer Modeling in Mobile Ad Hoc Networks

Effects of Wireless Physical Layer Modeling in Mobile Ad Hoc Networks Effects of Wireless Physical Layer Modeling in Mobile Ad Hoc Networks Mineo Takai Jay Martin Rajive Bagrodia UCLA Computer Science Department Los Angeles, CA 995-596 (3) 825-4885 {mineo, jmartin, rajive}@cs.ucla.edu

More information

Routing Protocols in MANET: Comparative Study

Routing Protocols in MANET: Comparative Study Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 7, July 2014, pg.119

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK COMPARISON OF MANET REACTIVE ROUTING PROTOCOLS USING OPNET SIMULATOR SANGEETA MONGA

More information

Control Traffic Analysis of On-Demand Routing Protocol. in Mobile Ad-hoc Networks

Control Traffic Analysis of On-Demand Routing Protocol. in Mobile Ad-hoc Networks Second International Conference on Networking and Distributed Computing Control Traffic Analysis of On-Demand Routing Protocol in Mobile Ad-hoc Networks Zhilin Zhang School of Computer Science & Technology

More information

Effects of Sensor Nodes Mobility on Routing Energy Consumption Level and Performance of Wireless Sensor Networks

Effects of Sensor Nodes Mobility on Routing Energy Consumption Level and Performance of Wireless Sensor Networks Effects of Sensor Nodes Mobility on Routing Energy Consumption Level and Performance of Wireless Sensor Networks Mina Malekzadeh Golestan University Zohre Fereidooni Golestan University M.H. Shahrokh Abadi

More information

Power aware Multi-path Routing Protocol for MANETS

Power aware Multi-path Routing Protocol for MANETS Power aware Multi-path Routing Protocol for MANETS Shruthi P Murali 1,Joby John 2 1 (ECE Dept, SNGCE, India) 2 (ECE Dept, SNGCE, India) Abstract: Mobile Adhoc Network consists of a large number of mobile

More information

VANS: Visual Ad hoc Network Simulator

VANS: Visual Ad hoc Network Simulator VANS: Visual Ad hoc Network Simulator Masako Shinohara, Hideki Hayashi, Takahiro Hara, Akimitsu Kanzaki and Shojiro Nishio Graduate School of Information Science and Tech., Osaka University {sinohara.masako,

More information

PERFORMANCE ANALYSIS AND ENHANCEMENT OF DYNAMIC SOURCE ROUTING FOR MOBILE AD HOC NETWORKS

PERFORMANCE ANALYSIS AND ENHANCEMENT OF DYNAMIC SOURCE ROUTING FOR MOBILE AD HOC NETWORKS PERFORMANCE ANALYSIS AND ENHANCEMENT OF DYNAMIC SOURCE ROUTING FOR MOBILE AD HOC NETWORKS APPROVED BY SUPERVISING COMMITTEE: Dr. Rajendra V. Boppana, Thesis Advisor Dr. Hugh B. Maynard, Thesis Reader Dr.

More information

Performance evaluation of reactive and proactive routing protocol in IEEE ad hoc network

Performance evaluation of reactive and proactive routing protocol in IEEE ad hoc network Author manuscript, published in "ITCom 6 - next generation and sensor networks, Boston : United States (26)" DOI :.7/2.68625 Performance evaluation of reactive and proactive routing protocol in IEEE 82.

More information

MANET is considered a collection of wireless mobile nodes that are capable of communicating with each other. Research Article 2014

MANET is considered a collection of wireless mobile nodes that are capable of communicating with each other. Research Article 2014 Throughput Analysis of Proactive and Reactive MANET Routing Protocols Kiranveer Kaur 1 Surinderjit Kaur 2 Vikramjit Singh 3 Department of Computer Science, University College of Engineering, Department

More information

Routing Protocols in MANETs

Routing Protocols in MANETs Chapter 4 Routing Protocols in MANETs 4.1 Introduction The main aim of any Ad Hoc network routing protocol is to meet the challenges of the dynamically changing topology and establish a correct and an

More information

Performance Analysis of DSR, AODV Routing Protocols based on Wormhole Attack in Mobile Ad-hoc Network

Performance Analysis of DSR, AODV Routing Protocols based on Wormhole Attack in Mobile Ad-hoc Network Performance Analysis of DSR, AODV Routing Protocols based on Wormhole Attack in Mobile Ad-hoc Network Gunjesh Kant Singh, Amrit Kaur and A.L. Sangal Email: E-mail: Gunjesh31@gmail.com, amrit.tiet@gmail.com,

More information

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS AMANDEEP University College of Engineering, Punjabi University Patiala, Punjab, India amandeep8848@gmail.com GURMEET KAUR University College of Engineering,

More information

Routing in Anhinga. Aakash Chauhan October 20th, Chair: Hans-Peter Bischof Reader: Alan Kaminsky Observer: Sidney Marshall

Routing in Anhinga. Aakash Chauhan October 20th, Chair: Hans-Peter Bischof Reader: Alan Kaminsky Observer: Sidney Marshall Routing in Anhinga Aakash Chauhan October 20th, 2006 Chair: Hans-Peter Bischof Reader: Alan Kaminsky Observer: Sidney Marshall Agenda Introduction & Background Dynamic Source Routing Project Architecture

More information

Analysis QoS Parameters for Mobile Ad-Hoc Network Routing Protocols: Under Group Mobility Model

Analysis QoS Parameters for Mobile Ad-Hoc Network Routing Protocols: Under Group Mobility Model 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Analysis QoS Parameters for Mobile Ad-Hoc Network Routing Protocols: Under Group

More information

Performance Comparison of Two On-demand Routing Protocols for Ad-hoc Networks based on Random Way Point Mobility Model

Performance Comparison of Two On-demand Routing Protocols for Ad-hoc Networks based on Random Way Point Mobility Model American Journal of Applied Sciences 5 (6): 659-664, 2008 ISSN 1546-9239 2008 Science Publications Performance Comparison of Two On-demand Routing Protocols for Ad-hoc Networks based on Random Way Point

More information

A Study on Mobile Internet Protocol and Mobile Adhoc Network Routing Protocols

A Study on Mobile Internet Protocol and Mobile Adhoc Network Routing Protocols International Journal of Computer Science & Communication Vol. 1, No. 2, July-December 2010, pp. 185-189 A Study on Mobile Internet Protocol and Mobile Adhoc Network Routing Protocols B.V. Manikyala Rao

More information

Efficient On-Demand Routing Protocols to Optimize Network Coverage in Wireless Sensor Networks

Efficient On-Demand Routing Protocols to Optimize Network Coverage in Wireless Sensor Networks IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008 277 Efficient On-Demand Routing Protocols to Optimize Network Coverage in Wireless Sensor Networks * Mohammed

More information

Comparative Analysis of Ad Hoc Routing Protocols in Wireless Mesh Network Environment

Comparative Analysis of Ad Hoc Routing Protocols in Wireless Mesh Network Environment World Applied Sciences Journal 29 (3): 408-414, 2014 ISSN 1818-4952 IDOSI Publications, 2014 DOI: 10.5829/idosi.wasj.2014.29.03.1271 Comparative Analysis of Ad Hoc Routing Protocols in Wireless Mesh Network

More information

Performance Analysis of Mobile Ad Hoc Network in the Presence of Wormhole Attack

Performance Analysis of Mobile Ad Hoc Network in the Presence of Wormhole Attack Performance Analysis of Mobile Ad Hoc Network in the Presence of Wormhole Attack F. Anne Jenefer & D. Vydeki E-mail : annejenefer@gmail.com, vydeki.d@srmeaswari.ac.in Abstract Mobile Ad-Hoc Network (MANET)

More information

An Efficient Scheme to Increase the Throughput of VoIP Traffic over Satellite while Reducing Bandwidth Utilization

An Efficient Scheme to Increase the Throughput of VoIP Traffic over Satellite while Reducing Bandwidth Utilization An Efficient Scheme to Increase the Throughput of VoIP Traffic over Satellite while Reducing Bandwidth Utilization Sayid Mohamed Abdule 1, Wan Tat Chee 1, Ahmed Mustafa 2 & Aisha Hassan 2 1 Network Research

More information