Evaluation of Information Dissemination Characteristics in a PTS VANET

Size: px
Start display at page:

Download "Evaluation of Information Dissemination Characteristics in a PTS VANET"

Transcription

1 Evaluation of Information Dissemination Characteristics in a PTS VANET Holger Kuprian 1, Marek Meyer 2, Miguel Rios 3 1) Technische Universität Darmstadt, Multimedia Communications Lab Holger.Kuprian@KOM.tu-darmstadt.de 2) AGT Group (Germany) GmbH mmeyer@agtgermany.com 3) Pontificia Universidad Católica de Chile mrios@ing.puc.cl Abstract-- This work examines the feasibility of using a vehicular ad hoc network (VANET) to improve the bus location monitoring and control of the public transportation system (PTS) in Santiago, Chile. A realistic simulation, based on geo data of Santiago and bus route information obtained from the Transantiago PTS, provides results about the impact of different transmission ranges of vehicles and roadside units (RSU) and the necessity of RSUs to support the infrastructure and performance of VANETs. Different traffic situations are studied by varying the amount of vehicles used in the simulation. Simulation results state that available MANET routing protocols provide similar suboptimal results for the presented VANET scenario. This presents a strong requirement for VANET routing protocols to be used in high mobility environments. The more RSUs are deployed, the higher is the delivery ratio and the lower the mean end-to-end delay and path length. In contrast to the deployment of RSUs, the highest transmission range did not lead to the best results. Simulations conducted with transmission ranges of 800m and 1000m achieved worse results than a transmission range of 500m. Index terms Public Transportation, VANET, Vehicular Ad hoc Networks, Santiago de Chile I. INTRODUCTION Vehicular ad hoc networks consider vehicle-tovehicle (V2V) and vehicle-to-infrastructure (V2I) communications, to support common goals in intelligent transportation systems (ITS), such as safe driving, dynamic route scheduling, emergency message dissemination and traffic condition monitoring [1,2]. This work examines the applicability of vehicular ad hoc networks in the public transportation system in the city of Santiago, Chile. Therefore, requirements for a VANET for public transportation systems are analyzed and, based on the results, a realistic simulation of movements and communication behavior of buses in Santiago is implemented using the simulation environment OMNeT++, including original geo data of Santiago and the exact modeling of bus routes. The simulation investigates the necessity of improving the performance of roadside units (RSU) to be able to use a VANET in Santiago, and to establish a desired service availability (e.g. knowledge about buses location for at least 90 percent of the time). Furthermore, the simulation results include the behavior of dissemination delays and percentage of dropped messages based on the different values for input parameters such as transmission ranges of buses and RSUs and number of vehicles in the simulation. To intercommunicate buses and RSUs, routing protocols are needed. The available routing protocols in the OMNeT++ package (i.e. the already implemented protocols) are studied with respect to their influence on the crucial result parameters (drop percentage, end-toend delay) and with respect to the overhead they produce, i.e., the amount of messages they need to route through the network. Although their performance has been studied before [3], the area of VANETs is new and the application to public transportation systems has not been examined before. In addition, the routing protocols are compared to a simple flooding approach. II. MANETS AND VANETS A mobile ad hoc network is a type of wirless network that forms a network without infrastructure typically for a limited amount of time [5]. The big challenge is to enable communication between participating nodes despite mobility and changing topologies. The simplest ad hoc network is a set of computers connected (via cable or wireless) to form a small network. Ad hoc networks are also in use for connecting Bluetooth devices such as a mobile phone and a headset. The most important attributes

2 of a MANET are self-organization, node mobility and scalability. Vehicular ad hoc networks are an enhancement of mobile ad hoc networks. If the nodes of a MANET are placed inside a vehicle it is called a VANET. While VANETs and MANETs have a lot in common, the greatest difference is the degree of mobility, since the nodes (i.e. vehicles) in a VANET typically move much faster than the nodes in a MANET. This leads to faster changing topologies, which are challenging to handle. III. SIMULATION SCENARIO AND PARAMETERS The public transportation system (PTS) of Santiago consists of one metro system and ten bus operators, which are each responsible for provide the service to a particular sector of the city. For simulation purposes, we have selected one representative sector out of the ten. The simulation uses an original road map of Santiago de Chile, which has been extracted from OpenStreetMap. The bus traffic within this sector has been modeled acording to the bus routes time tables at the rush hour. Several different scenarios were studied whose variable parameters included: Different MANET protocols Different wireless transmission range Variable number of RSUs Variable number of buses With each of these scenarios, the simulation performance measures used for evaluation were: Packet delivery ratio Mean end-to-end delay Mean hop count Routing errors sent Routing requests sent Routing protocol overhead Traffic overhead Figure 1, shows the interconnection of all data and processes. The simulations were executed on four equal desktop computers with the following specifications: Intel Core 2 Quad CPU Q9400 with 2.66GHz and 4GB RAM. The mode of operation for the simulation was as follows: Every 30 seconds, all buses send a location update message to the operations control center (OCC). Since the RSUs are already connected with the OCC, the buses will search for the five closest RSUs and send the update messages to them. The routing protocol handles the multi-hop message delivery. The five messages sent by the bus count only as one message for the statistical evaluation, since only one update message is sent and the implementation depends on the application design. RSUs send a management update message to the buses every 30 seconds. This is implemented with a broadcast message to all buses and does not involve any routing protocol. RSUs receiving broadcast messages forward them too. The broadcast only counts as one sent message as well. Multiple arrived messages are filtered both at the RSUs and at the buses to make sure that the maximum delivery ratio is 1. Figure 1. Simulation environment and processing. The simulation time consists of a startup phase of 3000 seconds, where no statistics are recorded. Bus routes take up to 2700 seconds to be completed and given the bus frequencies, it takes this amount of time until all buses following a single road are present in the simulation and an equilibrium regarding the average amount of buses is reached. After the startup phase the simulation is executed for 3600s (1 hour). The amount of buses for an 8000 seconds run indicates that an equilibrium regarding the number of buses is reached after about 2800 seconds. The computation time, depending on the applied routing protocol, number of buses and roadside units, took between five hours and three days. The number of nodes in the simulation consists of mobile buses, which choose their roads according to predefined bus routes and fixed roadside units. The amount of buses is determined by their frequencies during the morning rush hour (6:30am to 8:29am) and is altered with a fixed multiplier of 0.5, 0.66, 1, 1.5, 2 and 3 resulting in quantities of 66 to 562 buses (e.g. a multiplier of 0.5 means that

3 the bus frequencies are halved resulting in a doubled amount of buses in the simulation). The maximum vehicle speed, as defined for the standard vehicle, has a maximum speed of 72km/h (20m/s) and as measured during simulation an average speed of 30km/h (8m/s). The number of RSUs is varied between one and 100 in steps of ten. The maximum of 100 RSUs was chosen, since with this number nearly the whole road length of the bus routes is covered, given an average transmission range of 500m. One RSU is the minimum, since it represents the operation control center that receives the messages and at least one receiving node is necessary. The simulation is based on an underlying map of a part of the city of Santiago de Chile. The area F of the Transantiago PTS is chosen due to its characteristics of low traffic density (it is a sector with lower population density), thus challenging the characteristics for the establishment of a VANET. This provided a lower bound for areas with higher traffic densities. To summarize the simulation runs, an overview of the simulation parameters used is given in table 1. Table 1.: Overview of simulation parameters Parameter type Parameter value Simulation time 3000s startup phase s simulation Size of simulation map x 10530m Routing protocols AODV, OLSR, DYMO-FAU, DYMO-UM Message sending 30s frequency Transmission ranges 250m, 500m, 800m, 1000m # RSUs 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 MAC protocol g Bandwidth 11Mbps Car following model Safe Distance Model by Krauss Maximum vehicle speed 20m/s (72km/h) Average vehicle speed 8m/s (30km/h) Avg. # of vehicles The packet delivery ratio (PDR) peaks with a TR of 500m, while 250m, 800m and 1000m are significantly worse. With the increase from 10 to 30 RSUs, the PDR rises slightly. We chose DYMO- UM and a transmission range of 500m for further simulation runs. Figure 2. PDR for varying TR and no. of RSUs Figure 3 depicts the results for variable numbers of buses and RSUs, used in the simulation with a transmission range of 500m and the routing protocol DYMO-UM. The mean number of buses was between 66 (one third of the amount during rush hour) and 562 (twice the amount during rush hour). The packet delivery ratios evolve nearly in parallel for all numbers of RSUs. The scenario with 66 buses achieves the worst delivery ratio, while the scenario with 378 buses dominates in all simulation runs with less than 50 deployed RSUs. With 50 or more RSUs, the original configuration with a number of buses that equals those of the rush hour (i.e. 211) performs best. IV. DISCUSSION OF SIMULATION RESULTS As a first step it was evaluated which of the available routing protocols AODV, OLSR, DYMO- FAU and DYMO-UM would be the best to use. The routing protocols were evaluated varying the amount of roadside units and the transmission range. The following combinations of RSUs and transmission ranges (TR) were chosen: 10 RSUs with a TR of 250m, 30 RSUs with 250m, 40 RSUs with 500m, 70 RSUs with 500m and 100 RSUs with 1000m transmission range. The results show that in general, all routing protocols are quite similar for the presented simulation scenario; no protocol dominates in any given setup (Figure 2). Figure 3. PDR for varying number of buses The analysis of the results of different number of buses, shows that more buses do not enhance the performance of a VANET as much as allocating additional RSUs. However, this may also depend on the driving behavior of the additional vehicles as well as on the capability of the applied routing protocol to efficiently use the higher number of

4 RSUs. Additionally, the end-to-end delay increases significantly, which leads also to the necessity of finding a better VANET routing protocol. Figure 4 shows the results of delivery ratios for all combinations of numbers of roadside units and transmission ranges. As you can easily notice, a TR of 500m achieves by far the best results for all numbers of RSUs, peaking with 100 RSUs at 81% delivery ratio. due to waiting times for new route discoveries, which can be seen in figures 5 and 6. Considering the system high mobility, a high delay increases the probability that the destination vehicle cannot be reached due to fast location and topology changes. With a large transmission range more vehicles are covered by the wireless signal, which increases the possibility of collisions (packet loss) during transmission. The packet loss caused by transmission failures could be the reason for a high amount of routing errors in the first place, since the need for retransmissions increases the latency as well. The exceptionally good performance of a TR of 500m could be based on a balance between middle TR (better than 250m) and less packet losses due to collisions during transmission (better than 800m and 1000m). Figure 4. Packet delivery ratio for DYMO-UM. Figure 6. Mean hop count for DYMO-UM. Figure 5. Mean E2E delay for DYMO-UM. In general, the transmission at all TRs rise with increasing numbers of RSUs. Remarkable is the special poor performance of a TR of 1000m, whose results are the worst for all numbers of RSUs. This poor result is probably affected by the implementation of the radio transmission model. Since we used the radio transmission model of a with adapted transmitter power, the transmission behavior is not modeled realistically. As stated by Gukhool and Cherkaoui [4], the percentage of packet loss is 50 percent higher at transmissions ranges over 1000m with a than with p. Furthermore, the low performance could be caused by a high amount of routing errors [5] or an extraordinarily high use and therefore collisions in the transmission medium. The amount of routing errors increases heavily for TRs of 800m and 1000m with 20 RSUs and is 600 times higher than the configuration that uses a TR of 500m. A high amount of routing errors increases the latency Figure 6. Routing errors sent for DYMO-UM. Figure 7. Routing requests sent for DYMO-UM.

5 Figure 8. Routing overhead for DYMO-UM. V. CONCLUSIONS The results of our silmulation of a Santiago PTS VANET show that a VANET based location monitoring and control systen is in principle feasible, but the performance varies significantly for some parameters. The tested MANET protocols are not optimal; a dedicated VANET protocol that uses geographic routing or delay tolerant network mechanisms would probably perform better. For the given scenario and parameters, good results are only achieved by deploying roadside units but this implies additional infrastructure costs. Thus, a focus for further experiments is to minimize the number of roadside units by chosing the right parameters. The transmission range has also an impact for out settings, a value of 500 meters performed best. This work examined the feasibility of using a vehicular ad hoc network to improve the bus location monitoring of the public transportation system in Santiago and thereby improving the imperfect knowledge of vehicle location. A requirement analysis for a VANET in Santiago was conducted and the results used as input for a simulation scenario. A realistic simulation based on geo data of Santiago and bus route information obtained from the Transantiago PTS, provided results about the impact of different transmission ranges of vehicles and roadside units and the necessity of RSUs to support the infrastructure and performance of VANETs. Different traffic situations have been studied by varying the amount of vehicles used in the simulation. The conducted simulations in OMNeT++ show very similar results for available MANET routing protocols for the presented VANET scenario. Additional simulations, executed with the DYMO- UM routing protocol, which is based on experiences with the AODV protocol, as a representative for all other protocols, stated the positive influence of RSUs on the most critical performance metric delivery ratio. The more RSUs are deployed, the better the PDR is. Obviously, this is limited by the costs of the deployment and maintenance of each RSU. In contrast to the deployment of RSUs, the highest transmission range did not lead to the best results. Transmission ranges of 800m and 1000m probably suffer from higher packet loss in the wireless medium and especially the TR of 1000m requires an implementation of the protocol standard p. Higher amounts of buses do not support the VANET as good as a higher amounts of RSUs. More buses lead to significantly higher E2E delay, which could be justified by the higher mean path length and the lacking capability of the applied routing protocol to make use of the higher amount of buses efficiently. References [1] J. Bernsen and D. Manivannan. Unicast routing protocols for vehicular ad hoc networks: A critical comparison and classification. Pervasive and Mobile Computing, vol. 5, pages 1 18, [2] H. Karl, A. Willig. Protocols and architectures for wireless sensor networks. John Wiley and Sons, [3] Mun J. Lok, Bilal R. Qazi, and Jaafar M. H. Elmirghani. Characterisation of data dissemination in vehicular ad hoc networks in a city environment. In IWCMC 09: Proceedings of the 2009 International Conference on Wireless Communications and Mobile Computing, pages , New York, NY, USA, [4] B. S. Gukhool and S. Cherkaoui. IEEE p modeling in ns-2, Local Computer Networks, LCN rd IEEE Conference on. [5] H. Karl and A. Willig. Protocols and architectures for wireless sensor networks. John Wiley and Sons, 2005.

6

Analyzing Routing Protocols Performance in VANET Using p and g

Analyzing Routing Protocols Performance in VANET Using p and g Analyzing Routing Protocols Performance in VANET Using 802.11p and 802.11g Rasha Kaiss Aswed and Mohammed Ahmed Abdala Network Engineering Department, College of Information Engineering, Al-Nahrain University

More information

Reliable Routing In VANET Using Cross Layer Approach

Reliable Routing In VANET Using Cross Layer Approach Reliable Routing In VANET Using Cross Layer Approach 1 Mr. Bhagirath Patel, 2 Ms. Khushbu Shah 1 Department of Computer engineering, 1 LJ Institute of Technology, Ahmedabad, India 1 er.bhagirath@gmail.com,

More information

International Journal of Advance Engineering and Research Development. Improved OLSR Protocol for VANET

International Journal of Advance Engineering and Research Development. Improved OLSR Protocol for VANET Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 11, November -2017 Improved OLSR Protocol for VANET Ravi Shrimali

More information

LTE and IEEE802.p for vehicular networking: a performance evaluation

LTE and IEEE802.p for vehicular networking: a performance evaluation LTE and IEEE802.p for vehicular networking: a performance evaluation Zeeshan Hameed Mir* Fethi Filali EURASIP Journal on Wireless Communications and Networking 1 Presenter Renato Iida v2 Outline Introduction

More information

Analysis of GPS and Zone Based Vehicular Routing on Urban City Roads

Analysis of GPS and Zone Based Vehicular Routing on Urban City Roads Analysis of GPS and Zone Based Vehicular Routing on Urban City Roads Aye Zarchi Minn 1, May Zin Oo 2, Mazliza Othman 3 1,2 Department of Information Technology, Mandalay Technological University, Myanmar

More information

QUANTITATIVE ANALYSIS OF VANET ROUTING PROTOCOLS IN URBAN AND HIGHWAY SCENARIOS

QUANTITATIVE ANALYSIS OF VANET ROUTING PROTOCOLS IN URBAN AND HIGHWAY SCENARIOS ISSN: 0976-1353 Volume 23 Issue 6 OCTOBER 2016 (SPECIAL ISSUE) QUANTITATIVE ANALYSIS OF VANET ROUTING PROTOCOLS IN URBAN AND HIGHWAY SCENARIOS Rachana #1 # MTech, Computer Science and Engineering, P.D.A

More information

Performance Evaluation of VoIP over VANET

Performance Evaluation of VoIP over VANET (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of VoIP over VANET Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com Publishing

More information

Mobile-Gateway Routing for Vehicular Networks 1

Mobile-Gateway Routing for Vehicular Networks 1 Mobile-Gateway Routing for Vehicular Networks 1 Hsin-Ya Pan, Rong-Hong Jan 2, Andy An-Kai Jeng, and Chien Chen Department of Computer Science National Chiao Tung University Hsinchu, 30010, Taiwan {hypan,

More information

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks Unicast Routing in Mobile Ad Hoc Networks 1 Routing problem 2 Responsibility of a routing protocol Determining an optimal way to find optimal routes Determining a feasible path to a destination based on

More information

Enhancement of Routing in Urban Scenario using Link State Routing Protocol and Firefly Optimization

Enhancement of Routing in Urban Scenario using Link State Routing Protocol and Firefly Optimization Enhancement of Routing in Urban Scenario using Link State Routing Protocol and Firefly Optimization Dhanveer Kaur 1, Harwant Singh Arri 2 1 M.Tech, Department of Computer Science and Engineering, Lovely

More information

BUSNet: Model and Usage of Regular Traffic Patterns in Mobile Ad Hoc Networks for Inter-Vehicular Communications

BUSNet: Model and Usage of Regular Traffic Patterns in Mobile Ad Hoc Networks for Inter-Vehicular Communications BUSNet: Model and Usage of Regular Traffic Patterns in Mobile Ad Hoc Networks for Inter-Vehicular Communications Kai-Juan Wong, Bu-Sung Lee, Boon-Chong Seet, Genping Liu, Lijuan Zhu School of Computer

More information

PIONEER RESEARCH & DEVELOPMENT GROUP

PIONEER RESEARCH & DEVELOPMENT GROUP Realistic Mobility Model And Co-Operative Peer To Peer Data Transmission For VANET s Using SUMO And MOVE Nataraj B, Dr. T. Kantharaju 1,2 Electronics and Communication, JNTUA, BITIT, Hindupur, Andhra Pradesh,

More information

ENSC 427, Spring 2012

ENSC 427, Spring 2012 ENSC 427, Spring 2012 Outline A Study of VANET Networks Introduction DSRC channel allocation Standards : IEEE 802.11p + IEEE 1604 PHY LAYER MAC LAYER Communication Walkthrough Ns-3, Node Mobility, SUMO

More information

CHAPTER 5 CONCLUSION AND SCOPE FOR FUTURE EXTENSIONS

CHAPTER 5 CONCLUSION AND SCOPE FOR FUTURE EXTENSIONS 130 CHAPTER 5 CONCLUSION AND SCOPE FOR FUTURE EXTENSIONS 5.1 INTRODUCTION The feasibility of direct and wireless multi-hop V2V communication based on WLAN technologies, and the importance of position based

More information

A Review on Vehicular Ad-Hoc Network

A Review on Vehicular Ad-Hoc Network A Review on Vehicular Ad-Hoc Network Arshdeep Kaur 1, Shilpa Sharma 2 M.Tech Student, Dept. of Computer Science Engineering, Lovely Professional University, Phagwara, Punjab, India 1 Assistant Professor,

More information

Investigation on OLSR Routing Protocol Efficiency

Investigation on OLSR Routing Protocol Efficiency Investigation on OLSR Routing Protocol Efficiency JIRI HOSEK 1, KAROL MOLNAR 2 Department of Telecommunications Faculty of Electrical Engineering and Communication, Brno University of Technology Purkynova

More information

VANETs. Marc Torrent-Moreno, Prof. Hannes Hartenstein Decentralized Systems and Network Services Institute for Telematics, University of Karlsruhe

VANETs. Marc Torrent-Moreno, Prof. Hannes Hartenstein Decentralized Systems and Network Services Institute for Telematics, University of Karlsruhe VANETs Marc Torrent-Moreno, Prof. Hannes Hartenstein Decentralized Systems and Network Services Institute for Telematics, University of Karlsruhe April 15 th 2005 Marc Torrent Moreno 1 Main Motivation

More information

Optimized DTN-Routing for Urban Public Transport Systems

Optimized DTN-Routing for Urban Public Transport Systems Optimized DTN-Routing for Urban Public Transport Systems Tobias Pögel Institute of Operating Systems and Computer Networks Technische Universität Braunschweig, Germany poegel@ibr.cs.tu-bs.de Abstract Communication

More information

Routing Protocols in MANETs

Routing Protocols in MANETs Chapter 4 Routing Protocols in MANETs 4.1 Introduction The main aim of any Ad Hoc network routing protocol is to meet the challenges of the dynamically changing topology and establish a correct and an

More information

Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks

Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks Mounir FRIKHA, Manel MAAMER Higher School of Communication of Tunis (SUP COM), Network Department, m.frikha@supcom.rnu.tn ABSTRACT

More information

Test Bed Simulation for Mobile Ad Hoc Routing Protocol: An On Demand Vector Routing Algorithm Case Study

Test Bed Simulation for Mobile Ad Hoc Routing Protocol: An On Demand Vector Routing Algorithm Case Study proceeding of National Conference of Electric and Electronic Engineering 2012 Test Bed Simulation for Mobile Ad Hoc Routing Protocol: An On Demand Vector Routing Algorithm Case Study Jiwa Abdullahl, Hannes

More information

Performance Evaluation of Adaptive Control Channel Interval in VANET Based on Network Simulation Model

Performance Evaluation of Adaptive Control Channel Interval in VANET Based on Network Simulation Model Performance Evaluation of Adaptive Control Channel Interval in VANET Based on Network Simulation Model Rendy Munadi Doan Perdana Shalahuddin Al Ayyubi rendymunadi@telkomuniversity.ac.id doanperdana@telkomuniversity.ac.id

More information

Multiprotocol Label Switching in Vehicular Ad hoc Network for QoS

Multiprotocol Label Switching in Vehicular Ad hoc Network for QoS Information Management and Business Review Vol. 6, No. 3, pp. 115-120, Jun 2014 (ISSN 2220-3796) Multiprotocol Label Switching in Vehicular Ad hoc Network for QoS * Kashif Naseer Qureshi, Abdul Hanan Abdullah

More information

Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV)

Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV) Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV) WADHAH AL-MANDHARI, KOICHI GYODA 2, NOBUO NAKAJIMA Department of Human Communications The University

More information

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH VOLUME 5, ISSUE 3, MARCH-2014 ISSN

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH VOLUME 5, ISSUE 3, MARCH-2014 ISSN 657 Performance Evaluation of DDSR via NS- 3 Simulation using RSU s in Vehicular Network Abhay Deep Seth, Ankit Khare Abstract: - Mobile Ad hoc Networks (MANET) are wireless networks without an infrastructure,

More information

Performance Comparison of Mobility Generator C4R and MOVE using Optimized Link State Routing (OLSR)

Performance Comparison of Mobility Generator C4R and MOVE using Optimized Link State Routing (OLSR) IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 06, Issue 11 (November. 2016), V1 PP 25-29 www.iosrjen.org Performance Comparison of Mobility Generator and MOVE using

More information

Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols

Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols Akshay Shankar, Lavanya Chelle Information Science Engineering RNS Institute of Technology Bangalore, India Abstract- A Mobile

More information

Poonam kori et al. / International Journal on Computer Science and Engineering (IJCSE)

Poonam kori et al. / International Journal on Computer Science and Engineering (IJCSE) An Effect of Route Caching Scheme in DSR for Vehicular Adhoc Networks Poonam kori, Dr. Sanjeev Sharma School Of Information Technology, RGPV BHOPAL, INDIA E-mail: Poonam.kori@gmail.com Abstract - Routing

More information

A Survey of Vehicular Ad hoc Networks Routing Protocols

A Survey of Vehicular Ad hoc Networks Routing Protocols International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 3 No. 3 July 2013, pp. 829-846 2013 Innovative Space of Scientific Research Journals http://www.issr-journals.org/ijias/ A Survey

More information

Evaluation of Realistic Mobility Model for Comparative Study of Routing Protocols in IEEE p (DSRC) Vehicular Ad-hoc Network (VANET) Dongsuk Song

Evaluation of Realistic Mobility Model for Comparative Study of Routing Protocols in IEEE p (DSRC) Vehicular Ad-hoc Network (VANET) Dongsuk Song Evaluation of Realistic Mobility Model for Comparative Study of Routing Protocols in IEEE 802.11p (DSRC) Vehicular Ad-hoc Network (VANET) by Dongsuk Song A thesis submitted to the Graduate Faculty of Auburn

More information

Lecture 6: Vehicular Computing and Networking. Cristian Borcea Department of Computer Science NJIT

Lecture 6: Vehicular Computing and Networking. Cristian Borcea Department of Computer Science NJIT Lecture 6: Vehicular Computing and Networking Cristian Borcea Department of Computer Science NJIT GPS & navigation system On-Board Diagnostic (OBD) systems DVD player Satellite communication 2 Internet

More information

Routing Protocols in MANET: Comparative Study

Routing Protocols in MANET: Comparative Study Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 7, July 2014, pg.119

More information

Vorlesung Kommunikationsnetze Research Topics: QoS in VANETs

Vorlesung Kommunikationsnetze Research Topics: QoS in VANETs Vorlesung Kommunikationsnetze Research Topics: QoS in VANETs Prof. Dr. H. P. Großmann mit B. Wiegel sowie A. Schmeiser und M. Rabel Sommersemester 2009 Institut für Organisation und Management von Informationssystemen

More information

Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks

Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks Mobile Information Systems 9 (23) 295 34 295 DOI.3233/MIS-364 IOS Press Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks Keisuke Goto, Yuya Sasaki, Takahiro

More information

PERFORMANCE EVALUATION OF DSDV, AODV ROUTING PROTOCOLS IN VANET

PERFORMANCE EVALUATION OF DSDV, AODV ROUTING PROTOCOLS IN VANET PERFORMANCE EVALUATION OF DSDV, AODV ROUTING PROTOCOLS IN VANET K. Venkateswarlu 1, G. Murali 2 1 M. Tech, CSE, JNTUA College of Engineering (Pulivendula), Andhra Pradesh, India 2 Asst.Prof (HOD), CSE,

More information

Introduction to Mobile Ad hoc Networks (MANETs)

Introduction to Mobile Ad hoc Networks (MANETs) Introduction to Mobile Ad hoc Networks (MANETs) 1 Overview of Ad hoc Network Communication between various devices makes it possible to provide unique and innovative services. Although this inter-device

More information

3. Evaluation of Selected Tree and Mesh based Routing Protocols

3. Evaluation of Selected Tree and Mesh based Routing Protocols 33 3. Evaluation of Selected Tree and Mesh based Routing Protocols 3.1 Introduction Construction of best possible multicast trees and maintaining the group connections in sequence is challenging even in

More information

GLOBAL FRONTRUNNER ROUTING ALGORITHM (GFRA) FOR V2V COMMUNICATION IN VANETS

GLOBAL FRONTRUNNER ROUTING ALGORITHM (GFRA) FOR V2V COMMUNICATION IN VANETS GLOBAL FRONTRUNNER ROUTING ALGORITHM (GFRA) FOR V2V COMMUNICATION IN VANETS A.Robertsingh 1, Suganya A 2 1 Asst.Prof, CSE, Kalasalingam University, Krishnankoil, India 2 Asst.Prof, CSE, Kalasalingam University,

More information

Factors Affecting the Performance of Ad Hoc Networks

Factors Affecting the Performance of Ad Hoc Networks Factors Affecting the Performance of Ad Hoc Networks Dmitri D. Perkins, Herman D. Hughes, and Charles B. Owen Department of Computer Science and Engineering Michigan State University East Lansing, MI 88-6

More information

Analysis of Black-Hole Attack in MANET using AODV Routing Protocol

Analysis of Black-Hole Attack in MANET using AODV Routing Protocol Analysis of Black-Hole Attack in MANET using Routing Protocol Ms Neha Choudhary Electronics and Communication Truba College of Engineering, Indore India Dr Sudhir Agrawal Electronics and Communication

More information

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL 2.1 Topology Control in Wireless Sensor Networks Network topology control is about management of network topology to support network-wide requirement.

More information

SUMMERY, CONCLUSIONS AND FUTURE WORK

SUMMERY, CONCLUSIONS AND FUTURE WORK Chapter - 6 SUMMERY, CONCLUSIONS AND FUTURE WORK The entire Research Work on On-Demand Routing in Multi-Hop Wireless Mobile Ad hoc Networks has been presented in simplified and easy-to-read form in six

More information

An Integrated Framework for Fog Communications and Computing in Internet of Vehicles

An Integrated Framework for Fog Communications and Computing in Internet of Vehicles University of Florence Department of Information Engineering An Integrated Framework for Fog Communications and Computing in Internet of Vehicles Alessio Bonadio, Francesco Chiti, Romano Fantacci name.surname@unifi.it

More information

Intelligent Transportation System For Vehicular Ad-Hoc Networks

Intelligent Transportation System For Vehicular Ad-Hoc Networks INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 6 69 Intelligent Transportation System For Vehicular Ad-Hoc Networks T. Sujitha, S. Punitha Devi Department

More information

Analysis of Routing Protocols over VANET

Analysis of Routing Protocols over VANET Analysis of Routing Protocols over VANET Ramadhan Mstafa 1, Abdalraouf Alarabe, Eman AbdelFattah Ammar Odeh, Muneer Alshowkan Abstract Vehicular Ad-hoc Network (VANET) is a new network technology where

More information

Evaluation of Routing Protocols for Mobile Ad hoc Networks

Evaluation of Routing Protocols for Mobile Ad hoc Networks International Journal of Soft Computing and Engineering (IJSCE) Evaluation of Routing Protocols for Mobile Ad hoc Networks Abstract Mobile Ad hoc network is a self-configuring infrastructure less network

More information

Ad Hoc Networks: Introduction

Ad Hoc Networks: Introduction Ad Hoc Networks: Introduction Module A.int.1 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA 1 Ad Hoc networks: introduction A.int.1-2

More information

Computation of Multiple Node Disjoint Paths

Computation of Multiple Node Disjoint Paths Chapter 5 Computation of Multiple Node Disjoint Paths 5.1 Introduction In recent years, on demand routing protocols have attained more attention in mobile Ad Hoc networks as compared to other routing schemes

More information

A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks

A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks Stephen S. Yau, Wei Gao, and Dazhi Huang Dept. of Computer Science and Engineering Arizona State University Tempe,

More information

Chapter 7 CONCLUSION

Chapter 7 CONCLUSION 97 Chapter 7 CONCLUSION 7.1. Introduction A Mobile Ad-hoc Network (MANET) could be considered as network of mobile nodes which communicate with each other without any fixed infrastructure. The nodes in

More information

Evaluation of Effective Vehicle Probe Information Delivery with Multiple Communication Methods

Evaluation of Effective Vehicle Probe Information Delivery with Multiple Communication Methods Communications and Network, 2015, 7, 71-80 Published Online May 2015 in SciRes. http://www.scirp.org/journal/cn http://dx.doi.org/10.4236/cn.2015.72007 Evaluation of Effective Vehicle Probe Information

More information

Performance Evaluation of Routing Protocols in Wireless Mesh Networks. Motlhame Edwin Sejake, Zenzo Polite Ncube and Naison Gasela

Performance Evaluation of Routing Protocols in Wireless Mesh Networks. Motlhame Edwin Sejake, Zenzo Polite Ncube and Naison Gasela Performance Evaluation of Routing Protocols in Wireless Mesh Networks Motlhame Edwin Sejake, Zenzo Polite Ncube and Naison Gasela Department of Computer Science, North West University, Mafikeng Campus,

More information

Overview of Challenges in VANET

Overview of Challenges in VANET Overview of Challenges in VANET Er.Gurpreet Singh Department of Computer Science, Baba Farid College, Bathinda(Punjab), India ABSTRACT VANET are becoming active area of research and development because

More information

Part I. Wireless Communication

Part I. Wireless Communication 1 Part I. Wireless Communication 1.5 Topologies of cellular and ad-hoc networks 2 Introduction Cellular telephony has forever changed the way people communicate with one another. Cellular networks enable

More information

Performance Analysis of MANET Routing Protocols OLSR and AODV

Performance Analysis of MANET Routing Protocols OLSR and AODV VOL. 2, NO. 3, SEPTEMBER 211 Performance Analysis of MANET Routing Protocols OLSR and AODV Jiri Hosek Faculty of Electrical Engineering and Communication, Brno University of Technology Email: hosek@feec.vutbr.cz

More information

The Challenges of Robust Inter-Vehicle Communications

The Challenges of Robust Inter-Vehicle Communications The Challenges of Robust Inter-Vehicle Communications IEEE VTC2005-Fall Marc Torrent-Moreno, Moritz Killat and Hannes Hartenstein DSN Research Group Institute of Telematics University of Karlsruhe Marc

More information

Simulation and Analysis of Transmission Range Effect on DSR Routing Protocol in a Vanet Network with Different Speed and Node Density

Simulation and Analysis of Transmission Range Effect on DSR Routing Protocol in a Vanet Network with Different Speed and Node Density Simulation and Analysis of Transmission Range Effect on DSR Routing Protocol in a Vanet Network with Different Speed and Node Density Muhammad Faikar Widjanarko School of Electrical Engineering Telkom

More information

Ad Hoc Networks: Issues and Routing

Ad Hoc Networks: Issues and Routing Ad Hoc Networks: Issues and Routing Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

2. LITERATURE REVIEW. Performance Evaluation of Ad Hoc Networking Protocol with QoS (Quality of Service)

2. LITERATURE REVIEW. Performance Evaluation of Ad Hoc Networking Protocol with QoS (Quality of Service) 2. LITERATURE REVIEW I have surveyed many of the papers for the current work carried out by most of the researchers. The abstract, methodology, parameters focused for performance evaluation of Ad-hoc routing

More information

Outline. CS5984 Mobile Computing. Dr. Ayman Abdel-Hamid, CS5984. Wireless Sensor Networks 1/2. Wireless Sensor Networks 2/2

Outline. CS5984 Mobile Computing. Dr. Ayman Abdel-Hamid, CS5984. Wireless Sensor Networks 1/2. Wireless Sensor Networks 2/2 CS5984 Mobile Computing Outline : a Survey Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech An Introduction to 1 2 1/2 Advances in micro-electro-mechanical systems technology, wireless communications,

More information

Performance Analysis of Proactive and Reactive Routing Protocols for QOS in MANET through OLSR & AODV

Performance Analysis of Proactive and Reactive Routing Protocols for QOS in MANET through OLSR & AODV MIT International Journal of Electrical and Instrumentation Engineering, Vol. 3, No. 2, August 2013, pp. 57 61 57 Performance Analysis of Proactive and Reactive Routing Protocols for QOS in MANET through

More information

Efficient load balancing and QoS-based location aware service discovery protocol for vehicular ad hoc networks

Efficient load balancing and QoS-based location aware service discovery protocol for vehicular ad hoc networks RESEARCH Open Access Efficient load balancing and QoS-based location aware service discovery protocol for vehicular ad hoc networks Kaouther Abrougui 1,2*, Azzedine Boukerche 1,2 and Hussam Ramadan 3 Abstract

More information

Literature Review on Characteristic Analysis of Efficient and Reliable Broadcast in Vehicular Networks

Literature Review on Characteristic Analysis of Efficient and Reliable Broadcast in Vehicular Networks International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 3 (2013), pp. 205-210 International Research Publication House http://www.irphouse.com Literature Review

More information

Simulation and Analysis of AODV and DSDV Routing Protocols in Vehicular Adhoc Networks using Random Waypoint Mobility Model

Simulation and Analysis of AODV and DSDV Routing Protocols in Vehicular Adhoc Networks using Random Waypoint Mobility Model Simulation and Analysis of AODV and DSDV Routing Protocols in Vehicular Adhoc Networks using Random Waypoint Mobility Model 1 R. Jeevitha, 2 M. Chandra Kumar 1 Research Scholar, Department of Computer

More information

Histogram-Based Density Discovery in Establishing Road Connectivity

Histogram-Based Density Discovery in Establishing Road Connectivity Histogram-Based Density Discovery in Establishing Road Connectivity Kevin C. Lee, Jiajie Zhu, Jih-Chung Fan, Mario Gerla Department of Computer Science University of California, Los Angeles Los Angeles,

More information

Protection Against DDOS Using Secure Code Propagation In The VANETs

Protection Against DDOS Using Secure Code Propagation In The VANETs Protection Against DDOS Using Secure Code Propagation In The VANETs Mandeep Kaur, Manish Mahajan Mandeepcheema6@gmail.com,cgccoe.hodcse@gmail.com ABSTRACT--VANETs are the vehicular networks used to connect

More information

Efficient Working of Vehicular Ad-Hoc Network with Carry Forward Technique

Efficient Working of Vehicular Ad-Hoc Network with Carry Forward Technique Efficient Working of Vehicular Ad-Hoc Network with Carry Forward Technique Govind Sood 1, Dr. Tanu Preet Singh 2 ergovind.sood333@gmail.com, tanupreet.singh@gmail.com Abstract Vehicular Ad-Hoc network

More information

Congestion Control Technique with Safety Transmission of Messages in Vehicular Ad Hoc Network

Congestion Control Technique with Safety Transmission of Messages in Vehicular Ad Hoc Network Congestion Control Technique with Safety Transmission of Messages in Vehicular Ad Hoc Network Bhagyashri P. Deshpande 1, Dr.A.S.Alvi 2 1 M.E(CSE) PRMIT&R, Badnera, Amravati 2 Professor,Dept. of CSE PRMIT&R,Badnera,

More information

Investigation of the AODV And the SDWCA QoS Handling At Different Utilisation Levels In Adaptive Clustering Environments

Investigation of the AODV And the SDWCA QoS Handling At Different Utilisation Levels In Adaptive Clustering Environments Investigation of the AODV And the SDWCA QoS Handling At Different Utilisation Levels In Adaptive Clustering Environments Al-Baadani, Faris., Yousef, S., Tapaswi, S., Patnaik, K. K., and Cole, M Faculty

More information

Vehicular Road Side Backbone Network with Multiprotocol Label Switching Kashif Naseer Qureshi *, Abdul Hanan Abdullah, Raja Waseem Anwar

Vehicular Road Side Backbone Network with Multiprotocol Label Switching Kashif Naseer Qureshi *, Abdul Hanan Abdullah, Raja Waseem Anwar 1 st International Conference of Recent Trends in Information and Communication Technologies Vehicular Road Side Backbone Network with Multiprotocol Label Switching Kashif Naseer Qureshi *, Abdul Hanan

More information

Figure 1: Ad-Hoc routing protocols.

Figure 1: Ad-Hoc routing protocols. Performance Analysis of Routing Protocols for Wireless Ad-Hoc Networks Sukhchandan Lally and Ljiljana Trajković Simon Fraser University Vancouver, British Columbia Canada E-mail: {lally, ljilja}@sfu.ca

More information

Performance Analysis of Optimization Techniques for OLSR Routing Protocol for VANET

Performance Analysis of Optimization Techniques for OLSR Routing Protocol for VANET Performance Analysis of Optimization Techniques for OL Routing Protocol for VANET Suhaib sheikh 1, Bhawna Sharma 2, Sunil Panjeta 3 1,2 Mtech scholar in electronics and communication engineering, YIET,

More information

Reliable and Efficient flooding Algorithm for Broadcasting in VANET

Reliable and Efficient flooding Algorithm for Broadcasting in VANET Reliable and Efficient flooding Algorithm for Broadcasting in VANET Vinod Kumar*, Meenakshi Bansal Mtech Student YCOE,Talwandi Sabo(india), A.P. YCOE, Talwandi Sabo(india) Vinod_Sharma85@rediffmail.com,

More information

CROSS LAYER USING END-TO-END DELAY ASSESSMENT FOR ROUTING PROTOCOL IN VEHICULAR AD HOC NETWORK

CROSS LAYER USING END-TO-END DELAY ASSESSMENT FOR ROUTING PROTOCOL IN VEHICULAR AD HOC NETWORK CROSS LAYER USING END-TO-END DELAY ASSESSMENT FOR ROUTING PROTOCOL IN VEHICULAR AD HOC NETWORK Le Van Minh a,b, Yang MingChuan a, and Guo Qing a a Communication research center, Harbin Institute of Technology,

More information

The Study of Routing Strategies in Vehicular Ad- Hoc Network to Enhance Security

The Study of Routing Strategies in Vehicular Ad- Hoc Network to Enhance Security The Study of Routing Strategies in Vehicular Ad- Hoc Network to Enhance Security Parveen Kumar Research Scholar, CMJ University, Shillong, Meghalaya (India) Abstract In VANET, or Intelligent Vehicular

More information

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET 2011 International Conference on Information and Network Technology IPCSIT vol.4 (2011) (2011) IACSIT Press, Singapore QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET Ashwini V. Biradar

More information

IJMIE Volume 2, Issue 6 ISSN:

IJMIE Volume 2, Issue 6 ISSN: Network Simulation Based Parametric Analysis of AODV Protocol for Wireless Mobile Ad-hoc Network Mr. Amol V. Zade* Prof. Vijaya K. Shandilya** Abstract: A major aspect of ad-hoc networks is that the nodes

More information

LAN Overview (part 2) Interconnecting LANs - Hubs

LAN Overview (part 2) Interconnecting LANs - Hubs LAN Overview (part 2) CSE 3213 Fall 2011 1 November 2011 Interconnecting LANs - Hubs active central element of star layout each station connected to hub by two UTP lines hub acts as a repeater limited

More information

EFFICIENT TRAJECTORY PROTOCOL FOR MULTICASTING IN VEHICULAR AD HOC NETWORKS

EFFICIENT TRAJECTORY PROTOCOL FOR MULTICASTING IN VEHICULAR AD HOC NETWORKS EFFICIENT TRAJECTORY PROTOCOL FOR MULTICASTING IN VEHICULAR AD HOC NETWORKS Nandhini P. 1 and Ravi G. 2 1 Department of Electronics and Communication Engineering, Communication Systems, Sona College of

More information

Aanchal Walia #1, Pushparaj Pal *2

Aanchal Walia #1, Pushparaj Pal *2 An Implemented approach of VANET using Location Information based Technique for safe city and vehicle Aanchal Walia #1, Pushparaj Pal *2 #1. M.Tech Scholor,ECE,Krukshetra University, *2. A.P.ECE Department,

More information

Appointed BrOadcast (ABO): Reducing Routing Overhead in. IEEE Mobile Ad Hoc Networks

Appointed BrOadcast (ABO): Reducing Routing Overhead in. IEEE Mobile Ad Hoc Networks Appointed BrOadcast (ABO): Reducing Routing Overhead in IEEE 802.11 Mobile Ad Hoc Networks Chun-Yen Hsu and Shun-Te Wang Computer Network Lab., Department of Electronic Engineering National Taiwan University

More information

International Journal of Information Movement. Website: ISSN: (online) Pages

International Journal of Information Movement. Website:   ISSN: (online) Pages REVIEW: VANET ARCHITECTURES AND DESIGN Chetna Research Scholar Department Of Electronic & Communication Engg. Galaxy Global Group of Institutions, Dinarpur Saranjeet Singh Faculty Department of Electronic

More information

Shortcut Tree Routing using Neighbor Table in ZigBee Wireless Networks

Shortcut Tree Routing using Neighbor Table in ZigBee Wireless Networks Shortcut Tree Routing using Neighbor Table in ZigBee Wireless Networks Salmu K.P 1, Chinchu James 2 1,2 Department of Computer Science, IIET, Nellikuzhi Abstract- ZigBee is a worldwide standard for wireless

More information

Multicast over Vehicle Ad Hoc Networks

Multicast over Vehicle Ad Hoc Networks 1 Multicast over Vehicle Ad Hoc Networks Alberto Gordillo Muñoz Abstract Vehicular networks may improve the safety and efficiency of road travel but there are many challenges that still need to be overcome.

More information

Bridging and Switching Basics

Bridging and Switching Basics CHAPTER 4 Bridging and Switching Basics This chapter introduces the technologies employed in devices loosely referred to as bridges and switches. Topics summarized here include general link-layer device

More information

AN ADAPTIVE GATEWAY DISCOVERY IN HYBRID MANETS

AN ADAPTIVE GATEWAY DISCOVERY IN HYBRID MANETS AN ADAPTIVE GATEWAY DISCOVERY IN HYBRID MANETS F. D. Trujillo, A. Triviño, E. Casilari and A. Díaz-Estrella Department of Electronic Technology University of Malaga A. J. Yuste Department of Telecommunication

More information

Efficient Authentication and Congestion Control for Vehicular Ad Hoc Network

Efficient Authentication and Congestion Control for Vehicular Ad Hoc Network Efficient Authentication and Congestion Control for Vehicular Ad Hoc Network Deivanai.P 1, K.Sudha 2, K.Radha 3 Department of CSE, Muthayammal Engineering College, Rasipuram, India 1 Assistant Professor,

More information

Chapter 5 Ad Hoc Wireless Network. Jang Ping Sheu

Chapter 5 Ad Hoc Wireless Network. Jang Ping Sheu Chapter 5 Ad Hoc Wireless Network Jang Ping Sheu Introduction Ad Hoc Network is a multi-hop relaying network ALOHAnet developed in 1970 Ethernet developed in 1980 In 1994, Bluetooth proposed by Ericsson

More information

Local Area Networks (LANs): Packets, Frames and Technologies Gail Hopkins. Part 3: Packet Switching and. Network Technologies.

Local Area Networks (LANs): Packets, Frames and Technologies Gail Hopkins. Part 3: Packet Switching and. Network Technologies. Part 3: Packet Switching and Gail Hopkins Local Area Networks (LANs): Packets, Frames and Technologies Gail Hopkins Introduction Circuit Switching vs. Packet Switching LANs and shared media Star, bus and

More information

Wireless Environments

Wireless Environments A Cyber Physical Systems Architecture for Timely and Reliable Information Dissemination in Mobile, Aniruddha Gokhale Vanderbilt University EECS Nashville, TN Wireless Environments Steven Drager, William

More information

Ad Hoc Networks - Applications and System Design

Ad Hoc Networks - Applications and System Design Ad Hoc Networks - Applications and System Design Prof Sanjay Srivastava DA-IICT, Gandhinagar Modelling and Analysis Group of NeTworks (MAGNeT) Two day workshop on Ad Hoc Networks: Design, Applications,

More information

Simulations of VANET Scenarios with OPNET and SUMO

Simulations of VANET Scenarios with OPNET and SUMO Simulations of VANET Scenarios with OPNET and SUMO Florent Kaisser, Christophe Gransart, Marion Berbineau To cite this version: Florent Kaisser, Christophe Gransart, Marion Berbineau. Simulations of VANET

More information

A Survey - Energy Efficient Routing Protocols in MANET

A Survey - Energy Efficient Routing Protocols in MANET , pp. 163-168 http://dx.doi.org/10.14257/ijfgcn.2016.9.5.16 A Survey - Energy Efficient Routing Protocols in MANET Jyoti Upadhyaya and Nitin Manjhi Department of Computer Science, RGPV University Shriram

More information

Improving Energy and Efficiency in cluster based VANETs through AODV Protocol

Improving Energy and Efficiency in cluster based VANETs through AODV Protocol Improving Energy and Efficiency in cluster based VANETs through AODV Protocol Prerana Deshmukh PG Department of Computer Science and Engineering, J.D.College of Engineering & Managment, RTMNU, Maharashtra,

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 1464 Performance Evaluation of AODV and DSDV Routing Protocols through Clustering in MANETS Prof. A Rama Rao, M

More information

VANET Analysis for Real Time Traffic of Nepal Using SUMO and NS3 under different protocol

VANET Analysis for Real Time Traffic of Nepal Using SUMO and NS3 under different protocol pp. 128 133 VANET Analysis for Real Time Traffic of Nepal Using SUMO and NS3 under different protocol Krishna Kumar Jha 1 *, Daya Sagar Baral 2 1, 2 Department of Electronics & Computer Engineering, Pulchowk

More information

CSMA based Medium Access Control for Wireless Sensor Network

CSMA based Medium Access Control for Wireless Sensor Network CSMA based Medium Access Control for Wireless Sensor Network H. Hoang, Halmstad University Abstract Wireless sensor networks bring many challenges on implementation of Medium Access Control protocols because

More information

15-441: Computer Networking. Lecture 24: Ad-Hoc Wireless Networks

15-441: Computer Networking. Lecture 24: Ad-Hoc Wireless Networks 15-441: Computer Networking Lecture 24: Ad-Hoc Wireless Networks Scenarios and Roadmap Point to point wireless networks (last lecture) Example: your laptop to CMU wireless Challenges: Poor and variable

More information

DTN Interworking for Future Internet Presented by Chang, Dukhyun

DTN Interworking for Future Internet Presented by Chang, Dukhyun DTN Interworking for Future Internet 2008.02.20 Presented by Chang, Dukhyun Contents 1 2 3 4 Introduction Project Progress Future DTN Architecture Summary 2/29 DTN Introduction Delay and Disruption Tolerant

More information

VITP: An Information Transfer Protocol for Vehicular Computing

VITP: An Information Transfer Protocol for Vehicular Computing VITP: An Information Transfer Protocol for Vehicular Computing Marios D. Dikaiakos, Saif Iqbal,Tamer Nadeem, Liviu Iftode Adapted from the work of Marios D. Dikaiakos 2nd ACM International Symposium on

More information