Data and Computer Communications

Size: px
Start display at page:

Download "Data and Computer Communications"

Transcription

1 Data and Computer Communications Chapter 17 Wireless LANs Eighth Edition by William Stallings

2 Overview of Wireless LANs use wireless transmission medium Wireless LAN were little used issues of high prices, low data rates, occupational safety concerns, & licensing requirements now addressed key application areas: LAN extension cross-building interconnect nomadic access ad hoc networking Chap17:2

3 Single Cell LAN Extension Chap17:3

4 Multi Cell LAN Extension Chap17:4

5 Cross-Building Interconnect connect LANs in nearby buildings point-to-point wireless link Not a LAN by itself connect bridges or routers Chap17:5

6 Nomadic Access link LAN hub & mobile data terminal laptop or notepad computer enable employee to transfer data from portable computer to server also useful in extended environment such as campus or cluster of buildings users move around with portable computers may wish access to servers on wired LAN Chap17:6

7 Infrastructure Wireless LAN Chap17:7

8 Ad Hoc Networking temporary peer-to-peer network Chap17:8

9 Wireless LAN Requirements throughput - efficient use wireless medium no of nodes - hundreds of nodes across multiple cells connection to backbone LAN - using control modules service area to 300 m low power consumption - for long battery life on mobiles transmission robustness and security collocated network operation license-free operation handoff/roaming dynamic configuration - addition, deletion, and relocation of end systems without disruption to users Chap17:9

10 Technology infrared (IR) LANs individual cell of IR LAN limited to single room IR light does not penetrate opaque walls spread spectrum LANs mostly operate in ISM (industrial, scientific, and medical) bands no Federal Communications Commission (FCC) licensing is required in USA Chap17:10

11 Infrared LANs constructed using infrared portion of spectrum strengths spectrum virtually unlimited hence high rates possible unregulated spectrum infrared shares some properties of visible light reflection covers room, walls isolate networks inexpensive and simple weaknesses background radiation, e.g. sunlight, indoor lighting power limited by concerns for eye safety and power consumption Chap17:11

12 Infrared LANs Transmission Techniques directed-beam IR point-to-point links range depends on power and focusing for indoor use can set up token ring LAN IR transceivers positioned so data circulates in ring omnidirectional single base station with line of sight to other stations acts as a multiport repeater other stations use directional beam to it diffused configuration stations focused / aimed at diffusely reflecting ceiling Chap17:12

13 Spread Spectrum LAN Configuration usually use multiple-cell arrangement adjacent cells use different center frequencies configurations: hub connected to wired LAN connect to stations on wired LAN and in other cells may do automatic handoff peer-to-peer no hub MAC algorithm such as CSMA used to control access for ad hoc LANs Chap17:13

14 Spread Spectrum LANs Transmission Issues licensing regulations differ between countries USA FCC allows in ISM band: spread spectrum (1W), very low power (0.5W) MHz (915-MHz band) GHz (2.4-GHz band) GHz (5.8-GHz band) 2.4 GHz also in Europe and Japan interference many devices around 900 MHz: cordless telephones, wireless microphones, and amateur radio fewer devices at 2.4 GHz; microwave oven little competition at 5.8 GHz Chap17:14

15 IEEE 802 Standards Standard IEEE IEEE a IEEE b IEEE c IEEE d IEEE e IEEE f IEEE g IEEE h IEEE i IEEE j IEEE k IEEE m IEEE n IEEE p IEEE r IEEE s IEEE ,2 IEEE u Scope Medium access control (MAC): One common MAC for WLAN applications Physical layer: Infrared at 1 and 2 Mbps Physical layer: 2.4-GHz FHSS at 1 and 2 Mbps Physical layer: 2.4-GHz DSSS at 1 and 2 Mbps Physical layer: 5-GHz OFDM at rates from 6 to 54 Mbps Physical layer: 2.4-GHz DSSS at 5.5 and 11 Mbps Bridge operation at MAC layer Physical layer: Extend operation of WLANs to new regulatory domains (countries) MAC: Enhance to improve quality of service and enhance security mechanisms Recommended practices for multivendor access point interoperability Physical layer: Extend b to data rates >20 Mbps Physical/MAC: Enhance IEEE a to add indoor and outdoor channel selection and to improve spectrum and transmit power management MAC: Enhance security and authentication mechanisms Physical: Enhance IEEE a to conform to Japanese requirements Radio resource measurement enhancements to provide interface to higher layers for radio and network measurements Maintenance of IEEE standard with technical and editorial corrections Physical/MAC: Enhancements to enable higher throughput Physical/MAC: Wireless access in vehicular environments Physical/MAC: Fast roaming (fast BSS transition) Physical/MAC: ESS mesh networking Recommended practice for the Evaluation of wireless performance Physical/MAC: Interworking with external networks Chap17:15

16 IEEE 802 Terminology Access point (AP) Basic service set (BSS) Coordination function Distribution system (DS) Extended service set (ESS) MAC protocol data unit (MPDU) MAC service data unit (MSDU) Station Any entity that has station functionality and provides access to the distribution system via the wireless medium for associated stations A set of stations controlled by a single coordination function The logical function that determines when a station operating within a BSS is permitted to transmit and may be able to receive PDUs A system used to interconnect a set of BSSs and integrated LANs to create an ESS A set of one or more interconnected BSSs and integrated LANs that appear as a single BSS to the LLC layer at any station associated with one of these BSSs The unit of data exchanged between two peer MAC entites using the services of the physical layer Information that is delivered as a unit between MAC users Any device that contains an IEEE conformant MAC and physical layer Chap17:16

17 IEEE Architecture Chap17:17

18 IEEE BSS basic service set (BSS) building block may be isolated may connect to backbone distribution system (DS) through access point (AP) BSS generally corresponds to cell DS can be switch, wired network, or wireless network have independent BSS (IBSS) with no AP Chap17:18

19 Extended Service Set (ESS) possible configurations: simplest is each station belongs to single BSS can have two BSSs overlap a station can participate in more than one BSS association between station and BSS dynamic ESS is two or more BSS interconnected by DS appears as single logical LAN to LLC Chap17:19

20 IEEE 802 Services Service Provider Used to support Association Distribution system MSDU delivery Authentication Station LAN access and security Deauthentication Station LAN access and security Dissassociation Distribution Integration Distribution system Distribution system Distribution system MSDU delivery MSDU delivery MSDU delivery MSDU delivery Station MSDU delivery Privacy Station LAN access and security Reassocation Distribution system MSDU delivery Chap17:20

21 Services - Message Distribution distribution service primary service used by stations to exchange MAC frames when frame must traverse DS if stations in same BSS, distribution service logically goes through single AP of that BSS integration service enables transfer of data between LAN station and one on an integrated 802.x LAN Chap17:21

22 Association Related Services DS requires info about stations within ESS provided by association-related services station must associate before communicating 3 mobility transition types: no transition - stationary or in single BSS BSS transition - between BSS in same ESS ESS transition: between BSS in different ESS Chap17:22

23 Association Related Services DS needs identity of destination statio stations must maintain association with AP within current BSS 3 services relate to this requirement: Association - establishes initial association between station and AP Reassociation - to transfer an association to another AP Disassociation - by station or AP Chap17:23

24 Medium Access Control MAC layer covers three functional areas reliable data delivery access control security Chap17:24

25 Reliable Data Delivery physical / MAC layers unreliable noise, interference, and other propagation effects result in loss of frames even with error-correction codes, frames may not successfully be received can be dealt with at a higher layer, e.g. TCP more efficient to deal with errors at MAC level includes frame exchange protocol station receiving frame returns acknowledgment (ACK) frame exchange treated as atomic unit if no ACK within short period of time, retransmit Chap17:25

26 Four Frame Exchange can use four-frame exchange for better reliability source issues a Request to Send (RTS) frame to dest destination responds with Clear to Send (CTS) after receiving CTS, source transmits data destination responds with ACK RTS alerts all stations within range of source that exchange is under way CTS alerts all stations within range of destination other stations don t transmit to avoid collision RTS/CTS exchange is required function of MAC but may be disabled Chap17:26

27 Media Access Control Chap17:27

28 Media Access Control Distributed Coordination Function (DCF) The fundamental access method for the MAC, known as Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). Shall be implemented in ALL stations and APs. Used within both ad hoc and infrastructure configurations. Chap17:28

29 Media Access Control Point Coordination Function (PCF) An alternative access method Shall be implemented on top of the DCF A point coordinator (polling master) is used to determine which station currently has the right to transmit Shall be built up from the DCF through the use of an access priority mechanism Chap17:29

30 Distributed Coordination Function DCF sublayer uses CSMA if station has frame to send it listens to medium if medium idle, station may transmit else waits until current transmission complete no collision detection since on wireless network DCF includes delays that act as a priority scheme Chap17:30

31 IEEE Medium Access Control Logic Chap17:31

32 Priority IFS Values SIFS (short IFS) for all immediate response actions (see later) PIFS (point coordination function IFS) used by the centralized controller in PCF scheme when issuing polls DIFS (distributed coordination function IFS) used as minimum delay for asynchronous frames contending for access Chap17:32

33 SIFS Use SIFS gives highest priority over stations waiting PIFS or DIFS time SIFS used in following circumstances: Acknowledgment (ACK) station responds with ACK after waiting SIFS gap for efficient collision detect & multi-frame transmission Clear to Send (CTS) station ensures data frame gets through by issuing RTS and waits for CTS response from destination Poll response see Point coordination Function (PCF) discussion next Chap17:33

34 PIFS and DIFS Use PIFS used by centralized controller for issuing polls has precedence over normal contention traffic but not SIFS DIFS used for all ordinary asynchronous traffic Chap17:34

35 IEEE MAC Timing Basic Access Method Chap17:35

36 Distribution coordination function CSMA Carrier sense Medium Access Hidden Terminal Problem A hears B C hears B B hears A and C A B C A B C Chap17:36

37 A B C Station A can communicate only with B. Station B can communicate with stations A and C. Station C can communicate only with B. The frame from A to B can be corrupted by a transmission initiated by station C. The station C may not know the ongoing transmission from A to B. Chap17:37

38 Solution RTS-CTS exchange: RTS = request to send CTS = clear to send problem: high overhead for short frames RTS A B C D CTS CTS A B C D data A B C D Chap17:38

39 Wireless LAN CSMA/CA A B C A RTS B CTS DATA ACK Chap17:39

40 Wireless LAN CSMA/CA (Collision Avoidance) Node A first sends Request To Send(RTS) packet indicating when and how much data it would like to send Node B sends back a Clear To Send (CTS) packet with the amount of data and the time of transmission back to node A Expose Terminal Problem Chap17:40

41 Wireless LAN Expose Terminal Problem A B C Chap17:41

42 RTS / CTS (1/4) Contain a Duration/ID field Defines the period of time that the medium is to be reserved to transmit the actual data frame and the returning ACK frame A virtual carrier-sense mechanism is referred to as the Network Allocation Vector (NAV) maintains a prediction of future traffic on the medium based on duration information that is announced in RTS/CTS frame prior to the actual exchange of data The carrier-sense mechanism combines the NAV state and the STA s transmitter status with physical carrier sense to determine the busy/idle state of the medium Chap17:42

43 RTS / CTS (2/4) Carrier Sense shall be performed through two ways: physical carrier sensing: provided by the PHY virtual carrier sensing: provided by MAC by sending medium reservation through RTS and CTS frames duration field in these frames The use of RTS/CTS is under control of RTS_Threshold. A NAV (Network Allocation Vector) is calculated to estimate the amount of medium busy time in the future. Chap17:43

44 RTS / CTS (3/4) RTS Frame MAC Header CTS Frame MAC Header Frame Control Duration RA TA FCS Frame Control Duration RA FCS RTS (request-to-send) Frame RA: the addr. of the STA that is the intended immediate recipient of the pending directed data or management frame TA: the addr. of the STA transmitting the RTS frame Duration: T(pkt.) + T(CTS) + T(ACK) + 3 * SIFS CTS (clear-to-send) Frame RA: is taken from the TA field of the RTS frame. Duration: T(pkt.) + T(ACK) + 2 * SIFS Chap17:44

45 RTS / CTS (4/4) IEEE only supports RTS-CTS in an optional basis: only stations wishing to use this mechanism will do so but stations need to be able to respond appropriately in reception Cannot used for MPDUs with broadcast and multicast address Chap17:45

46 Example of Backoff Intervals (2) (3) Backoff=2 DIFS DIFS Backoff=9 DIFS Backoff=4 DIFS (5) Station 1 busy Packet arrival at MAC Station 2 Station 3 Station 4 (1) busy Backoff=5 Backoff=7 busy Backoff=2 (4) busy (1) After packet arrival at MAC, station 3 senses medium free for DIFS, so it starts transmission immediately (without backoff interval). (2) For station 1,2, and 4, their DIFS intervals are interrupted by station 3. Thus, backoff intervals for station 1,2, and 4, are generated randomly (i.e. 9,5, and 7, respectively). (3) After transmission of station 2, the remaining backoff interval of station 1 is (9-5)=4. (4) After transmission of station 2, the remaining backoff interval of station 4 is (7-5)=2. (5) After transmission of station 4, the remaining backoff interval of station 1 is (4-2)=2. Chap17:46

47 Point Coordination Function (PCF) alternative access method implemented on top of DCF polling by centralized polling master (point coordinator) uses PIFS when issuing polls point coordinator polls in round-robin to stations configured for polling when poll issued, polled station may respond using SIFS if point coordinator receives response, it issues another poll using PIFS if no response during expected turnaround time, coordinator issues poll coordinator could lock out async traffic by issuing polls have a superframe interval defined Chap17:47

48 PCF Superframe Timing Chap17:48

49 Point Coordination Frame TBTT Transfer Contention-free period (CFP) repetition interval PIFS SIFS SIFS SIFS SIFS SIFS B D1+ D1+ACK Poll +Poll U1+ ACK U2+ ACK CF End Reset NAV Contention period NAV CF_Max_duration TBTT: Target beacon transmission time D1, D2: frames sent by point coordinator U1, U2: frames sent by polled station B: beacon frame (sent by AP) CFP repetition interval (CFP_Rate) determines the frequency with which the PCF occurs. The PCF is required to coexist with the DCF. Chap17:49

50 IEEE MAC Frame Format Frame Control MAC Header 位元組 Duration/ ID Addr 1 Addr 2 Addr 3 Sequence Control Addr 4 資料 FCS Frame Control Protocol Version Type Subtype To DS From DS More Flag Retry Power Mang. More Data WEP Rsvd 位元 Chap17:50

51 IEEE MAC Frame Format Frame control Duration/ ID Address 1 Address 2 Address 3 Sequence control Address 4 Frame body FCS (CRC) Protocol version Type Subtype To DS From DS More frag Retry Pwr mgt More data WEP order 0, for Current version of the std. 00:mgt 01:control 10:data 11:rsvd 0, last frag. of the data or mgt. frame. Control frames are not fraged. 1, the frame is a retransmission. 0, the station is in active mode. 1, the station will enter pwr mgt mode. (no more communication). Must be the same value for a single frame exchange.(2-way or 4- way) 1, to indicate to a STA in power-save mode that more MSDUs, or MMPDUs are buffered for that STA at the AP. 1, the frame body is encrypted (only for data frames or mgt. frames of subtype authentication. ) Chap17:51

52 Power Save-Poll (PS-Poll) Control Frames request AP transmit buffered frame when in power-saving mode Request to Send (RTS) first frame in four-way frame exchange Clear to Send (CTS) second frame in four-way exchange Acknowledgment (ACK) Contention-Free (CF)-end announces end of contention-free period part of PCF CF-End + CF-Ack: acknowledges CF-end to end contention-free period and release stations from associated restrictions Chap17:52

53 Data Frames Data Carrying eight data frame subtypes, in two groups first four carry upper-level data Data simplest data frame, contention or contention-free use Data + CF-Ack carries data and acknowledges previously received data during contention-free period Data + CF-Poll used by point coordinator to deliver data & req send Data + CF-Ack + CF-Poll combines Data + CF-Ack and Data + CF-Poll Chap17:53

54 Data Frames Not Data Carrying other four data frames do not carry user data Null Function carries no data, polls, or acknowledgments carries power mgmt bit in frame control field to AP indicates station is changing to low-power state other three frames (CF-Ack, CF-Poll, CF-Ack + CF-Poll) same as corresponding frame in preceding list but without data Chap17:54

55 Management Frames used to manage communications between stations and Aps such as management of associations requests, response, reassociation, dissociation, and authentication Chap17:55

56 Physical Layer Available bandwidth Unlicensed frequency of operation Number of nonoverlapping channels Data rate per channel a b g 83.5 MHz 300 MHz 83.5 MHz 83.5 MHz GHz DSSS, FHSS 3 (indoor/outdoor) 1, 2 Mbps GHz OFDM GHz OFDM 4 indoor 4 (indoor/outdoor) 4 outdoor 6, 9, 12, 18, 24, 36, 48, 54 Mbps GHz DSSS 3 (indoor/outdoor) 1, 2, 5.5, 11 Mbps Compatibility Wi-Fi5 Wi-Fi GHz DSSS, OFDM 3 (indoor/outdoor) 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbps Wi-Fi at 11 Mbps and below Chap17:56

57 Original Physical Layer - DSSS Direct-sequence spread spectrum (DSSS) 2.4 GHz ISM band at 1 Mbps and 2 Mbps up to seven channels, each 1 Mbps or 2 Mbps, can be used depends on bandwidth allocated by various national regulations 13 in most European countries one in Japan each channel bandwidth 5 MHz encoding scheme DBPSK for 1-Mbps and DQPSK for 2-Mbps using an 11-chip Barker seq Chap17:57

58 Original Physical Layer - FHSS Frequency-hopping spread spectrum 2.4 GHz ISM band at 1 Mbps and 2 Mbps 23 channels in Japan 70 channels in USA signal hopping between multiple channels based on a pseudonoise sequence 1-MHz channels are used hopping scheme adjustable two-level Gaussian FSK modulation for 1 Mbps four-level GFSK modulation used for 2 Mbps Chap17:58

59 Original Physical Layer Infrared omnidirectional range up to 20 m 1 Mbps uses 16-PPM (pulse position modulation) 4 data bit group mapped to one of 16-PPM symbols each symbol a string of 16 bits each 16-bit string has fifteen 0s and one binary 1 2-Mbps has each group of 2 data bits is mapped into one of four 4-bit sequences each sequence consists of three 0s and one binary 1 intensity modulation is used for transmission Chap17:59

60 802.11b extension of DS-SS scheme with data rates of 5.5 and 11 Mbps chipping rate 11 MHz same as original DS-SS scheme Complementary Code Keying (CCK) modulation gives higher data rate with same bandwidth & chipping rate also Packet Binary Convolutional Coding (PBCC) for future higher rate use Chap17:60

61 802.11g higher-speed extension to b operates in 2.4GHz band compatible with b devices combines physical layer encoding techniques used in and b to provide service at a variety of data rates ERP-OFDM for 6, 9, 12, 18, 24, 36, 48, 54Mbps rates ERP-PBCC for 22 & 33Mbps rates Chap17:61

62 Data Rate vs Distance (m) Data Rate (Mbps) b a g (b)/6(a/g) (b)/12(a/g) Chap17:62

63 Access and Privacy Services - Authentication authentication used to establish station identity wired LANs assume physical connection gives authority to use LAN not a valid assumption for wireless LANs supports several authentication schemes does not mandate any particular scheme from relatively insecure handshaking to public-key encryption requires mutually acceptable, successful authentication before association Chap17:63

64 Access and Privacy Services Deauthentication & Privacy Deauthentication invoked whenever an existing authentication is to be terminated Privacy used to prevent messages being read by others allows optional use of encryption original WEP security features were weak subsequently i and WPA alternatives evolved giving better security Chap17:64

65 Summary wireless LAN alternatives IEEE architecture and services Medium Access Control Physical Layers , a, b, g Chap17:65

Overview of Wireless LANs

Overview of Wireless LANs Wireless LANs Chapter 17 CS420/520 Axel Krings Page 1 Overview of Wireless LANs use wireless transmission medium issues of high prices, low data rates, occupational safety concerns, & licensing requirements

More information

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview Wireless LANs CSE 3213 Fall 2011 4 November 2011 Overview 2 1 Infrastructure Wireless LAN 3 Applications of Wireless LANs Key application areas: LAN extension cross-building interconnect nomadic access

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

Overview Computer Networks. Single Cell Wireless LAN Configuration. Applications - LAN Extension. Applications Cross-Building Interconnect

Overview Computer Networks. Single Cell Wireless LAN Configuration. Applications - LAN Extension. Applications Cross-Building Interconnect 168 430 Computer Networks Chapter 17 Wireless LANs Overview A wireless LAN uses wireless transmission medium Used to have high prices, low data rates, occupational safety concerns, and licensing requirements

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks 802.11 Wireless LAN CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Wireless Data Communications Wireless communications compelling

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (11 th Week) Wireless LANs 11.Outline Overview IEEE 802.11 Architecture and Services IEEE 802.11 Medium Access Control

More information

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Lecture 4: Wireless LANs and IEEE 802.11 Part II This lecture continues the study of wireless LANs by looking at IEEE 802.11. I. 802.11

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) IEEE 802.11 Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Contents Overview of IEEE 802.11 Frame formats MAC frame PHY frame IEEE 802.11 IEEE 802.11b IEEE

More information

Computer Networks. Wireless LANs

Computer Networks. Wireless LANs Computer Networks Wireless LANs Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 Personal wireless nw WPAN 802.15 WiFi 802.11a 802.11b 802.11h 802.11i/e/

More information

Functions of physical layer:

Functions of physical layer: Chapter 14 Functions of physical layer: Encoding/decoding of signals Preamble generation/removal (for synchronization) Bit transmission/reception Includes specification of the transmission medium Functions

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

MSIT 413: Wireless Technologies Week 8

MSIT 413: Wireless Technologies Week 8 MSIT 413: Wireless Technologies Week 8 Michael L. Honig Department of EECS Northwestern University November 2017 The Multiple Access Problem How can multiple mobiles access (communicate with) the same

More information

Local Area Networks. Lecture 17 Fall Token Ring and FDDI

Local Area Networks. Lecture 17 Fall Token Ring and FDDI Local Area Networks Lecture 17 Fall 2010 Token Ring and FDDI IEEE 802.5 Ring LAN Unidirectional ring network 4 Mbps and 16 Mbps on twisted pair Differential Manchester line coding Token passing protocol

More information

Data Communications. Data Link Layer Protocols Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless

More information

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du Chapter 6 Wireless and Mobile Networks Csci 4211 David H.C. Du Wireless LAN IEEE 802.11 a, b, g IEEE 802.15 Buletooth Hidden Terminal Effect Hidden Terminal Problem Hidden terminals A, C cannot hear each

More information

WIRELESS LANS. By: M. Habibullah Pagarkar Mandar Gori Rajesh Jaiswal

WIRELESS LANS. By: M. Habibullah Pagarkar Mandar Gori Rajesh Jaiswal WIRELESS LANS By: M. Habibullah Pagarkar Mandar Gori Rajesh Jaiswal Introduction Why wireless? World will become fully mobile Increase in wireless devices usage Wireless will succeed; integrates into many

More information

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi Overview 15-441 15-441: Computer Networking 15-641 Lecture 21: Wireless Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15-441-f17 Link layer challenges and WiFi WiFi Basic WiFi design Some

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

Wireless Local Area Networks. Networks: Wireless LANs 1

Wireless Local Area Networks. Networks: Wireless LANs 1 Wireless Local Area Networks Networks: Wireless LANs 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application

More information

Mobile & Wireless Networking. Lecture 7: Wireless LAN

Mobile & Wireless Networking. Lecture 7: Wireless LAN 192620010 Mobile & Wireless Networking Lecture 7: Wireless LAN [Schiller, Section 7.3] [Reader, Part 6] [Optional: "IEEE 802.11n Development: History, Process, and Technology", Perahia, IEEE Communications

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

IEEE WLANs (WiFi) Part II/III System Overview and MAC Layer

IEEE WLANs (WiFi) Part II/III System Overview and MAC Layer IEEE 802.11 WLANs (WiFi) Part II/III System Overview and MAC Layer Design goals for wireless LANs (WLANs) Global, seamless operation Low power for battery use No special permissions or licenses needed

More information

IEEE MAC Sublayer (Based on IEEE )

IEEE MAC Sublayer (Based on IEEE ) IEEE 802.11 MAC Sublayer (Based on IEEE 802.11-1999) Wireless Networking Sunghyun Choi, Associate Professor Multimedia & Wireless Networking Lab. (MWNL) School of Electrical Engineering Seoul National

More information

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4.

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4. Topics for Today More on Ethernet Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet Wireless LANs Readings 4.3 to 4.4 1 Original Ethernet Wiring Heavy coaxial cable, called thicknet,

More information

Optional Point Coordination Function (PCF)

Optional Point Coordination Function (PCF) Optional Point Coordination Function (PCF) Time Bounded / Async Contention Free Service PCF Optional DCF (CSMA/CA ) Async Contention Service MAC PHY Contention Free Service uses Point Coordination Function

More information

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices

More information

Guide to Wireless Communications, Third Edition. Objectives

Guide to Wireless Communications, Third Edition. Objectives Guide to Wireless Communications, Third Edition Chapter 7 Low-Speed Wireless Local Area Networks Objectives Describe how WLANs are used List the components and modes of a WLAN Describe how an RF WLAN works

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

Wireless and Mobile Networks 7-2

Wireless and Mobile Networks 7-2 Wireless and Mobile Networks EECS3214 2018-03-26 7-1 Ch. 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected

More information

Investigation of WLAN

Investigation of WLAN Investigation of WLAN Table of Contents Table of Contents...1 ABBREVIATIONS...II 1 Introduction...3 2 IEEE 802.11...3 2.1 Architecture...3 2.2 MAC layer...4 2.3 PHY layer...9 2.4 Mobility in IEEE 802.11...12

More information

WLAN Technology: LAN: a review WLAN: applications & key parameters. protocol architectures

WLAN Technology: LAN: a review WLAN: applications & key parameters. protocol architectures WLAN Technology: LAN: a review WLAN: applications & key parameters IEEE 802.11 protocol architectures LOCAL AREA NETWORKS LAN ROUTER INTERNET WEB SERVER RAM Ethernet Processor RAM ROM A C NIC with unique

More information

Introduction to IEEE

Introduction to IEEE Introduction to IEEE 802.11 Characteristics of wireless LANs Advantages very flexible within the reception area Ad hoc networks without previous planning possible (almost) no wiring difficulties more robust

More information

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

standard. Acknowledgement: Slides borrowed from Richard Y. Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data rate applications Ability to

More information

Wireless# Guide to Wireless Communications. Objectives

Wireless# Guide to Wireless Communications. Objectives Wireless# Guide to Wireless Communications Chapter 7 Low-Speed Wireless Local Area Networks Objectives Describe how WLANs are used List the components and modes of a WLAN Describe how an RF WLAN works

More information

Last Lecture: Data Link Layer

Last Lecture: Data Link Layer Last Lecture: Data Link Layer 1. Design goals and issues 2. (More on) Error Control and Detection 3. Multiple Access Control (MAC) 4. Ethernet, LAN Addresses and ARP 5. Hubs, Bridges, Switches 6. Wireless

More information

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer 1 Wireless Local Area Networks (WLANs) The proliferation of laptop computers and other mobile devices (PDAs and cell phones)

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

Wireless and Mobile Networks

Wireless and Mobile Networks Wireless and Mobile Networks Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-11/

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 7.1 Comparison: infrastructure vs.

More information

Wireless Communication and Networking CMPT 371

Wireless Communication and Networking CMPT 371 Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop

More information

Nomadic Communications WLAN MAC Fundamentals

Nomadic Communications WLAN MAC Fundamentals Nomadic Communications WLAN 802.11 MAC Fundamentals Renato Lo Cigno ANS Group locigno@disi.unitn.it http://disi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications Copyright Quest opera è

More information

Multiple Access in Cellular and Systems

Multiple Access in Cellular and Systems Multiple Access in Cellular and 802.11 Systems 1 GSM The total bandwidth is divided into many narrowband channels. (200 khz in GSM) Users are given time slots in a narrowband channel (8 users) A channel

More information

Wireless LAN -Architecture

Wireless LAN -Architecture Wireless LAN -Architecture IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which covers the physical and data link layers. Basic Service Set (BSS) Access Point (AP) Distribution

More information

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1 CSMC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Fall 2018 CMSC417 Set 1 1 The Medium Access Control Sublayer November 18 Nov 6, 2018 2 Wireless Networking Technologies November 18

More information

Architecture. Copyright :I1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change

Architecture. Copyright :I1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change 802.11 Architecture Copyright :I1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change What is unique about wireless? Difficult media - interference and noise -

More information

WLAN (802.11) Nomadic Communications. Renato Lo Cigno - Tel: Dipartimento di Ingegneria e Scienza dell Informazione

WLAN (802.11) Nomadic Communications. Renato Lo Cigno - Tel: Dipartimento di Ingegneria e Scienza dell Informazione Nomadic Communications WLAN (802.11) Renato Lo Cigno LoCigno@disi.unitn.it - Tel: 2026 Dipartimento di Ingegneria e Scienza dell Informazione Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications

More information

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless CSCD 433 Network Programming Fall 2016 Lecture 7 Ethernet and Wireless 802.11 1 Topics 802 Standard MAC and LLC Sublayers Review of MAC in Ethernet MAC in 802.11 Wireless 2 IEEE Standards In 1985, Computer

More information

IEEE Wireless LANs

IEEE Wireless LANs Unit 11 IEEE 802.11 Wireless LANs Shyam Parekh IEEE 802.11 Wireless LANs References Standards Basics Physical Layer 802.11b 802.11a MAC Framing Details Management PCF QoS (802.11e) Security Take Away Points

More information

Overview. Wireless networks basics IEEE (Wi-Fi) a/b/g/n ad Hoc MAC protocols ad Hoc routing DSR AODV

Overview. Wireless networks basics IEEE (Wi-Fi) a/b/g/n ad Hoc MAC protocols ad Hoc routing DSR AODV Wireless networks 1 Overview Wireless networks basics IEEE 802.11 (Wi-Fi) a/b/g/n ad Hoc MAC protocols ad Hoc routing DSR AODV 2 Wireless Networks Autonomous systems of mobile hosts connected by wireless

More information

Shared Access Networks Wireless. 1/27/14 CS mywireless 1

Shared Access Networks Wireless. 1/27/14 CS mywireless 1 Shared Access Networks Wireless 1 Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected devices equals

More information

3.1. Introduction to WLAN IEEE

3.1. Introduction to WLAN IEEE 3.1. Introduction to WLAN IEEE 802.11 WCOM, WLAN, 1 References [1] J. Schiller, Mobile Communications, 2nd Ed., Pearson, 2003. [2] Martin Sauter, "From GSM to LTE", chapter 6, Wiley, 2011. [3] wiki to

More information

Wireless Communication and Networking CMPT 371

Wireless Communication and Networking CMPT 371 Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop

More information

Chapter 3.1 Acknowledgment:

Chapter 3.1 Acknowledgment: Chapter 3.1 Acknowledgment: This material is based on the slides formatted by Dr Sunilkumar S. manvi and Dr Mahabaleshwar S. Kakkasageri, the authors of the textbook: Wireless and Mobile Networks, concepts

More information

Page 1. Wireless LANs: Design Requirements. Evolution. EEC173B/ECS152C, Winter Wireless LANs

Page 1. Wireless LANs: Design Requirements. Evolution. EEC173B/ECS152C, Winter Wireless LANs EEC173B/ECS152C, Winter 2006 Wireless LANs Evolution of Technology & Standards IEEE 802.11 Design Choices Architecture & Protocols PHY layer MAC layer design Acknowledgment: Selected slides from Prof.

More information

IEEE WLAN (802.11) Copyright. Nomadic Communications

IEEE WLAN (802.11) Copyright. Nomadic Communications Nomadic Communications WLAN (802.11) Renato Lo Cigno LoCigno@disi.unitn.it - Tel: 2026 Dipartimento di Ingegneria e Scienza dell Informazione Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 6: Wireless and Mobile Networks 6

More information

Wireless Local Area Networks (WLANs) Part I

Wireless Local Area Networks (WLANs) Part I Wireless Local Area Networks (WLANs) Part I Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Actual4Test. Actual4test - actual test exam dumps-pass for IT exams

Actual4Test.  Actual4test - actual test exam dumps-pass for IT exams Actual4Test http://www.actual4test.com Actual4test - actual test exam dumps-pass for IT exams Exam : PW0-205 Title : Certified wireless analusis professional(cwap) Vendors : CWNP Version : DEMO Get Latest

More information

Wireless Communications

Wireless Communications 4. Medium Access Control Sublayer DIN/CTC/UEM 2018 Why do we need MAC for? Medium Access Control (MAC) Shared medium instead of point-to-point link MAC sublayer controls access to shared medium Examples:

More information

Outline. CS5984 Mobile Computing. IEEE 802 Architecture 1/7. IEEE 802 Architecture 2/7. IEEE 802 Architecture 3/7. Dr. Ayman Abdel-Hamid, CS5984

Outline. CS5984 Mobile Computing. IEEE 802 Architecture 1/7. IEEE 802 Architecture 2/7. IEEE 802 Architecture 3/7. Dr. Ayman Abdel-Hamid, CS5984 CS5984 Mobile Computing Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Outline IEEE 82 Architecture IEEE 82. Wireless LANs Based on Chapter 4 in Wireless Communications and Networks, William

More information

02/21/08 TDC Branch Offices. Headquarters SOHO. Hot Spots. Home. Wireless LAN. Customer Sites. Convention Centers. Hotel

02/21/08 TDC Branch Offices. Headquarters SOHO. Hot Spots. Home. Wireless LAN. Customer Sites. Convention Centers. Hotel TDC 363 Introductions to LANs Lecture 7 Wireless LAN 1 Outline WLAN Markets and Business Cases WLAN Standards WLAN Physical Layer WLAN MAC Layer WLAN Security WLAN Design and Deployment 2 The Mobile Environment

More information

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross Wireless Networks CSE 3461: Introduction to Computer Networking Reading: 6.1 6.3, Kurose and Ross 1 Wireless Networks Background: Number of wireless (mobile) phone subscribers now exceeds number of wired

More information

IEEE Wireless LANs Part I: Basics

IEEE Wireless LANs Part I: Basics IEEE 802.11 Wireless LANs Part I: Basics Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this

More information

Page 1. Outline : Wireless Networks Lecture 11: MAC. Standardization of Wireless Networks. History. Frequency Bands

Page 1. Outline : Wireless Networks Lecture 11: MAC. Standardization of Wireless Networks. History. Frequency Bands Outline 18-759 : Wireless s Lecture 11: 80.11 Peter Steenkiste Dina Papagiannaki Spring Semester 009 http://www.cs.cmu.edu/~prs/wireless09/ Peter A. Steenkiste, CMU 1 80 protocol overview Wireless LANs

More information

Unit 7 Media Access Control (MAC)

Unit 7 Media Access Control (MAC) Unit 7 Media Access Control (MAC) 1 Internet Model 2 Sublayers of Data Link Layer Logical link control (LLC) Flow control Error control Media access control (MAC) access control 3 Categorization of MAC

More information

CHAPTER 11 WIRELESS LAN TECHNOLOGY AND THE IEEE WIRELESS LAN STANDARD

CHAPTER 11 WIRELESS LAN TECHNOLOGY AND THE IEEE WIRELESS LAN STANDARD CHAPTER 11 WIRELESS LAN TECHNOLOGY AND THE IEEE 802.11 WIRELESS LAN STANDARD These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach Topic 2b Wireless MAC Chapter 7 Wireless and Mobile Networks Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 7-1 Ch. 7: Background: # wireless

More information

Data Communication & Networks G Session 5 - Main Theme Wireless Networks. Dr. Jean-Claude Franchitti

Data Communication & Networks G Session 5 - Main Theme Wireless Networks. Dr. Jean-Claude Franchitti Data Communication & Networks G22.2262-001 Session 5 - Main Theme Wireless Networks Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences

More information

Chapter 7: Wireless LANs

Chapter 7: Wireless LANs Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy

More information

Wireless Communication Session 4 Wi-Fi IEEE standard

Wireless Communication Session 4 Wi-Fi IEEE standard Wireless Communication Session 4 Wi-Fi IEEE802.11 standard M. Daneshvar Farzanegan Soourosh.blogfa.com smdanesh@yahoo.com 1 Reminder on frequencies and wavelenghts twisted pair coax cable optical transmission

More information

Introduction to Wireless LAN

Introduction to Wireless LAN Introduction to Wireless LAN Po-Ning Chen, Professor Depart. Of Communications Engineering National Chiao-Tung University 1 Topologies of Wireless o Infrastructure versus ad hoc Infrastructure Portable-to-fixed

More information

Wireless LANs. Outline. Outline II. Benefits Applications Technologies Issues Configurations Overview of Standard

Wireless LANs. Outline. Outline II. Benefits Applications Technologies Issues Configurations Overview of Standard Wireless LANs Outline Benefits Applications Technologies Issues Configurations Overview of 802.11 Standard Dr. Michael S. Boykin Spring 02-2 Local Area Networks 2 Outline II MAC layer protocols PHY layer

More information

Wireless Protocols. Training materials for wireless trainers

Wireless Protocols. Training materials for wireless trainers Wireless Protocols Training materials for wireless trainers Goals The goal of this lecture is to introduce: IEEE wireless protocols coverage 802.11 radio protocols terminology WiFi modes of operation details

More information

IEEE Technical Tutorial. Introduction. IEEE Architecture

IEEE Technical Tutorial. Introduction. IEEE Architecture IEEE 802.11 Technical Tutorial Introduction The purpose of this document is to give technical readers a basic overview of the new 802.11 Standard, enabling them to understand the basic concepts, principle

More information

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Local Area Networks (WLANs) Part I Almost all wireless LANs now are IEEE 802.11

More information

Lesson 2-3: The IEEE x MAC Layer

Lesson 2-3: The IEEE x MAC Layer Module 2: Establishing Wireless Connectivity Lesson 2-3: The IEEE 802.11x MAC Layer Lesson Overview This lesson describes basic IEEE 802.11x MAC operation, beginning with an explanation of contention schemes

More information

Wireless Local Area Network (IEEE )

Wireless Local Area Network (IEEE ) Wireless Local Area Network (IEEE 802.11) -IEEE 802.11 Specifies a single Medium Access Control (MAC) sublayer and 3 Physical Layer Specifications. Stations can operate in two configurations : Ad-hoc mode

More information

Chapter 7: Wireless LANs

Chapter 7: Wireless LANs Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy

More information

CSC 4900 Computer Networks: Wireless Networks

CSC 4900 Computer Networks: Wireless Networks CSC 4900 Computer Networks: Wireless Networks Professor Henry Carter Fall 2017 Last Time Mobile applications are taking off! What about current platforms is fueling this? How are an application s permission

More information

Vehicle Networks. Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless LAN Overview History IEEE 802.11-1997 MAC implementations PHY implementations

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 802.11 History and Standardization 802.11 Architectures and Layers 802.11 Frame Format and Addressing 802.11 Mac Layer (CSMA/CA) 2 Wifi 3 twisted pair

More information

Wireless Data Networking IEEE & Overview of IEEE b

Wireless Data Networking IEEE & Overview of IEEE b Wireless Data Networking IEEE 802.11 & Overview of IEEE 802.11b Dr. Arian Durresi The Ohio State University Columbus, OH 43210 durresi@cis.ohio-state.edu 1 Overview Wireless Application Market Wireless

More information

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018 WiFi Networks: IEEE 802.11b Wireless LANs Carey Williamson Department of Computer Science University of Calgary Winter 2018 Background (1 of 2) In many respects, the IEEE 802.11b wireless LAN (WLAN) standard

More information

Advanced Computer Networks WLAN

Advanced Computer Networks WLAN Advanced Computer Networks 263 3501 00 WLAN Patrick Stuedi Spring Semester 2014 1 Oriana Riva, Department of Computer Science ETH Zürich Last week Outlook Medium Access COPE Short Range Wireless Networks:

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 7.1 Characteristics of Wireless LANs

More information

Module 6: Wireless Mobile Networks

Module 6: Wireless Mobile Networks Module 6: Wireless Mobile Networks SMD123 Computer Communications Kaustubh Phanse Department of Computer Science and Electrical Engineering Luleå University of Technology Lecture Objectives Wireless links

More information

Hands-On Exercises: IEEE Standard

Hands-On Exercises: IEEE Standard Hands-On Exercises: IEEE 802.11 Standard Mohammad Hossein Manshaei and Jean-Pierre Hubaux {hossein.manshaei,jean-pierre.hubaux}@epfl.ch Laboratory for Computer Communications and Applications (LCA) March

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Wireless Links, WiFi, Cellular Internet Access, and Mobility Slides derived from those available on the Web site of the book Computer Networking, by Kurose

More information

Internet Protocol Stack

Internet Protocol Stack Internet Protocol Stack Application: supporting network applications FTP, SMTP, HTTP Transport: data transfer between processes TCP, UDP Network: routing of datagrams from source to destination IP, routing

More information

Wireless LAN. Access Point. Provides network connectivity over wireless media

Wireless LAN. Access Point. Provides network connectivity over wireless media LAN Technologies 802.11 Wireless LAN Network connectivity to the legacy wired LAN Access Point Desktop with PCI 802.11 LAN card Laptop with PCMCIA 802.11 LAN card Provides network connectivity over wireless

More information

Master thesis 60 credits

Master thesis 60 credits UNIVERSITY OF OSLO Department of informatics Capacity and performance study of IEEE 802.11e in WLANs and ad hoc networks Master thesis 60 credits Frank Roar Mjøberg 2. May 2007 Abstract Today, WLANs allow

More information

Introduction. Giuseppe Bianchi, Ilenia Tinnirello

Introduction. Giuseppe Bianchi, Ilenia Tinnirello IEEE 802.11 Wireless LANs Introduction WLAN History Ł Original goal: Deploy wireless Ethernet First generation proprietary solutions (end 80, begin 90) WaveLAN (AT&T)) HomeRF (Proxim) Abandoned by major

More information

Analysis of IEEE e for QoS Support in Wireless LANs

Analysis of IEEE e for QoS Support in Wireless LANs Analysis of IEEE 802.11e for QoS Support in Wireless LANs Stefan Mangold, Sunghyun Choi, Guido R. Hiertz, Ole Klein IEEE Wireless Communications, December 2003 Presented by Daeseon Park, Student No.2005-30231

More information

MAC in /20/06

MAC in /20/06 MAC in 802.11 2/20/06 MAC Multiple users share common medium. Important issues: Collision detection Delay Fairness Hidden terminals Synchronization Power management Roaming Use 802.11 as an example to

More information

Announcements / Wireless Networks and Applications Lecture 9: Wireless LANs Wireless. Regular Ethernet CSMA/CD.

Announcements / Wireless Networks and Applications Lecture 9: Wireless LANs Wireless. Regular Ethernet CSMA/CD. Announcements 18-452/18-750 Wireless Networks and Applications Lecture 9: Wireless LANs 802.11 Wireless Peter Steenkiste Homework 1 should be out by tomorrow Project 1 by Friday Schedule:» Thursday lecture

More information