ECE 333: Introduction to Communication Networks Fall 2001

Size: px
Start display at page:

Download "ECE 333: Introduction to Communication Networks Fall 2001"

Transcription

1 ECE : Introduction to Communication Networks Fall 00 Lecture : Routing and Addressing I Introduction to Routing/Addressing Lectures 9- described the main components of point-to-point networks, i.e. multiplexed transmission lines and switches or routers. These networks usually have a mesh topology with multiple paths between any two hosts. A routing algorithm determines the specific route that traffic takes through a network. For example, in datagram networks, the routing algorithm determines what information is the routing table at each node in the network. In the next few lectures, we will study problem of routing in more detail. Our focus will mainly be on packet switched data networks. Routing is one of the main functions of the network layer. Network layer protocols, such as routing, involve every node in the subnet. Protocols at lower layers are generally point-to-point, and protocols at higher layers, e.g. the transport layer, are end-to-end. The basic service the network layer provides the transport layer is the delivery of packets from the source to destination. As with the data link layer, the network layer can offer different variation of this service - for example it may be connection-oriented (as in virtual circuit networks) or connectionless. The network layer could try to ensure some level of reliability or guarantee some level of quality. For example, a circuit switched network provides user end-to-end delivery of data at a fixed rate and with known delay.

2 The network layer in ATM networks (see Lecture ) is called the ATM layer. The ATM layer provides a choice of several different services such as a constant rate, connection-oriented, low delay service and a variable-rate unreliable service. Different services are designed to be suitable for different applications, such as voice, data, etc. In TCP/IP, the IP layer serves as the network layer. It provides a connectionless, unreliable service to the transport layer. In other words, packets are delivered from source to destination but they may not arrive, or if they arrive, they are not guaranteed to be in order. In TCP/IP networks, any additional reliability needed by an application is addressed at the transport layer. A key trade-off between these two approaches is how much intelligence is put in the subnet and how much is put in the hosts. In TCP/IP the decision was to put as much burden on the host as possible; with ATM more burden is placed on the subnet. In either case, routing is addressed at the network layer. Routing We looked at routing when considering bridges and extended LANs in Lecture 9. For transparent bridges, routing was done by forming a spanning tree and sending all packets along this tree. In this case, the routing algorithm is the protocol the bridges use to exchange messages and find a spanning tree. A similar approach can be used in a WAN, but this is generally not a good idea. One reason is that with a spanning tree some links will be unused, while other links will be heavily loaded. In a large network, it is desirable to spread out the load among multiple links to reduce congestion and more efficiently use the network. The main characteristics desired from a routing algorithm include: Correctness - deliver packets to their correct destinations. Robustness - when nodes and/or links fail, the routing algorithm should be able to recover from this. Simplicity - the algorithm should be able to be implemented by many switches in a large network, and not require a large amount of overhead. Given the above characteristics, it would also be desirable to have an algorithm that finds the "best" paths between a source and destination and is "fair" to different sessions. However, concepts like "best" and "fair" can be interpreted in several different ways. 4

3 Routing Characteristics A variety of different routing algorithms have been proposed and used in networks. These algorithms can be classified in several ways. A routing algorithm is static if it uses predetermined routes that do not change over time. A dynamic routing algorithm bases the route assignment on the current network load, in this case route assignments may change with each session or with each packet. Routing algorithms may be centralized, where routes are calculated at one place and disseminated to all nodes, or distributed, in which case all routers exchange information and calculate routes locally. For example, the spanning tree algorithm used by transparent bridges is a dynamic, distributed algorithm. Most of the algorithms we will consider in the following are also of this type. Flooding A simple approach to routing is flooding. With flooding, upon receiving a packet each node forwards it over all links except the one from which it is received. Thus, every node on the network will eventually receive the packet (including the desired destination). One problem with flooding is how to make sure that packets do not circulate forever. This can be accomplished by several methods including:. Put a sequence number on each packet, and have each switch make sure it does not forward a packet more than once.. Put an age field in the packet header that is decreased every time a packet is forwarded, don t forward any packets once this field reaches zero.. Put an identifier for the links a packet has traversed in the packet header, don t forward a packet over a link more than once. An advantage of flooding is that no routing tables or topological knowledge needed at any switch, and little processing is required at each node. The disadvantage is that much unneeded traffic is generated - every packet will be sent over every link. Two places where flooding is used are () in some ad hoc wireless networks, where nodes are moving around to quickly for any other techniques to work, and () for forwarding control or topological information (e.g. in link state routing discussed later). 6

4 Shortest path routing Many routing algorithms are variants of shortest path algorithms. In such algorithms, each link is assigned a cost this could represent some quantity of interest such as distance or delay for that link. A shortest path algorithm then attempts to find the route between any pair of nodes that minimizes the sum of the link costs. To visualize such algorithms, consider a graph corresponding to the subnet as shown below. In this graph, the nodes represent routers and the arcs represent links. The number by each link is the cost of the link. In this figure, the shortest path between nodes and is through node 4 and has a total cost of + = To build routing tables we would like to find the shortest path from each node to all other nodes. Also, for dynamic routing, link costs will change with time and so may the shortest paths. A method is needed to efficiently calculate shortest paths. Two of the main approaches for calculating shortest paths are:. Distant vector routing - uses distributed Bellman-Ford algorithm.. Link state Routing uses Dijkstra s algorithm. Both of these can be implemented as distributed, dynamic routing algorithms. 8

5 Distance Vector Routing In distance vector routing, each router must maintain a table (vector) of its best-known distance (cost) to each destination as well as which link to use to get there. Each router is assumed to know the cost of the links that connect it directly to each of its neighbors. Routers then exchange their distance vectors locally, i.e. with their neighbors. They update their distance vectors based on these exchanges. The Bellman-Ford algorithm is used for this updating. In a graph two nodes are called neighbors if there is a link that directly connects them. 9 "Optimality principal" The basic idea behind the Bellman-Ford algorithm is the so-called "optimality principal". This states that if node A is on a shortest path from node I to J, then the segment of the path from A to J is also a shortest path from A to J. In the figure below, assume that the shortest path from I to J is through node A and then node X. Suppose that the optimality principal was not true and that the path A -Y- J is a shorter path from A to J than A -X- J. Then by taking the path from I to A followed by the path A-Y-J, must result in a shorter path from I to J than the path through X. This contradicts the assumption that the original path was the shortest. I X J A Y 0

6 Bellman-Ford Next we describe the Bellman-Ford algorithm. We describe the algorithm in the context of calculating the shortest path from all nodes in a network to a given destination node. A version of the algorithm would be implemented for each destination. For the given destination, let Dn(j) be the estimated distance from node j to the destination at time n. Let di,j be the distance from node i to j. Basic idea: Each neighbor j of node i sends Dn(i) to node i, then node i updates its estimate according to: D i) min ( d D ( )) n ( i, j n j j N(i) The quantities on the right-hand side of this expression are the distances to each neighbor, j plus the minimum distance from j to the destination. The port towards the neighbor j that attains the minimum is chosen as the port towards the destination. (Ties can be broken using any rule.) The algorithm is initialized in the following manner: Set D0(i) = for all nodes i, except the destination, d. Set D0(d) =0. From this initialization, it can be shown that above algorithm will terminate (no more changes will occur) in at most N steps where N is the number of nodes. (Provided there are no link failures, see count-to-infinity problem below) At termination each node knows the shortest path to the destination. The Bellman Ford algorithm can be shown to work asynchronously, where each node sends out its distance vector at arbitrary times.

7 Bellman - Ford Example 6 4 An example of the Bellman-Ford algorithm for the above network is given. Assume the destination, d = 6, so D 0 (6)=0 and D 0 (i)=, for all i 6. We consider a synchronous version of the algorithm, where all nodes send out there updates to all their neighbors at the same time. After the first cycle of updates, all nodes receive costs D 0 (i) from their neighbors. The only ones that are going to have non-infinite cost are the nodes link away from d=6. These are nodes and, they will receive D0(6) =0. Thus at node we have: D () min( 0,, ) and the next node on the shortest path for node becomes 6. Similarly, D () will be updated to. After the second cycle of updates, node will receive non-infinite costs from nodes and 6. Thus we will have: D () min( 0,,, ) The next node on its shortest path will be. 4

8 Bellman-Ford example The complete progress of the algorithm is shown in the table below. The notation used here is (next node on shortest path, distance to destination) Cycle 4 Initial (-,) (-,) (-,) (-,) (-,) (-,) (-,) (6,) (-,) (6,) (,0) (,8) (,) (,) (6,) (4,4) (4,) (,) (,) (6,) 4 (4,4) (4,) (,) (,) (6,) Thus the shortest path to node 6 from node is through node 4 and has distance 4. Note when the costs don't change after a cycle of the algorithm, the algorithm has terminated and found the shortest paths. Comments on Distance Vector routing: Distant vector routing was original routing protocol for ARPANET. It is the basis for the RIP (Routing Information Protocol) routing protocol used in the Internet. Variations of distance vector routing are used in some Appletalk and Cisco routers as well as in Novell s IPX, and DECnet. Two shortcomings of distance vector routing are: The convergence rate decreases as the size of network grows. The Count-to-infinity problem described next. 6

9 Count-to-infinity problem The Bellman-Ford algorithm can react very slowly to bad news such as a link failure. For example consider the network shown below, where each link has a cost of. Consider the shortest paths from each node to node 4 after running the Bellman-Ford Algorithm. These are listed below the nodes in the figure, using the same notation as above. 4 (,) (,) (4,) Now suppose that the link between nodes and 4 fails, in this case the distance between and 4 becomes. The progress of the algorithm after this failure is shown on the next page. The algorithm may take many iterations before it realizes the link has failed, this is called the count-to-infinity problem. 7 4 Before Failure (,) (,) (4,) After Failure (,) (,) (,) (,) (,4) (,) (,) (,4) (,) (,) (,6) (,) Several heuristic approaches have been proposed to help with this problem, one is called split horizon. With this variation, nodes do not forward their distance vector to the next node along their shortest path. For the above 8

10 example this speeds up the convergence, but other examples can be found where slow convergence is still an issue. 9

Routing. 4. Mar INF-3190: Switching and Routing

Routing. 4. Mar INF-3190: Switching and Routing Routing 4. Mar. 004 1 INF-3190: Switching and Routing Routing: Foundations! Task! To define the route of packets through the network! From the source! To the destination system! Routing algorithm! Defines

More information

Routing Algorithms. CS158a Chris Pollett Apr 4, 2007.

Routing Algorithms. CS158a Chris Pollett Apr 4, 2007. Routing Algorithms CS158a Chris Pollett Apr 4, 2007. Outline Routing Algorithms Adaptive/non-adaptive algorithms The Optimality Principle Shortest Path Routing Flooding Distance Vector Routing Routing

More information

Routing in packet-switching networks

Routing in packet-switching networks Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Lecture 5: Network Layer Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall, 2003. Contents The

More information

Chapter 12. Routing and Routing Protocols 12-1

Chapter 12. Routing and Routing Protocols 12-1 Chapter 12 Routing and Routing Protocols 12-1 Routing in Circuit Switched Network Many connections will need paths through more than one switch Need to find a route Efficiency Resilience Public telephone

More information

William Stallings Data and Computer Communications. Chapter 10 Packet Switching

William Stallings Data and Computer Communications. Chapter 10 Packet Switching William Stallings Data and Computer Communications Chapter 10 Packet Switching Principles Circuit switching designed for voice Resources dedicated to a particular call Much of the time a data connection

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 12 Routing

William Stallings Data and Computer Communications 7 th Edition. Chapter 12 Routing William Stallings Data and Computer Communications 7 th Edition Chapter 12 Routing Routing in Circuit Switched Network Many connections will need paths through more than one switch Need to find a route

More information

Chapter 5 (Week 9) The Network Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP BLM431 Computer Networks Dr.

Chapter 5 (Week 9) The Network Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP BLM431 Computer Networks Dr. Chapter 5 (Week 9) The Network Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP. 343-396 1 5.1. NETWORK LAYER DESIGN ISSUES 5.2. ROUTING ALGORITHMS 5.3. CONGESTION CONTROL ALGORITHMS 5.4.

More information

Lecture 4 Wide Area Networks - Routing

Lecture 4 Wide Area Networks - Routing DATA AND COMPUTER COMMUNICATIONS Lecture 4 Wide Area Networks - Routing Mei Yang Based on Lecture slides by William Stallings 1 ROUTING IN PACKET SWITCHED NETWORK key design issue for (packet) switched

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

Lecture (08, 09) Routing in Switched Networks

Lecture (08, 09) Routing in Switched Networks Agenda Lecture (08, 09) Routing in Switched Networks Dr. Ahmed ElShafee Routing protocols Fixed Flooding Random Adaptive ARPANET Routing Strategies ١ Dr. Ahmed ElShafee, ACU Fall 2011, Networks I ٢ Dr.

More information

ETSF05/ETSF10 Internet Protocols Routing on the Internet

ETSF05/ETSF10 Internet Protocols Routing on the Internet ETSF05/ETSF10 Internet Protocols Routing on the Internet 2014, (ETSF05 Part 2), Lecture 1.1 Jens Andersson Circuit switched routing 2014 11 05 ETSF05/ETSF10 Internet Protocols 2 Packet switched Routing

More information

5.2 Routing Algorithms

5.2 Routing Algorithms CEN445 Network Protocols and Algorithms Chapter 5 Network Layer 5. Routing Algorithms Dr. Mostafa Hassan Dahshan Department of Computer Engineering College of Computer and Information Sciences King Saud

More information

Network Layer: Routing

Network Layer: Routing Network Layer: Routing The Problem A B R 1 R 2 R 4 R 3 Goal: for each destination, compute next hop 1 Lecture 9 2 Basic Assumptions Trivial solution: Flooding Dynamic environment: links and routers unreliable:

More information

ETSF05/ETSF10 Internet Protocols. Routing on the Internet

ETSF05/ETSF10 Internet Protocols. Routing on the Internet ETSF05/ETSF10 Internet Protocols Routing on the Internet Circuit switched routing ETSF05/ETSF10 - Internet Protocols 2 Routing in Packet Switching Networks Key design issue for (packet) switched networks

More information

Routing in Switched Data Networks

Routing in Switched Data Networks in Switched Data Networks ITS323: Introduction to Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 23 May 2012 ITS323Y12S1L10, Steve/Courses/2012/s1/its323/lectures/routing.tex,

More information

Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1

Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1 Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 22-3 UNICAST ROUTING PROTOCOLS 22.2 A routing

More information

Module 8. Routing. Version 2 ECE, IIT Kharagpur

Module 8. Routing. Version 2 ECE, IIT Kharagpur Module 8 Routing Lesson 27 Routing II Objective To explain the concept of same popular routing protocols. 8.2.1 Routing Information Protocol (RIP) This protocol is used inside our autonomous system and

More information

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting Outline Routing Fundamentals of Computer Networks Guevara Noubir Introduction Broadcasting and Multicasting Shortest Path Unicast Routing Link Weights and Stability F2003, CSG150 Fundamentals of Computer

More information

(Refer Slide Time: 01:08 to 01:25min)

(Refer Slide Time: 01:08 to 01:25min) COMPUTER NETWORKS Prof. Sujoy Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture-27 RIP- Distance Vector Routing We have seen basic routing. Now we will

More information

Fairness Example: high priority for nearby stations Optimality Efficiency overhead

Fairness Example: high priority for nearby stations Optimality Efficiency overhead Routing Requirements: Correctness Simplicity Robustness Under localized failures and overloads Stability React too slow or too fast Fairness Example: high priority for nearby stations Optimality Efficiency

More information

Course 6. Internetworking Routing 1/33

Course 6. Internetworking Routing 1/33 Course 6 Internetworking Routing 1/33 Routing The main function of the network layer is routing packets from the source machine to the destination machine. Along the way, at least one intermediate node

More information

The Open System Interconnect model

The Open System Interconnect model The Open System Interconnect model Telecomunicazioni Undergraduate course in Electrical Engineering University of Rome La Sapienza Rome, Italy 2007-2008 1 Layered network design Data networks are usually

More information

Youki Kadobayashi NAIST

Youki Kadobayashi NAIST Information Network 1 Routing (1) Youki Kadobayashi NAIST 1 The Routing Problem! How do I get from source to destination?! Which path is best? In terms of:! Number of hops! Delay! Bandwidth! Policy constraints!

More information

ICMP, ARP, RARP, IGMP

ICMP, ARP, RARP, IGMP Internet Layer Lehrstuhl für Informatik 4 Raw division into three tasks: Data transfer over a global network Route decision at the sub-nodes Control of the network or transmission status Routing Protocols

More information

Routing. Information Networks p.1/35

Routing. Information Networks p.1/35 Routing Routing is done by the network layer protocol to guide packets through the communication subnet to their destinations The time when routing decisions are made depends on whether we are using virtual

More information

C13b: Routing Problem and Algorithms

C13b: Routing Problem and Algorithms CISC 7332X T6 C13b: Routing Problem and Algorithms Hui Chen Department of Computer & Information Science CUNY Brooklyn College 11/20/2018 CUNY Brooklyn College 1 Acknowledgements Some pictures used in

More information

Internetworking. different kinds of network technologies that can be interconnected by routers and other networking devices to create an internetwork

Internetworking. different kinds of network technologies that can be interconnected by routers and other networking devices to create an internetwork UNIT - II Internetworking An internetwork is a collection of individual networks, connected by intermediate networking devices, that functions as a single large network. different kinds of network technologies

More information

Intra-domain Routing

Intra-domain Routing Intra-domain Routing Outline Introduction to Routing Distance Vector Algorithm CS 640 1 Goal Build router forwarding tables in an internetwork using intra-domain routing protocols High level approach Distributed

More information

Routing Basics. What is Routing? Routing Components. Path Determination CHAPTER

Routing Basics. What is Routing? Routing Components. Path Determination CHAPTER CHAPTER 5 Routing Basics This chapter introduces the underlying concepts widely used in routing protocols Topics summarized here include routing protocol components and algorithms In addition, the role

More information

ECE 435 Network Engineering Lecture 11

ECE 435 Network Engineering Lecture 11 ECE 435 Network Engineering Lecture 11 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 11 October 2018 Midterm on Tues Announcements 1 HW#4 Review maine.edu created? What is a

More information

Telecommunication Protocols Laboratory Course. Lecture 3

Telecommunication Protocols Laboratory Course. Lecture 3 Telecommunication Protocols Laboratory Course Lecture 3 Course map Last time: we discussed protocols of the Medium Access Control (MAC) sub-layer Deal with broadcast channels and their (multi-party) protocols

More information

CSE 461 Routing. Routing. Focus: Distance-vector and link-state Shortest path routing Key properties of schemes

CSE 461 Routing. Routing. Focus: Distance-vector and link-state Shortest path routing Key properties of schemes CSE 46 Routing Routing Focus: How to find and set up paths through a network Distance-vector and link-state Shortest path routing Key properties of schemes Application Transport Network Link Physical Forwarding

More information

Routing, Routing Algorithms & Protocols

Routing, Routing Algorithms & Protocols Routing, Routing Algorithms & Protocols Computer Networks Lecture 6 http://goo.gl/pze5o8 Circuit-Switched and Packet-Switched WANs 2 Circuit-Switched Networks Older (evolved from telephone networks), a

More information

CS 457 Networking and the Internet. What is Routing. Forwarding versus Routing 9/27/16. Fall 2016 Indrajit Ray. A famous quotation from RFC 791

CS 457 Networking and the Internet. What is Routing. Forwarding versus Routing 9/27/16. Fall 2016 Indrajit Ray. A famous quotation from RFC 791 CS 457 Networking and the Internet Fall 2016 Indrajit Ray What is Routing A famous quotation from RFC 791 A name indicates what we seek An address indicates where it is A route indicates how we get there

More information

Data and Computer Communications. Chapter 12 Routing in Switched Networks

Data and Computer Communications. Chapter 12 Routing in Switched Networks Data and Computer Communications Chapter 1 Routing in Switched Networks Routing in Packet Switched Network Select route between end nodes Characteristics required: Correctness Simplicity Robustness Stability

More information

IP Routing. Bharat S. Chaudhari International Institute of Information Technology Pune, India

IP Routing. Bharat S. Chaudhari International Institute of Information Technology Pune, India IP Routing Bharat S. Chaudhari International Institute of Information Technology Pune, India June 21, 2005 Network Devices: Ø The networking and internetworking devices are divided in the following categories:

More information

VI. ROUTING. - "routing protocol" nodes exchange information to ensure consistent understanding of paths

VI. ROUTING. - routing protocol nodes exchange information to ensure consistent understanding of paths (a) General Concepts VI. ROUTING - "routing" determination of suitable (i.e., least cost) path from a source to every destination (i.e., which nodes/switches/routers are in path) - "routing protocol" nodes

More information

ECE 333: Introduction to Communication Networks Fall 2001

ECE 333: Introduction to Communication Networks Fall 2001 ECE 333: Introduction to Communication Networks Fall 00 Lecture 9: Switching and Multiplexing More on transparent bridges. Introduction to Switching and Multiplexing Transparent bridges continued: Last

More information

Alternate Routing Diagram

Alternate Routing Diagram 68 0 Computer Networks Chapter Routing Routing in Circuit Switched Network Many connections will need paths through more than one switch Need to find a route Efficiency Resilience Public telephone switches

More information

Course Routing Classification Properties Routing Protocols 1/39

Course Routing Classification Properties Routing Protocols 1/39 Course 8 3. Routing Classification Properties Routing Protocols 1/39 Routing Algorithms Types Static versus dynamic Single-path versus multipath Flat versus hierarchical Host-intelligent versus router-intelligent

More information

Redes de Computadores. Shortest Paths in Networks

Redes de Computadores. Shortest Paths in Networks Redes de Computadores Shortest Paths in Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto » What is a graph?» What is a spanning tree?» What is a shortest path tree?» How are

More information

Distance vector and RIP

Distance vector and RIP DD2490 p4 2008 Distance vector and RIP Olof Hagsand KTHNOC/NADA Literature RIP lab RFC 245: RIPv2. Sections 1 2 contains some introduction that can be useful to understand the context in which RIP is specified..1.4

More information

CHAPTER 9: PACKET SWITCHING N/W & CONGESTION CONTROL

CHAPTER 9: PACKET SWITCHING N/W & CONGESTION CONTROL CHAPTER 9: PACKET SWITCHING N/W & CONGESTION CONTROL Dr. Bhargavi Goswami, Associate Professor head, Department of Computer Science, Garden City College Bangalore. PACKET SWITCHED NETWORKS Transfer blocks

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

ECE 435 Network Engineering Lecture 11

ECE 435 Network Engineering Lecture 11 ECE 435 Network Engineering Lecture 11 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 5 October 2017 Announcements Back from Memsys. Related things: fast memories for network

More information

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network This Lecture BUS0 - Computer Facilities Network Management Switching networks Circuit switching Packet switching gram approach Virtual circuit approach Routing in switching networks Faculty of Information

More information

6.02 Fall 2014! Lecture #21. Failures in routing Routing loops Counting to infinity

6.02 Fall 2014! Lecture #21. Failures in routing Routing loops Counting to infinity 6.02 Fall 2014! Lecture #21 Failures in routing Routing loops Counting to infinity Unanswered questions (about packet-switched networks) How do nodes determine routes to every other node? Nodes determine

More information

Wide area networks: packet switching and congestion

Wide area networks: packet switching and congestion Wide area networks: packet switching and congestion Packet switching ATM and Frame Relay Congestion Circuit and Packet Switching Circuit switching designed for voice Resources dedicated to a particular

More information

BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS

BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS BLM696 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS Prof. Dr. Hasan Hüseyin BALIK (7 th Week) 7. Routing 7.Outline Routing in Packet-Switching Networks Examples: Routing in ARPANET Internet Routing Protocols

More information

Routing Strategies. Fixed Routing. Fixed Flooding Random Adaptive

Routing Strategies. Fixed Routing. Fixed Flooding Random Adaptive Routing Strategies Fixed Flooding Random Adaptive Fixed Routing Single permanent route for each source to destination pair Determine routes using a least cost algorithm Route fixed, at least until a change

More information

Revision of Previous Lectures

Revision of Previous Lectures Lecture 15 Overview Last Lecture Local area networking This Lecture Wide area networking 1 Source: chapters 8.1-8.3, 17.1, 18.1, 18.2 Next Lecture Wide area networking 2 Source: Chapter 20 COSC244 Lecture

More information

Youki Kadobayashi NAIST

Youki Kadobayashi NAIST Information Network 1 Routing (1) Image: Part of the entire Internet topology based on CAIDA dataset, using NAIST Internet viewer Youki Kadobayashi NAIST 1 The Routing Problem! How do I get from source

More information

CompSci 356: Computer Network Architectures. Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch & 3.2. Xiaowei Yang

CompSci 356: Computer Network Architectures. Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch & 3.2. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch 3.1.5 & 3.2 Xiaowei Yang xwy@cs.duke.edu Review Past lectures Single link networks Point-to-point,

More information

Routing in a network

Routing in a network Routing in a network Focus is small to medium size networks, not yet the Internet Overview Then Distance vector algorithm (RIP) Link state algorithm (OSPF) Talk about routing more generally E.g., cost

More information

What Is CCNA? p. 2 CCNA Exam Philosophy p. 4 What Cisco Says about CCNA p. 4 What We Can Infer from What Cisco States p. 5 Summary of the CCNA Exam

What Is CCNA? p. 2 CCNA Exam Philosophy p. 4 What Cisco Says about CCNA p. 4 What We Can Infer from What Cisco States p. 5 Summary of the CCNA Exam What Is CCNA? p. 2 CCNA Exam Philosophy p. 4 What Cisco Says about CCNA p. 4 What We Can Infer from What Cisco States p. 5 Summary of the CCNA Exam Philosophy p. 6 CCNA Exam Preparation Philosophy p. 7

More information

Computer Science 425 Distributed Systems CS 425 / ECE 428. Fall 2013

Computer Science 425 Distributed Systems CS 425 / ECE 428. Fall 2013 Computer Science 425 Distributed Systems CS 425 / ECE 428 Fall 2013 Indranil Gupta (Indy) October 10, 2013 Lecture 14 Networking Reading: Chapter 3 (relevant parts) 2013, I. Gupta, K. Nahrtstedt, S. Mitra,

More information

Youki Kadobayashi NAIST

Youki Kadobayashi NAIST Information Network 1 Routing (1) Image: Part of the entire Internet topology based on CAIDA dataset, using NAIST Internet viewer Youki Kadobayashi NAIST 1 The Routing Problem How do I get from source

More information

Distributed Routing. EECS 228 Abhay Parekh

Distributed Routing. EECS 228 Abhay Parekh Distributed Routing EECS 228 Abhay Parekh parekh@eecs.berkeley.edu he Network is a Distributed System Nodes are local processors Messages are exchanged over various kinds of links Nodes contain sensors

More information

CS118 Discussion Week 7. Taqi

CS118 Discussion Week 7. Taqi CS118 Discussion Week 7 Taqi Outline Hints for project 2 Lecture review: routing About Course Project 2 Please implement byte-stream reliable data transfer Cwnd is in unit of bytes, not packets How to

More information

The Network Layer. Network Layer Design Objectives

The Network Layer. Network Layer Design Objectives 1 next CITS3002 help3002 CITS3002 schedule The Network Layer The Data Link Layer had the responsibility of reliably transmitting frames across along a single wire (or wireless,...) link. The Network Layer's

More information

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) Computer Networking Intra-Domain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) IP Forwarding The Story So Far IP addresses are structured to reflect Internet structure IP

More information

Interplay between routing, forwarding

Interplay between routing, forwarding Chapter 4: outline 4. introduction 4. virtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link state

More information

We will discuss about three different static routing algorithms 1. Shortest Path Routing 2. Flooding 3. Flow Based Routing

We will discuss about three different static routing algorithms 1. Shortest Path Routing 2. Flooding 3. Flow Based Routing In this lecture we will discuss about Routing algorithms Congestion algorithms Lecture 19 The routing algorithm is that part of the network layer software, which is responsible for deciding which output

More information

Lecture 4. The Network Layer (cont d)

Lecture 4. The Network Layer (cont d) Lecture 4 The Network Layer (cont d) Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest Path First Protocols

More information

===================================================================== Exercises =====================================================================

===================================================================== Exercises ===================================================================== ===================================================================== Exercises ===================================================================== 1 Chapter 1 1) Design and describe an application-level

More information

Routing. Advanced Computer Networks: Routing 1

Routing. Advanced Computer Networks: Routing 1 Routing Advanced Computer Networks: Routing 1 Gateway To internet or wide area network Metropolitan Area Network (MAN) s s Organization Servers Backbone R S R R Departmental Server s R S R s S R s s s

More information

Digital Communication Networks

Digital Communication Networks Digital Communication Networks MIT PROFESSIONAL INSTITUTE, 6.20s July 25-29, 2005 Professor Muriel Medard, MIT Professor, MIT Slide 1 Digital Communication Networks Introduction Slide 2 Course syllabus

More information

Data & Computer Communication

Data & Computer Communication Basic Networking Concepts A network is a system of computers and other devices (such as printers and modems) that are connected in such a way that they can exchange data. A bridge is a device that connects

More information

Principles of Wireless Sensor Networks. Routing, Zigbee, and RPL

Principles of Wireless Sensor Networks. Routing, Zigbee, and RPL http://www.ee.kth.se/~carlofi/teaching/pwsn-2011/wsn_course.shtml Lecture 8 Stockholm, November 11, 2011 Routing, Zigbee, and RPL Royal Institute of Technology - KTH Stockholm, Sweden e-mail: carlofi@kth.se

More information

Network Layer (Routing)

Network Layer (Routing) Network Layer (Routing) Topics Network service models Datagrams (packets), virtual circuits IP (Internet Protocol) Internetworking orwarding (Longest Matching Prefix) Helpers: ARP and DHP ragmentation

More information

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013 CS 5 Network Programming Languages Control Plane http://www.flickr.com/photos/rofi/0979/ Nate Foster Cornell University Spring 0 Based on lecture notes by Jennifer Rexford and Michael Freedman Announcements

More information

Lecture 12. Introduction to IP Routing. Why introduction? Routing

Lecture 12. Introduction to IP Routing. Why introduction? Routing Lecture. Introduction to IP Routing Why introduction? Routing: very complex issue need in-depth study entire books on routing our scope: give a flavour of basic routing structure and messaging give an

More information

Network layer: Overview. Network layer functions Routing IP Forwarding

Network layer: Overview. Network layer functions Routing IP Forwarding Network layer: Overview Network layer functions Routing IP Forwarding Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 018 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 017 1 Network

More information

CSCD 330 Network Programming Spring 2017

CSCD 330 Network Programming Spring 2017 CSCD 330 Network Programming Spring 017 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-007

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Original slides by Cisco Press & Priscilla Oppenheimer Selection Criteria for Switching and Routing Protocols Network traffic

More information

CEN445 Network Protocols & Algorithms. Network Layer. Prepared by Dr. Mohammed Amer Arafah Summer 2008

CEN445 Network Protocols & Algorithms. Network Layer. Prepared by Dr. Mohammed Amer Arafah Summer 2008 CEN445 Network Protocols & Algorithms Network Layer Prepared by Dr. Mohammed Amer Arafah Summer 2008 1 Internetworking Two or more networks can be connected together to form an Internet. A variety of different

More information

Principles of Wireless Sensor Networks

Principles of Wireless Sensor Networks Principles of Wireless Sensor Networks www.kth.se/student/program-kurser/kurshemsidor/kurshemsidor/control/el2745 Lecture 6 Stockholm, February 6, 2012 Carlo Fischione Royal Institute of Technology - KTH

More information

CSEP 561 Routing. David Wetherall

CSEP 561 Routing. David Wetherall CSEP 561 Routing David Wetherall djw@cs.washington.edu Routing Focus: How to find and set up paths through a network Distance-vector and link-state Application Shortest path routing Transport Key properties

More information

ICS 351: Today's plan. netmask exercises network and subnetwork design dynamic routing RIP distance-vector routing

ICS 351: Today's plan. netmask exercises network and subnetwork design dynamic routing RIP distance-vector routing ICS 351: Today's plan netmask exercises network and subnetwork design dynamic routing RIP distance-vector routing Netmask exercises how many bits in this netmask: 255.128.0.0 using this netmask and the

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 40 Data and Computer Communications Networks Network Layer NAT, Routing, Link State, Distance Vector Prof. Lina Battestilli Fall 07 Chapter 4 Outline Network Layer: Data Plane 4. Overview of Network

More information

Graph Algorithms. Many problems in networks can be modeled as graph problems.

Graph Algorithms. Many problems in networks can be modeled as graph problems. Graph Algorithms Graph Algorithms Many problems in networks can be modeled as graph problems. - The topology of a distributed system is a graph. - Routing table computation uses the shortest path algorithm

More information

Topology. Youki Kadobayashi NAIST. Outline. Routing system: its function. Gateway Model Revisited. Routing system: its structure

Topology. Youki Kadobayashi NAIST. Outline. Routing system: its function. Gateway Model Revisited. Routing system: its structure Information Network 1 Routing (1) Topology Topology 1: 2a (1): a branch of mathematics concerned with those properties of geometric configurations (as point sets) which are unaltered by elastic deformations

More information

Distributed Queue Dual Bus

Distributed Queue Dual Bus Distributed Queue Dual Bus IEEE 802.3 to 802.5 protocols are only suited for small LANs. They cannot be used for very large but non-wide area networks. IEEE 802.6 DQDB is designed for MANs It can cover

More information

Lecture 9. Network Layer (cont d) Network Layer 1-1

Lecture 9. Network Layer (cont d) Network Layer 1-1 Lecture 9 Network Layer (cont d) Network Layer 1-1 Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest

More information

IP Address Assignment

IP Address Assignment IP Address Assignment An IP address does not identify a specific computer. Instead, each IP address identifies a connection between a computer and a network. A computer with multiple network connections

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 3. Packet Switching Networks Switching and Forwarding Virtual Circuit and Datagram Networks ATM and Cell Switching X.25 and Frame Relay Routing

More information

Distance-Vector Routing: Distributed B-F (cont.)

Distance-Vector Routing: Distributed B-F (cont.) istance-vector Routing: istributed - (cont.) xample [ istributed ellman-ord lgorithm ] ssume each node i maintains an entry (R(i,x), L(i,x)), where R(i,x) is the next node along the current shortest path

More information

Module 1. Introduction. Version 2, CSE IIT, Kharagpur

Module 1. Introduction. Version 2, CSE IIT, Kharagpur Module 1 Introduction Version 2, CSE IIT, Kharagpur Introduction In this module we shall highlight some of the basic aspects of computer networks in two lessons. In lesson 1.1 we shall start with the historical

More information

Chapter 3 Packet Switching

Chapter 3 Packet Switching Chapter 3 Packet Switching Self-learning bridges: Bridge maintains a forwarding table with each entry contains the destination MAC address and the output port, together with a TTL for this entry Destination

More information

Data Networks. Lecture 1: Introduction. September 4, 2008

Data Networks. Lecture 1: Introduction. September 4, 2008 Data Networks Lecture 1: Introduction September 4, 2008 Slide 1 Learning Objectives Fundamental aspects of network Design and Analysis: Architecture: layering, topology design, switching mechanisms Protocols:

More information

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms Chapter 15&16 Internetworking Internetwork Structure & Terms Internetworking Architecture Features Connection/Connectionless Architecture Fragmentation & Reassembly Internet Protocol & Services Addressing

More information

Unit 3: Dynamic Routing

Unit 3: Dynamic Routing Unit 3: Dynamic Routing Basic Routing The term routing refers to taking a packet from one device and sending it through the network to another device on a different network. Routers don t really care about

More information

Introduction to Routing

Introduction to Routing 1 Introduction to Routing Session 2 Presentation_ID.scr 1 Agenda Addressing Concepts Routing Protocols Statics and Defaults 3 ISO OSI Reference Model Routing Information Protocol (RIP and RIPv2) L7 L6

More information

Administrivia CSC458 Lecture 4 Bridging LANs and IP. Last Time. This Time -- Switching (a.k.a. Bridging)

Administrivia CSC458 Lecture 4 Bridging LANs and IP. Last Time. This Time -- Switching (a.k.a. Bridging) Administrivia CSC458 Lecture 4 Bridging LANs and IP Homework: # 1 due today # 2 out today and due in two weeks Readings: Chapters 3 and 4 Project: # 2 due next week Tutorial today: Joe Lim on project 2

More information

CMPE 150: Introduction to Computer Networks

CMPE 150: Introduction to Computer Networks CMPE 50: Introduction to Computer Networks Dr. Chane L. Fullmer chane@cse.ucsc.edu Spring 003 UCSC cmpe50 Homework Assignments Homework assignment #3 Chapter Four Due by May Spring 003 UCSC cmpe50 CMPE

More information

Copyright 2010, Elsevier Inc. All rights Reserved

Copyright 2010, Elsevier Inc. All rights Reserved Computer Networks: A Systems Approach, 5e Larry L. Peterson and Bruce S. Davie C 3 Internetworking Copyright 2010, Elsevier Inc. All rights Reserved Switching and Forwarding Store-and-Forward Switches

More information

EE 122: Intra-domain routing

EE 122: Intra-domain routing EE : Intra-domain routing Ion Stoica September 0, 00 (* this presentation is based on the on-line slides of J. Kurose & K. Rose) Internet Routing Internet organized as a two level hierarchy First level

More information